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The dynamical behavior of single-component two-dimensional colloidal crystals confined in a slit geometry
is studied by Langevin dynamics simulation of a simple model. The colloids are modeled as pointlike particles,
interacting with the repulsive part of the Lennard-Jones potential, and the fluid molecules in the colloidal
suspension are not explicitly considered. Considering a crystalline strip of triangular lattice structure with n = 30
rows, the (one-dimensional) walls confining the strip are chosen as two rigidly fixed crystalline rows at each
side, commensurate with the lattice structure and, thus, stabilizing long-range order. The case when the spacing
between the walls is incommensurate with the ideal triangular lattice is also studied, where (due to a transition
in the number of rows, n → n − 1) the confined crystal is incommensurate with the confining boundaries, and
a soliton staircase forms along the walls. It is shown that mean-square displacements (MSDs) of particles as a
function of time show an overshoot and then saturate at a horizontal plateau in the commensurate case, the value
of the plateau being largest in the center of the strip. Conversely, when solitons are present, MSDs are largest
in the rows containing the solitons, and all MSDs do not settle down at well-defined plateaus in the direction
parallel to the boundaries, due to the lack of positional long-range order in ideal two-dimensional crystals. The
MSDs of the solitons (which can be treated like quasiparticles at very low temperature) have also been studied
and their dynamics are found to be about an order of magnitude slower than that of the colloidal particles
themselves. Finally, transport of individual colloidal particles by diffusion processes is studied: both standard
vacancy-interstitial pair formation and cooperative ring rotation processes are identified. These processes require
thermal activation, with activation energies of the order of 10Tm (Tm being the melting temperature of the crystal),
while the motions due to long-wavelength phonons decrease only linearly in temperature.
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I. INTRODUCTION

Colloidal systems have been extensively studied, as they
are a very useful model system not only for statistical physics
but also for modeling nanotechnological devices and self-
assembly processes. The great advantage of using colloids lies
in the fact that they can be produced with tunable interactions,
in different shapes and sizes, and that convenient tech-
niques are available to observe their structure and dynamics
directly [1–5].

Therefore, colloidal systems have been investigated under
various external conditions both by experiment and simula-
tion. Two-dimensional layers of colloids have been created
[6–17], they have been confined mechanically or by laser
fields [7,13,17–19], and layers of colloids have been sheared
whereby soliton-like excitations have been observed, namely
moving kinks and antikinks [20]. They have been used as a
model system to study phase transitions [8–10,21] and crystal
nucleation in two-dimensional colloidal systems [14], and
the crack formation in two-dimensional colloidal crystals has
been studied [22]. They have been used to model the glass
transition [16,23]. Different boundary conditions [24] and the
effect of incommensurate walls on colloidal crystals in two
dimensions has been investigated by simulations in which
soliton formation was observed [25–28].

In a crystal formed from atoms or small molecules, the
dominating type of motion of all particles are small scale
(somewhat damped) oscillating motions (due to thermally
excited phonons); the amplitude of these motions can only

be of the order of 10% of the nearest neighbor distance (or
less), otherwise the crystal melts (“Lindemann criterion”) [29].
In a colloidal crystal where micrometer-sized particles are
suspended in a solvent, these lattice vibrations are overdamped
by the random collisions with the solvent molecules, but with
respect to the static mean-square amplitude of particles, the
behavior is still analogous to crystals formed from small
particles.

But although colloidal systems under confinement have
been extensively studied with various questions in mind, a
thorough study of the basic motion of the particles and solitons
and of the diffusion processes inside of colloidal crystals is
still missing, and with this paper we are attempting to fill
this gap. We shall present here simulations of a model system
describing a confined one-component colloidal crystal; the
static properties of this system have already been analyzed
in previous works [25–28]. We describe in our simulations
the damping of oscillations of the particles due to solvent
by carrying out a Langevin dynamics simulation (rather
than microcanonical molecular dynamics), thereby ignoring
hydrodynamic backflow effects, of course, but the latter should
not be important for colloidal crystals in thermal equilibrium.
Both perfect (defect-free) crystals and crystals containing
solitons at the confining walls shall be studied.

Another important contribution to the movement within
colloidal crystals is diffusion. The well-known theory of
diffusion in crystals states that diffusion either takes place
via vacancies or—in perfect crystals like the one we are
studying here—via the formation of a hole and a corresponding
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interstitial particle [30]. In this paper we will show that in
our model system diffusion also takes place by cooperative
rotations of groups of particles.

Such cooperative rotation diffusion processes are known
to play an important role in glassy materials [31]. In two-
dimensional layers of crystals, such as surfaces, a variety of dif-
ferent diffusion mechanisms have been described: Most studies
concentrate on hopping vacancies as the direct mechanism
[32] or at least as the underlying principle mediating surface
diffusion [33] and on the diffusion mechanism of so-called
adatoms, which are atoms adsorbed on a surface [34–39],
and on the questions how thermal vacancies are created and
destroyed and what role the surface plays in this process [40].

Cooperative ring rotations of colloidal particles in three-
dimensional crystals have been observed and investigated in
the context of superheated materials, in which they were
part of the melting process [41,42]. But to our knowledge,
there are only two studies reporting on cooperative ring
rotation processes distinctly below the melting transition:
Using temperature-accelerated dynamics (TAD) [43,44], Mon-
talenti et al. have found evidence of such mechanisms in
a two-dimensional layer of crystalline atoms in a periodic
potential [45] and in Cu grain boundaries [46], although they
were extremely rare, especially in the latter case. In this paper,
we will show, that in our two-dimensional model system
cooperative ring rotation phenomena occurred quite frequently
and involved different numbers of particles.

In the next section we will describe the model system and
simulation parameters. Following it, we will show our results
for the motion of the particles in the case without solitons,
during the equilibration into the defect structure, and for the
case where the transition has taken place. In Sec. IV we will
describe the diffusion mechanism which we have observed,
and in Sec. V we will summarize our findings.

II. MODEL SYSTEM AND PARAMETERS

We are considering a two-dimensional colloidal crystal with
a hexagonal lattice structure. In the x direction we are applying
periodic boundary conditions, while the system is confined in
the y direction by walls consisting of two rows of frozen
particles (Fig. 1). All particles interact via a purely repulsive
potential,

V (r) = ε[(σ/r)12 − (σ/rc)12]

[
(r − rc)4

h4 + (r − rc)4

]
, (1)

with parameters rc = 2.5σ and h = 0.01σ . This potential
does not directly correspond to any experimentally realizable
situation, but as there are no experiments available for direct
comparison at the moment, we chose the r−12 dependence
with the cutoff and shift due to the computational efficiency
of a strictly short-ranged potential and added a smoothing
factor for differentiability. Note that in qualitative respects
Eq. (1) can be taken as a generic model for a broad class of
colloidal particles with short-range repulsive interactions (due
to screened Coulomb interactions or due to polymer brush
coating, etc.). Henceforth, we chose units of temperature and
length such that ε = 1 and σ = 1.

The simulations are carried out using Langevin dynamics
[47] using the program package HOOMD-BLUE [48,49]. This

FIG. 1. The system geometry, showing the fixed wall particles
(black spheres) and the mobile particles (gray spheres). The orienta-
tion of the coordinate axes is indicated, as well as the lattice spacing
of the triangular lattice (a) and the linear dimensions Lx,D of the
system.

program is designed to run on graphic cards, where, due to the
parallelization on the internal processing units, large system
sizes can be simulated. Thus, most simulations were carried
out using M = 73 440 particles (including walls), i.e., 64 800
mobile particles. However, consumer graphic cards (which we
initially used in this study) have substantially more processing
power, when single precision accuracy is used, which proved
not to be accurate enough for our system at temperatures
T < 1.0. Therefore, we had to run the simulations at the
lower temperatures on conventional CPUs (but still using
the program package HOOMD-BLUE, which can also be used
on CPUs). As this led to a considerable increase in the
computational times, we reduced the system size to N = 3672
particles, including walls, i.e., 3240 mobile particles wherever
possible when we had to run the simulations on CPUs. These
simulations were then carried out on the local computer cluster,
with a parallelization on eight cores, where they needed
2–48 h, depending on the simulation.

In the simulations, we apply Langevin dynamics with a
velocity-Verlet integration scheme. A force �F = −γ �v + �Frand

is added to the force exerted on each particle by the interaction
with its neighboring particles [50,51]. Here, γ is a friction
coefficient to be specified, �v is the particle’s velocity, and �Frand

is a random force with a magnitude chosen via the fluctuation-
dissipation theorem to be consistent with the specified drag
γ and the chosen temperature T . We used a time step of
�t = 0.002, a friction coefficient of γ = 0.5 (unless otherwise
specified), and a temperature of T = 1.0 (unless otherwise
specified). Note that our particles have mass m = 1 and that
the time t is measured in the standard molecular dynamics
time unit τ = t

√
ε

mσ 2 .
Of course, using a Langevin integrator neglects the hy-

drodynamic interactions between the particles and between
the particles and the confining walls. It also cannot model
the different viscosities that occur in a confined system: Close
to a wall, the motion of the particles is restricted and the
viscosity is, therefore, larger than further away from the walls.
This increased friction close to the walls would slow down the
dynamics but presumably not change it qualitatively. Including
hydrodynamic interactions between the particles might even
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FIG. 2. (Color online) (a) The distribution of the distance r

between nearest neighbor particles in the crystal: For each particle,
the distance to its six nearest neighbors was used. Different tem-
peratures T as indicated. Distributions are normalized to area = 1.
(b) Squared width of the distribution, defined as w2(T ) =
〈r2(T )〉−〈r(T )〉2

〈r(T )〉2 . Simulations in the fully commensurate case with 30
crystalline rows.

enhance the rate at which the cooperative ring diffusion
processes occur, which we will describe below. Therefore,
our study is a rather qualitative description of the variety of
effects present in colloidal crystals.

All simulations were carried out below the melting temper-
ature of Tm = 1.35 [52] for our chosen density of ρ = 1.05.
In Fig. 2 we show the result of computing the fluctuation in
the distance between nearest-neighbor particles in the crystal
by plotting the distribution of the distances to the six nearest
neighbors of each particle versus this distance as a function
of the temperature. As expected, this distribution becomes
broader for higher temperatures. From this graph one can
verify that the relative fluctuations are clearly smaller than
what would be expected near melting (from a Lindemann-type
criterion). In the commensurate case, the confined crystal has
an essentially defect-free triangular crystal structure.

For completeness, we recall now the main facts about the
structural transition and associated soliton formation occurring
when the crystal is exposed to uniaxial compression: If the
walls are placed closer together, then in the commensurate
case, a structural transition occurs and the number of rows
parallel to the walls is reduced. We define the misfit � between
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FIG. 3. (Color online) Stress anisotropy δσ = σxx − σyy curve
showing at which values of the misfit � the structural transition
occurs which reduces the number of rows parallel to the walls. The
broken line shows the exact location of this transition in equilibrium,
which was obtained using the phase-switch Monte Carlo method [28].

the actual distance D between the two walls and their distance
D0 = nya

√
3/2 in the commensurate case as

D = (ny − �)a
√

3/2, (2)

where a is the lattice constant in the commensurate case (see
Fig. 1).

In the present system, we started with 30 rows, which
transformed into 29 rows at a misfit of about � = 2.0, as can
be read off from the stress curves shown in Fig. 3. Note that
the components of the stress tensor σαβ are straightforwardly
sampled using the virial formula, as usual. This plot also shows
that a system with 29 rows is already metastable at smaller
values of the misfit, as simulations starting out with 29 rows
showed that the system does only spontaneously rearrange
itself into 30 rows until a misfit of about � = 1.4. The exact
location of the transition without the obscuring hysteresis
has been found by applying the phase-switch Monte Carlo
method [28].

As the number of particles remained constant in the system
at all times, a transition from 30 rows to 29 rows means that the
particles which used to be in the 30th row have to be distributed
in the rest of the crystal. Earlier work by Chui et al. [25–27]
has shown that the preferred way of arranging those extra
particles is by putting the same number of extra particles in
each row except the rows directly adjacent to the walls, which
remain free of extra particles due to the stabilizing effect of
the walls. Thus, an energetically elevated situation is created
where (in the specific case of a system with 3240 mobile
particles) ninner rows = 112 particles have to be placed into the
nadjacent to walls = 108 minima of the potential created by the
108 particles sitting in the row directly adjacent to the walls.
This is illustrated in Fig. 4(a). It is energetically favorable
for the system to restrict the mismatch in its rows to small
areas of the crystal, thus creating “solitons,” which are areas
where the lattice structure is locally disturbed. This is shown in
Fig. 4(b).

051404-3



WILMS, VIRNAU, SNOOK, AND BINDER PHYSICAL REVIEW E 86, 051404 (2012)

FIG. 4. (Color online) (a) Putting n + 1 particles in a periodic
potential with n minima creates a soliton configuration, i.e., over
a range of several lattice spacings particles are displaced from the
potential minima (schematic). (b) Soliton configuration in a lattice of
N = 3672 particles (including walls) when the particles are arranged
into 29 rows. Particles which are part of the solitons are marked in
orange (light gray). “Ideal” configuration for T = 0 is shown.

In the following, we will refer to the rows directly adjacent
to the walls as row 1 and row 30, respectively, and to the inner
rows as row 2–29.

In the following section, we shall focus on the mean-square
displacements of the particles as function of time, with the
motivation being that this type of information, in principle, is
also experimentally accessible via particle tracking techniques.

We will use two different definitions of the mean-square dis-
placement (MSD) of the particles: By “MSD with respect to the
starting configuration” (Ms) we refer to the definition Ms(t) =
〈(x(t) − x(0))2〉N , where 〈· · ·〉N denotes the average taken over
all (mobile) particles in the system, while “MSD with respect to
the time difference between the configurations” (Mt ) refers to
the definition Mt (�t) = 〈(x(t) − x(t + �t))2〉N,t , where now
〈· · ·〉N,t denotes the average taken over all (mobile) particles
in the system and over all configurations which are a time
interval �t apart from each other.

III. RESULTS ON THE RELAXATION OF PARTICLES AND
SOLITONS IN COLLOIDAL CRYSTALS

A. Localized motions of particles confined in “cages” formed
by their neighbors

When the system starts out with 30 crystalline rows, N =
64 800 mobile particles, and without misfit, we obtain the MSD
with respect to the time difference (Mt ) for the particles in x

and y direction shown in Fig. 5. Here, like in all graphs of this
kind (unless otherwise stated), we printed out configurations
after every 50 steps and averaged over 500 configurations. In
the following we define one MD time unit by multiplying the
number of integration steps with the time step �t = 0.002. So
one MD time unit corresponds to 500 integration steps.

The starting configurations were equilibrated for 2 × 106

steps before the simulation runs were started. One can see an
overshoot at small time scales. This is expected in a crystal as
it is due to the repelling forces which the particles experience
when they are displaced from their ideal lattice position and,
thus, come closer to their neighboring particles. These forces
act similarly to a harmonic potential, pinning particles to their
lattice sites, therefore they cause this oscillatory behavior in the
MSD. But as the oscillation is strongly damped and modified
by random kicks, only this overshoot is clearly visible. At
slightly larger time scales, the MSD reaches a plateau. This
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FIG. 5. (Color online) MSD with respect to the time difference
(Mt ) in x (a) and y directions (b) for a system with 30 rows without
misfit. Due to the symmetry of the system, rows 1 and 30, 2 and 29
etc. should on average yield the same curves. Temperature T = 1.0.
Each MD time unit corresponds to a difference of 500 integration
steps as the time step was �t = 0.002.

plateau is also expected, because the structured walls are
pinning the crystal (as a whole) to its position and do not
allow any center-of-mass movement. Thus, the particles are
localized near their equilibrium sites. One can also see that in
y direction the values are of the same order of magnitude as
the crystal is not compressed. They do differ slightly, however,
as it makes a difference whether there are fixed wall particles
or periodic boundary conditions, of course.

If one studies the same MSDs at a misfit of � = 1.5, where
the transition to 29 rows has not taken place yet, the values
are smaller as the system is compressed and less space is
available to the particles (Fig. 6). Apart from this, the proximity
of the transition does not show up in the MSDs.

Note that the time-dependent mean-square displacements
show in the inner rows (e.g., row 8 and 23, or 15 and 16,
respectively) some flat maximum at time ≈2. While rows 15
and 16 are adjacent to each other, and, hence, motions of
particles in these rows are strongly correlated to each other,
rows 8 and 23 are rather remote from each other (they are
only equivalent due to the symmetry of the system, since both
corrugated walls are equivalent). Hence, this particular feature
of the MSD is not a consequence of insufficient averaging but a
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FIG. 6. (Color online) As described in the caption to Fig. 5 but
for a system with 30 rows at a misfit of � = 1.5, where the transition
to 29 rows has not taken place yet.

real effect. It also is easily understandable that the mean-square
displacements are larger in the center of the slit: Due to the
corrugated walls, all phonon-type excitations are constrained
to have zero amplitude at the boundaries. A phonon with
wavelength λ/2 = D then has its maximum amplitude at
y = D/2.

Figure 7 shows the Mt for an uncompressed bulk system for
comparison. As expected, the averaged MSDs are larger when
no walls are present. Furthermore, they do not exhibit a real
plateau as the center of mass is not fixed without structured
walls. Additionally, this figure shows the influence of finite-
size effects in connection with the shape of the system in the
case where no walls are present: The “square system” behaves
like a real bulk crystal where the particles are pinned to their
lattice site rather strongly, while in the elongated system only
the MSD in the x direction shows this behavior. As the number
of rows is significantly smaller than the number of particles
per row here, it is energetically possible for the rows to bend
and assume an almost wavelike configuration, which leads to
significantly larger values of the MSD in the y direction. But, of
course, this effect does not occur when walls stabilize the rows.

B. Slow dynamics due to soliton formation

If one starts out with 29 rows at a misfit of � = 2.2 or,
alternatively, waits long enough until the configuration which
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FIG. 7. (Color online) MSD with respect to the time difference
(Mt ) in x and y directions for a system with 240 × 270 particles
(“square system”) and for an elongated system with 2160 × 30
particles without misfit. Temperature T = 1.0. Each MD time unit
corresponds to a difference of 500 integration steps as the time step
was �t = 0.002.

started out with 30 rows at this misfit has fully equilibrated and
a regular soliton pattern has evolved, one obtains the values
for the Mt as shown in Fig. 8.

One can see from Fig. 8 that the MSD has not reached
a plateau, even at an MD-time difference of 30 (=1500
integration steps), for the inner rows, which means that
there is some diffusion, which clearly does not involve the
rows directly adjacent to the walls. This is not suprising as
the rows directly adjacent to the walls retain their original
number of particles and are, therefore, still commensurate
to the walls and pinned to their position by them, whereas
the inner rows have a different number of particles now as
one row has disappeared and the particles from this row
have been distributed among the inner rows. Therefore, they
are no no longer commensurate with the structure of the
walls and, thus, can make a translational movement along
the walls as the potentials created by the wall particles can
no longer hold them in their original positions. In fact, for
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FIG. 8. (Color online) Mt in the x direction for a system which
started with 29 rows and was equilibrated at a misfit of � = 2.2
(where 29 rows are stable). Temperature T = 1.0.
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infinite two-dimensional crystals it is well known that the static
mean-square displacement of a particle relative to its reference
position in the ideal perfectly rigid crystal lattice diverges as
the center of mass drifts. In the x direction parallel to the walls
we, hence, expect for the rows 2, . . . ,29, which are no longer
pinned by the walls that MSD(�t → ∞) → ∞, unlike the
commensurate case of Figs. 5 and 6, where the whole crystal
is pinned by the boundaries, and for any finite slit thickness D

we have a finite value of the MSD(�t → ∞) for all rows.
One can also see that, generally, the diffusion in row 2 and

row 29 has the largest values, while the MSD is smaller again
for rows further inside the crystal and has a minimum value for
the rows directly next to the walls. This differs fundamentally
from the situation shown in Fig. 5 and 6, where row 1 and
row 30 also had the smallest values of the MSD, but the MSD
grew larger with increasing distance from the walls instead of
displaying a maximum in the rows 2 and 29 and becoming
smaller again inside of the crystal. This can be explained by
the influence of the solitons (in the simulations with 29 rows)
which cause considerable movement in the crystal. As we will
show in the following section, these solitons are present in
the rows next to the rows directly at the walls, i.e., they are
sitting close to the walls, thus creating the maximum of the
MSD in row 2. They also cause a certain amount of disorder
and movement in the rows next to them; therefore, the MSD
now decreases towards the inner part of the crystal, while the
MSD used to increase due to the decreasing influence of the
stabilizing walls in the case without solitons. The rows directly
adjacent to the walls were stabilized by the walls in both cases
and, thus, always showed the smallest values of the MSD.

When the walls are placed closer together, creating a misfit
of � = 2.2, it takes some time until all solitons are created
in this very large system. While this happens, one can watch
the “MSD with respect to the time difference” grow. This
is especially visible for those rows in which the solitons are
created, i.e., row numbers 2, 3, and 4. The effect is visible both
in the x direction and the y direction of the MSD, although
now one can see differences in the size of the MSD in the x

and y directions. Examples of this are shown in Fig. 9.
While in the commensurate case characteristic times needed

to equilibrate the system are of the order of a few MD time
units, Fig. 9 reveals that the time needed to equilibrate MSD
(�t) in the incommensurate case is of the order of about
2000 MD time units (for the large system comprised of 64 800
mobile particles; for smaller systems it is quicker). These large
times are understandable, since the formation of the soliton
staircase pattern requires the nucleation of defects moving
from one boundary to the opposite boundary, as described in
detail by Chui et al. [26] in the framework of Monte Carlo
simulations.

Figure 9 also shows that the amplitudes of the curves
obtained for row 3 are larger than the ones for row 2. The
curves for row 4 (not shown here) are qualitatively very similar,
only with an even larger amplitude than the ones for row
3. The fact that the amplitudes of the particles in the inner
rows (for example, in row 3) remain slightly larger than those
in row 2 indicates that if the system is equilibrated from a
30-row-structure into a 29-row-structure and the solitons are
formed at random positions, there is more disorder in the
inner rows (which is typical for the case of 30 rows, compare
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FIG. 9. (Color online) Change of the Mt in the x direction (a) and
y direction (b) as solitons are created. Large graphs show curves for
row 2, insets for row 3. System started out with 30 rows at a misfit of
� = 2.2 and slowly solitons were created and the structure changed
into 29 rows. Temperature T = 1.0.

Figs. 5 and 6), while if the system starts off with 29 rows
and a corresponding “perfect” soliton pattern, there is more
movement in the rows closer to the walls (see Fig. 8). This
behavior can, in principle, change on very long time scales as
the solitons repel each other and thus push each other closer
to the walls and into a more regular staircase pattern. But
usually the structure forming by equilibrating a 30-row-
structure into 29 rows gets stuck in a more disordered state
and exhibits a less regular soliton pattern and a slightly higher
stress even on long time scales.

One can also study the Mt for different values of the misfit
� as shown in Fig. 10 for different rows. One can see that
for relatively small misfits the structure with 30 rows remains
stable (as Chui et al. have seen in their hysteresis curves as
well), but the MSD of the particles shrinks with increasing
misfit since there is less space available for local motion in
this compressed crystalline structure. At larger misfits (shown
are � = 2.2 and � = 2.5) the structure has changed to 29 rows
and solitons have been created, which changes the shape of the
curve of the MSDs in the direction parallel to the walls due
to the solitons’ mobility. But it is also visible in the MSDs in
the direction perpendicular to the walls: Instead of decreasing
further due to the decreasing space between the walls, the MSD
at � = 2.2 is significantly larger than at � = 1.8 (prior to the
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FIG. 10. (Color online) Mt in the x direction (a) and y direction
(b) in row 2 of the system (large graphs) and row 3 (insets) for a
system starting out with 30 rows at the indicated values of the misfit
�. Temperature T = 1.0.

transition) and instead resemble the values at � = 1.5 as the
formation of solitons increases the mobility of the particles
also in the y direction. Of course, a further increase of the
misfit reduces the MSD again, which is demonstrated for
the case of � = 2.5, where the MSD in y direction is only
of the order of that at � = 1.8 prior to the transition. Also in
Fig. 10 the values of the MSDs are larger for row 3 than for
row 2 (and even larger for row 4, but, again, not shown as the
curves look qualitatively very similar to the ones displayed for
rows 2 and 3) as we used starting configurations consisting of
30 rows at every value of the misfit.

C. Relaxation dynamics of equilibrated soliton structures

If one tries to calculate the Mt of the solitons itself
(which was done only in the small system with 3240 mobile
particles), one has to be careful to subtract their center-of-mass
movement. Even though the particles themselves show a very
small (on the time scale we are studying here, almost invisible)
center-of-mass movement, the soliton pattern moves around
significantly. In this movement, the soliton pattern hardly
changes, i.e., the distances between the solitons remain more
or less constant, but the pattern as such can easily move along
the x direction. Because, after all, solitons are only those areas
where some particles are closer to each other than they are on
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FIG. 11. (Color online) Mt in x and y directions of the solitons
at the indicated temperatures for simulations at � = 2.2, averaged
over the eight solitons that appeared and averaged over 20 runs.
Please note that the center-of-mass diffusion of the soliton pattern
as a whole has been subtracted from the solitons’ movements. This
center-of-mass diffusion of the pattern was quite large (of the order
of half a distance between solitons). Simulations started with 29
rows and were equilibrated before measuring. System size is N =
3672 particles (including walls). Snapshots give examples of which
particles are identified as part of solitons (black) in simulations at
� = 2.2, starting out with 29 rows, at T = 0.1 (upper) and at T = 0.2
(lower snapshot). For details see text.

average, because some of the extra particles that stem from
the row that has disappeared in the n → n − 1 transition in
the number of rows now are localized there. So it only takes a
few particles to make a small lateral movement and the soliton
already changes its position.

When one compares the amplitude of the mean-square
displacement of solitons shown in Fig. 11 with that of the
individual colloidal particles (Figs. 5 and 6) of the rows close to
the immobile walls, several differences are worth mentioning:
For individual particles, mean-square displacements in x

and y directions are of the same order of magnitude. For
solitons, in contrast, mean-square displacements in the y

direction are completely negligible, while in the x direction
they are an order of magnitude larger than the corresponding
value for the colloidal particles. This is the case, because
the two rows of solitons (close to the upper and lower
walls, respectively) strongly repel each other and, therefore,
the solitons remain very close to the walls and almost
immobile in the y direction. At the same time, they can easily
move in the x direction as they are regions of increased particle
density, which already moves if only a few particles make a
small coordinated movement in the same direction. While the
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soliton staircases are essentially one-dimensional objects, they
create a two-dimensional displacement field throughout the
whole crystalline strip: This causes the zig-zag type correlation
in the arrangement of the solitons near the upper and lower
boundaries in Fig. 11. Also the time scale for the oscillatory
convergence to the plateau now is of the order of 10 MD
steps, while it was of the order of 1 MD step for the particles
themselves. This result is expected, recalling the estimates for
the small “spring constant” that maintains the average distance
between solitons [27]. It also confirms that, in this particular
case, Monte Carlo simulations like the ones used by Chui
et al. in order to determine the potential and spring constant
acting between the solitons yield reasonable results for the
movements of the particles.

The snapshots shown in the same figure show some
representative soliton configurations, where all particles which
the code identifies as “possibly being part of a soliton” are
marked in black. Of course, only clusters of a certain size of
these particles are actually counted as solitons, so the wrongly
identified particles somewhere in the middle of the system
(especially at slightly higher temperatures) do not disturb the
statistics. As it is quite difficult to distinguish particles which
do or do not belong to solitons for higher temperatures, only
T = 0.1 and T = 0.2 were used here.

IV. OBSERVATIONS OF DIFFUSION IN SIMULATIONS
OF COLLOIDAL CRYSTALS

We now return to uncompressed commensurate crystals
(� = 0), where at T = 1.0 the snapshots reveal in the
overwhelming majority of cases a defect-free triangular crystal
structure. This is not surprising as it is known that the
density of vacancies and interstitials in d = 2 for any nonzero
temperature is also nonzero in thermal equilibrium [29,53],
but very small at temperatures significantly below the melting
transition [25,52], which occurs at Tm = 1.35 for our system.
We ask whether in such almost ideal crystals still some
diffusion of particles occurs. In principle, this question is
relevant for unconfined crystals (to be simulated using periodic
boundary conditions in both the x and y directions) as well, but
we focus here on diffusion in a system confined by structured
walls as a by-product of our studies in the preceding section.
To study this question, we consider a large system comprised
of 73 440 particles and long time scales. Also MSDs of
the particles need to be investigated over much longer time
intervals than the ones we considered before.

If one studies the MSD with respect to the starting
configuration (Ms) shown in Fig. 12 (again for T = 1.0 and
for the larger system), for the case without a misfit, one gets a
first idea about diffusion processes inside the crystal: Although
the crystal structure is stable, there is a considerable amount
of diffusion. This diffusion does not happen continuously, but
every now and then larger groups of particles change their
position. Although translational invariance is present only in
the x direction, the diffusion of particles involves both the
x and the y coordinates as the particles have to move from
one crystalline lattice site to another one. A center-of-mass
movement is excluded due to the presence of the structured
walls which fix the crystal also in the x direction. And as the
values of the MSD are typically quite small in this system
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FIG. 12. Example of an MSD with respect to the starting
configuration (Ms) for a system with N = 73 440 particles (including
walls), � = 0 and 30 rows at T = 1. In spite of this diffusion, the
structure remains crystalline.

(most particles only move by a few lattice spacings, if at all),
we will study the MSD as a whole and not specifically its x or
y component here (which would mostly differ from each other
due to the orientation of the crystalline rows along the x axis).
Of course, the size of the MSDs as a whole would probably be
larger in the case without walls.

In order to investigate this phenomenon, one can look at
snapshots of the system, where all particles which are no
longer in their initial lattice position have been marked. A
few typical sections of such snapshots are shown in Figs. 13
and 14. Obviously, there are a few circular or ringlike
dislocations, where in a group of particles, each particle has
jumped onto the lattice site of its neighboring particle, and
as the ring is closed, the motion stopped here (Fig. 13). In
other parts of the crystal, many particles have left their initial
lattice site and have jumped onto some other particle’s initial
position instead (Fig. 14). The system is still crystalline here
and shows a clear hexagonal lattice structure despite the fact
that so many particles are no longer in their initial positions as
one can see in the lower figure. Also, the disorder present due to
phonons (particles being somewhat displaced from their ideal
positions in the perfectly rigid structure at temperature T = 0
in a coherent, collective way) can be virtually recognized.

The well-known theory of diffusion inside crystals states
that diffusion takes place through the creation of a pair of
one interstitial particle sitting no longer on the “allowed”
lattice sites but moving somewhere in between them and a
hole, which it leaves behind and which can diffuse as particles
from adjacent lattice sites can jump into it. The formation of
such pairs of interstitials and vacancies is induced by thermal
fluctuations. This mechanism is prevalent in those areas of the
snapshots where many particles have left their initial lattice
sites and sit on different lattice sites instead. Naturally, this
process involves many particles as the interstitial as well as the
hole perform a random walk. At the temperatures we studied
here, the density of holes and interstitials is still extremely low,
so the interaction of two of such pairs is excluded. Therefore,
the diffusion process only stops when this particular pair of
vacancy and interstitial happens to be in the same position
again and recombine. Despite the fact that they attract each
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FIG. 13. (Color online) Snapshots of differently sized clusters of
particles which moved away from their initial positions. A section of
the system is shown, where, at time zero, the subsequent mobile rows
are marked by different colors in the y direction (row 1 is black, row 2
is red, row 3 is blue, etc., from bottom to top) to indicate the particles
that have left their row at a later time. The whole system consisted
of N = 73 440 particles (including walls). Simulations were carried
out at � = 0, T = 1 and with 30 rows. These snapshots were taken
at an MD time of 4000 (relative to starting the simulation with the
unequilibrated ideal crystalline configuration). Those particles, which
are no longer in their initial position, are displayed as circles, all of
the other particles as dots.

other by being a high-pressure spot and a low-pressure spot
in the crystalline structure, within the resulting recombination
times up to several thousand particles can be removed from
their initial lattice site.

One snapshot showing the beginning of this “hole and
interstitial” diffusion process is given in Fig. 15. One can
see the hole at the end on the right-hand side of the wavy
line of particles that have been displaced from their initial
lattice sites as well as the fact that there is one extra particle
for the crystalline structure at the left-hand side inside the
“blob” of displaced particles. This is illustrated in the enlarged
sections showing that the number of nearest-neighbor particles
is not equal to six for all particles around the vacancy and the
interstitial: In the proximity of the vacancy we found one
particle with eight neighbors and two with seven; in the region
with the interstitial two particles have five neighbors and two
have seven. The lower graph shows the same section of the
system at a later time: Here, the recombination of hole and
interstitial has occurred quite soon, leaving behind a closed
curve of particles that have been displaced from their initial
lattice sites but are sitting in correct (but different) lattice
sites again. The creation of these vacancy-interstitial pairs at
T � 1.0 are still such rare events that the interaction between

FIG. 14. (Color online) Snapshots showing the results of the
“normal” diffusion process. Those particles, which are no longer
in their initial position, are displayed as circles, all of the other
particles as dots in the upper snapshot. Coloring scheme as described
in the caption to Fig. 13. Lower snapshot shows the same section
of the system, but displaced particles are shown in blue here, so
the crystalline structure, which is still clearly present in the system,
becomes more obvious. The whole system consisted of N = 73 440
particles (including walls), � = 0, T = 1 and 30 crystalline rows.

two different pairs is still negligible. But in the case of the
smaller rings of particles that have been displaced from their
initial lattice sites by jumping into their neighbor’s position, the
mechanism seems to differ: We observe the process referred
to as “cooperative ring rotation process” in Ref. [54].

In the beginning of the research on diffusion in the 1930s
and 1940s, different diffusion mechanisms were discussed
[55,56] and the idea of diffusion being carried out by groups
of particles making cooperative rotations and even direct
exchange between two particles was very popular. However,
the Kirkendall experiment [57] showed that in metallic alloys
the prevalent diffusion mechanism is via vacancies and/or
interstitials. Since there has been no experimental evidence
for different diffusion mechanisms, the general belief is that
cooperative rotation processes play no important role (or do
not even exist) in diffusion processes in three-dimensional
crystals [54,58,59]. In two-dimensional crystals like the one
we are studying here, there are only two other studies
describing such cooperative rotations [45,46]. In both of
these studies, by Montalenti et al., this particular diffusion
mechanism has been found to be extremely rare and could
only be observed by applying the rare event sampling tech-
nique of temperature-accelerated dynamics (TAD) [43,44]. Of
course, they were investigating more complex (and realistic)
systems than the one we are studying here, but, still, it is
fascinating that such cooperative rotation phenomena can also
be observed in our simulations. Due to the less complex model
system we used, we were even able to use system sizes and
time scales on which many of these rotations occurred, which
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FIG. 15. (Color online) Snapshots illustrating the effect of “nor-
mal” diffusion in a simulation at � = 0, T = 1, 30 rows. A section of
the system is shown at two different time steps showing how such a
diffusion builds up. Displaced particles are shown as black dots here,
while all other particles are shown in grey). The enlarged sections
in the middle panel indicate the nearest neighbor particles of those
particles which have more or less than six neighbours due to the
interstitial particle (left) resp. due to the vacancy (right snapshot), cf.
text.

allowed us to gather statistics of the number of particles
involved in them and to compare them to the “normal”
diffusion phenomena. Investigating these cooperative rotations
in detail shows that there is not one distinct particle which
starts the movement by being displaced from its original
position and leaving behind a hole but that it is a joint
movement of the whole group of particles which is induced
by thermal fluctuations. While making this concerted rotation
movement, some disorder is visible in the crystal around the
ring of particles, until the ring has fully turned into its final
position and all particles are sitting in lattice sites again.
Figure 16 illustrates this process: Initially, there seem to be
larger-than-average fluctuations in the area of the crystal left
of the ring. Note that there is no real hole or interstitial particle,
there is exactly the right number of particles for this part of the
crystal (they are only fluctuating strongly). This might “infect”
the left particles of the ring, motivating them to fluctuate with a
larger amplitude than on average and passing their momentum
on to the other particles in the ring. The ring then jointly begins
to turn around. In the third snapshot, one can see how the local

FIG. 16. (Color online) Cooperative ring rotation process shown
in a series of snapshots which differ by an MD time difference of 0.4.
Simulation at T = 1, � = 0 and with 30 rows.

structure around the ring has adapted to it: The ring of particles
does not fit into the general crystalline structure any more as
it has a different angle (relative to the lattice directions at the
start of the ring rotation process), but the particles around the
ring have adjusted themselves to the ring and not to the rest of
the crystal. Finally, the crystalline structure is restored again
(which is, after all, energetically preferable) while the particles
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FIG. 17. (Color online) Histograms of the distribution of cluster
sizes at indicated temperatures. As expected, the curves are indepen-
dent of γ (in the range of their errors). (Inset) The distribution of
larger clusters; please note that the binning of the histogram is wider
there. The data were taken after the simulation had run for 2 × 106

steps; system size was N = 73 442 particles (including walls) and it
was averaged over 20 runs.

in the ring turn around further, ending in a position which is
commensurate with the crystalline lattice, and the movement
stops. These snapshots were taken at intervals of about 200 MD
steps, with �t = 0.002, so the series of snapshots shown in
Fig. 16 covers an “MD time” of 4 × 0.4 = 1.6 (with γ = 0.5
and at T = 1.0).

In order to quantify these diffusion phenomena, we
recorded histograms showing which cluster sizes occur at
which temperature (Fig. 17). We also show in the same graph
that the curves are independent of the friction coefficient γ

as expected. The clusters with sizes between 2 and about 25
particles correspond to situations where particles have actually
swapped positions. In the case of only 2 particles, which is rare,
these particles have probably swapped positions during a large
fluctuation while all of the other particles that took part in this
fluctuation have returned to their initial positions. From three
particles onwards, mostly cooperative circular movements
have occurred. Cluster sizes of 3 and 6 particles seem to be
favored due to the hexagonal lattice structure. Larger clusters
correspond to cases where a hole and an interstitial have been
created and led to diffusion.

Particles were counted as being displaced if they moved
more than half of the average next-neighbor distance away
from their initial position. In order to exclude pure fluctuations
of particles which moved back into their original position
eventually, displaced particles were identified in two snap-
shots, 10 000 MD steps apart from each other, and only those
particles which were displaced in both snapshots were counted
here. Ten thousand MD steps was judged to be a suitable time
interval here, as single particles easily fluctuate back into their
old position on this time scale, but those which have swapped
positions practically never go back into their old positions.

Using the values given in Fig. 17, it is possible to
estimate the activation energy for ring rotation processes.
Fitting the number of occurrence of rings consisting of three
particles versus temperature with the formula y = y0e

−A/T ,

kB = 1, yields an activation energy of A ≈ 13.8. Fitting the
corresponding curve of the number of occurences of rings
consisting of six particles yields a slightly higher activation
energy of A ≈ 14.1, which is not surprising as larger rings are
clearly more difficult to rotate. Of course, these values are only
a rough estimate as we had merely four different temperatures
to base the fit on.

In order to estimate the contribution of the cooperative ring
rotation processes to the diffusion constant, one can show that
each particle which is not in its initial position any more, but
instead sits in one of its neighbors’ lattice site, contributes 1

N
a2

to the MSD, a being the crystal’s lattice constant:
If Ms(t) = 1

N

∑N
i=1[xi(t) − xi(0)]2 denotes the MSD with

respect to the starting configuration, let Ms,0(t) denote the
MSD of such particles which do not participate in any
rotation processes (and, for simplification, also not in any
other diffusion process). Let us assume that this Ms,0(t) = c0

for all times t greater than a small time ts in which a harmonic
movement of the particles is visible [i.e., if one would plot
Ms,0(t) one would see an overshoot for very small times t and
then just a straight horizontal line].

We then can calculate the MSD Ms,1(t) of only particles
which do participate in a ring rotation process and each of
which move onto a neighbor’s lattice site in this process; thus,
they all move exactly one lattice constant a away from their
initial lattice site and then fluctuate around this new lattice site.
For this Ms,1(t) of the N0 particles which participate in this
rotation we can write

Ms,1(t) = 1

N0

N0∑
i=1

[xi(t) − xi(0)]2

= 1

N0

N0∑
i=1

[xi(t) − xi(T0) + xi(T0) − xi(0)]2 (3)

with T0 denoting a time where the particles have just moved
onto the new lattice sites, yielding xi(T0) − xi(0) = a and
xi(t) − xi(T0) being the distance between a particle and its
new lattice position which is for t − T0 	 ts on average the
distance which the nonrotated particles have from their (initial)
lattice positions as well. Thus,

1

N0

N0∑
i=1

[xi(t) − xi(T0)]2

= 1

N0

N0∑
i=1

[
x2

i (t) − 2xi(t)xi(T0) + x2
i (T0)

] = m0(t) = c0.

(4)

Therefore, we can write Eq. (3) as

Ms,1(t) = Ms,0(t) + 2a
1

N0

N0∑
i=1

[xi(t) − xi(T0)] + a2

= Ms,0(t) + a2 (5)

as 1
N0

∑N0
i=1[xi(t) − xi(T0)] = 0 if we average over enough

particles, as some particles move to the right-hand side and
some to the left [always measuring distances from their new
lattice site xi(T0)], and, thus, the average should be zero.
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FIG. 18. (Color online) Contribution of a cooperative ring rota-
tion process to the Ms : Just as calculations show, the MSD of those
particles which participated in the rotation process (referred to as
“ring particles” in the legend) is (on average) increased by a2, a

being the lattice constant, in comparison to the MSD of particles
which did not participate in the rotation process (“other particles”).
Simulation at T = 1, without misfit. System size was N = 73 440
particles (including walls).

Thus, the MSD of the whole system composed of N

particles out of which N0 participate in a rotation movement
reads

Ms(t) = 1

N
[(N − N0)Ms,0(t) + N0(Ms,0(t) + a2)]

= Ms,0(t) + N0

N
a2. (6)

This can easily be checked through simulations, shown in
Fig. 18: The difference between the averaged MSD before the
particles have made a circular movement is (within the small
errors) smaller than after the circular movement exactly by
a2, when each particle sits on its neighbors’ lattice site. The
fluctuations are larger, though, as the MSD is calculated with
respect to the “old” lattice site.

In order to get an idea about the size of the contribution
of the circular movements to the MSD (and, therefore, to the
diffusion constant), one can have a look at Fig. 17 again: It
shows that in a typical run at T = 1.0 after 2 million steps
there are about 400 particles which are displaced from their
initial lattice sites through circular movements, but about a few
thousand which are displaced due to the “normal” diffusion
mechanism of hole and interstitial. Therefore, the “normal”
diffusion mechanism contributes considerably more to the
MSD. Actually, the contribution of a single event, where, for
example, a ring of 6 particles makes a circular movement,
cannot be seen in the MSD at all, as its contribution is just
6 1

N
a2, which is smaller than the fluctuations of the MSD, at

least for the large system with 64 800 mobile particles. So
the steep parts of the MSD shown in Fig. 12 are due to the
“normal” diffusion processes, which involve a few hundred or
even a few thousand particles and not due to such small circular
movements. The small circular movements are, therefore, not
visible in this plot. At slightly lower temperatures, however,
such large-scale diffusion processes seem to vanish (compare

Fig. 17). Unfortunately, also circular movements become much
rarer in this case.

In order to quantify the diffusion, we calculated the
diffusion constant CD by fitting the MSD (which we obtained
from averaging over 20 simulation runs at temperatures
T = 0.9, 1.0, and 1.1) with the formula Ms = y0 + 6CDt .
The offset y0 was necessary, because we started out with
equilibrated configurations. This yielded the following values
of the diffusion constant:

T 0.9 1.0 1.1
CD 1.90 × 10−6 5.72 × 10−6 3.05 × 10−5

Fitting these values via CD = CD,0e
−A/T , kB = 1, in order

to obtain an estimate for the activation energy of the diffusion,
yields A ≈ 17.7, which is higher than for the rings consisting
of three or six particles. Again, this is not surprising as the
formation of a hole and an interstitial introduces more disorder
into the crystal than a rotation of some particles. This also
indicates that ring rotations are to be expected to occur at
slightly lower temperatures than diffusion mechanisms based
on holes and interstitials. And even if the circular movements
do not play an important role for the overall diffusion constant
in this particular system, they might do so in other systems
where the range of temperatures where ring rotations do
already occur, but holes are not yet created, might be larger
than here.

The MD time scale of the circular movements of small
groups of particles is between 0.4 and 2.5, i.e., with �t =
0.002 they needed about 200–1200 MD steps. Figure 19 gives
a rough idea of the time scale of the cooperative ring rotations
and its distribution. Larger clusters seem to need more time.
For comparison: A cluster which was built up by “normal”
diffusion processes (but was comparably small for such a
cluster) consisting of 58 displaced particles needed an MD
time of 4.8. Larger rings of particles seem to need more time
(see Fig. 19).
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FIG. 19. MD time which the cooperative ring rotation needed
versus cluster size. MD time is only computed down to an accuracy
of 0.4 as this already meant that snapshots had to be written out after
every 50 steps. System size N = 73 442 particles, T = 1, no misfit.
These data points are only meant to give a rough idea of the time
scale of the cooperative ring rotations.
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The larger “normal” diffusion processes including a pair
of a hole and an interstitial need generally more time but
usually also affect many more particles. Their time scale
depends strongly on the cluster size. For example, a very
small such cluster composed of 58 particles needed an MD
time of 4.8, while clusters composed of some 1000 particles
can easily need around 1 × 106 steps, i.e., an MD time of
1 × 106 × 0.002 = 2000. It varies very strongly, of course,
as sometimes holes and interstitial particles recombine very
quickly and sometimes they do not. Typical time scales of
these processes can be read off from Fig. 12 as the “steps” in
the MSD correspond to these “normal” diffusion processes,
building up large clusters of displaced particles.

V. CONCLUDING REMARKS

To conclude, we have conducted a thorough study of the
different types of motion in two-dimensional colloidal crystals
confined between walls that were composed of rigid particles
and that were placed at commensurate or incommensurate
distances. We have observed motion on different length and
time scales: In the case with commensurate walls, where the
crystal is not compressed, the MSD of the particles is finite
in the x direction as well as in the y direction, as the walls
pin the particles and prevent any movement of the center of
mass. The MSD is larger for rows inside of the crystal than
for rows close to the walls as the walls impose a boundary
condition of zero amplitude for the phonons.

If the walls are placed closer together, thus compressing the
crystal, the MSD of the particles becomes smaller as there is
less space available per particle. The MSD shows no sign
of the proximity of the structural transition, which occurs
when the walls are placed even closer together and one of
the crystalline rows disappears, which leads to the creation of
solitons.

Once this structural transition has taken place, the MSD
changes significantly: Now the MSD still has the smallest
values for the rows directly adjacent to the walls but has the
largest values for the rows directly next to the rows adjacent
to the walls, as the solitons are located there. Further inside
the crystal, the MSD decreases (instead of increasing) but
is still considerably larger than in the case without solitons.
Additionally, due to the incommensurability of the number
of particles per row, the inner rows are no longer pinned by
the potential created by the walls and the center of mass is
free to move. Therefore, the MSDs of all rows except the
rows directly adjacent to the walls do not reach a plateau
at all any more. This structural transition needs considerably
more MD time than the average equilibration time in this
system.

The MSD of the solitons differs significantly from the MSD
of the particles. It is almost negligible in the y direction, but an
order of magnitude larger than the MSD of the particles in the
x direction, as the center of the solitons can already move by
a few interparticle distances if the particles involved in it only
make a small coordinated movement in one direction. As the
solitons are arranged in a lattice similar to a crystal and interact
with each other via a harmonic potential as previous work has
shown [27], their mean-square displacements also show an
initial overshoot. As the “spring constant” mediating the inter-
action of the solitons is small, this overshoot can be seen at time
differences which are again an order of magnitude larger than
in the case of the mean-square displacement of the particles.

We have also presented results on the diffusion processes
occurring in colloidal crystals. In addition to the well-known
diffusion mechanism in which a pair of a hole and an interstitial
is created, diffuses, and, finally, annihilates itself again, we
have found that, in this particular system, cooperative ring
rotation processes are common. They can involve different
numbers of particles, but three or six particles are the preferred
numbers due to the hexagonal lattice structure, and the diffu-
sion occurs by a concerted and simultaneous movement of all
of these particles, which move into their neighbor’s lattice site.
These rotation processes do not contribute to overall diffusion
as much as the hole-and-interstitial processes, but that is only
due to the much smaller number of particles involved in these
ring rotation processes. They do, however, occur much more
frequently than the hole-and-interstitial processes. Including
hydrodynamic interactions into the simulations might even
enhance the rate at which ring rotations occur. It is especially
remarkable that these effects occurred so very frequently
in our system, as in other simulations such ring rotation
events have been observed only very rarely. For instance,
the study described in Ref. [45] had to be carried out using
temperature-accelerated dynamics, which is a kind of rare
event sampling, while in the system and at the temperatures
that we studied, these events were not rare at all. Of course,
this is probably due to the fact that our model is much simpler.
Still, we feel that these cooperative ring rotations should not
be neglected when diffusion in two-dimensional crystals and
at interfaces is studied, as it is possible that they play an even
more important role in other systems.
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