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Magnetophoresis of particles and aggregates in concentrated magnetic fluids
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Experimental and theoretical studies were carried out to investigate the problem of magnetophoresis in a thin
layer of concentrated magnetic fluids, concerning the aspect of particle aggregation. A heuristic theoretical model,
describing diffusion fluxes of individual and aggregated particles, is suggested. The solution of related diffusion
and magnetostatic problems are compared with the experimental data. The analysis of the data shows that the
aggregates essentially change the concentration profile. Good agreement between experimental and theoretical
curves is observed in the case when the aggregates contain, on average, more than ten particles.

DOI: 10.1103/PhysRevE.86.051401 PACS number(s): 82.70.−y, 47.65.Cb, 47.57.J−, 66.10.cg

I. INTRODUCTION

It is known that, in the course of time, an initially
homogeneous magnetic fluid filling an arbitrary cavity be-
comes spatially inhomogeneous with respect to the magnetic
phase concentration due to gravitational sedimentation and
magnetophoresis (the motion of particles under the action
of nonuniform magnetic field). In the absence of convective
motion, the only factor that prevents the concentration strati-
fication of the fluid is the gradient diffusion of particles. The
concentration profile in a cavity at some arbitrary time can be
obtained from the solution of the boundary-value problem,
including Maxwell’s equations for the magnetic field and
the dynamic mass transfer equation with consideration for
terms responsible for magnetophoresis and sedimentation of
particles [1–4]. In the case of dilute colloids, the interparticle
interactions and demagnetizing fields are not very important
(except for the effects of particle aggregation), and the mass
transfer equation is linear in concentration of particles. A
stationary solution of this equation including the case of
particle aggregation can be expressed analytically [5,6].

In concentrated magnetic fluids, the steric, magnetodipole
and hydrodynamic interparticle interactions are rather strong
and therefore the mass transfer processes are generally
described by the nonlinear equations, in which the term
responsible for magnetophoresis depends on magnetization
and magnetic field strength. In turn, the strength of the
magnetic field in the fluid is specified by the spatial distribution
of particles, which suggests that the magnetic and diffusion
parts of the problem are interrelated and should be solved
simultaneously. A distinguishing feature of this problem is that
the characteristic damping time of concentration perturbations
τD ≈ L2/(π2D) are at least six to seven orders of magnitude
higher than the relaxation time of the magnetic moment
τB ≈ 3ηV/(kT ) (L is the characteristic dimension of cavity,
D is the diffusion coefficient, η is the viscosity of the magnetic
fluid, V is the volume of a colloidal particle). For this reason,
magnetization of the colloid is considered to be equilibrium,
and the concentration field is considered to be frozen when
calculating the magnetic field.

Several versions of the mass transfer equation for magnetic
fluids, differing by the extent to which magnetophoresis,
sedimentation, gradient diffusion, interparticle interactions,
and anisotropy of transfer coefficient are taken into account,
have been previously considered in Refs. [2,3,5–14]. It would

seem that one of the most complete mass transfer equations has
been proposed in Ref. [12]. The equation is constructed as an
expansion of the free energy of the interacting dipole system
in terms of the particle concentration. This equation describes
the temporal and spatial variations of the volume fraction ϕ

of single-domain colloidal particles and, in the absence of
convective flows, is written as

∂ϕ

∂t
= −∇ ·

{
D0K(ϕ)

(
ϕL(ξe)∇ξe + ϕGγ e

−
[

1 + 2ϕ(4 − ϕ)

(1 − ϕ)4
− ϕ

∂2(ϕ2G)

∂ϕ2

]
∇ϕ

)}
. (1)

Here, K(ϕ) = b/b0, where b and b0 are the particle mobility
in the magnetic fluid and carrier fluid, respectively, D0 =
b0kT is Einstein’s value of the diffusion coefficient for a
Brownian particle in dilute solution, μ0 = 4π × 10−7 H/m,
L(ξ ) = coth(ξ ) − 1/ξ is the Langevin function, and ξ =
μ0mH/(kT ) is the Langevin parameter, λ = μ0m

2/(4πd3kT )
is the parameter of magnetodipole interactions (the ratio of the
magnetodipole interaction energy to thermal energy), m and
d are the magnetic moment and full diameter of the particle
(including a protection shell), respectively, kT is the energy of
the thermal motion, Gγ is the gravitational parameter, which
is equal to the inverse height of the barometric distribution, e is
the unit vector in the direction of the gravitational acceleration
g, and G(λ,ϕ) is the contribution of magnetodipole interactions
to the free energy density referred to the density of the
thermal energy of the Brownian particle motion. The first
term in Eq. (1) represents magnetophoresis, and the three
terms in square brackets reflect the existence of three phys-
ical effects determining the intensity of diffusion processes
in a magnetic fluid: gradient diffusion, steric interactions,
and effective attraction of particles due to magnetodipole
interactions, respectively. Steric interactions are taken into
account in the frame of the Carnagan-Starling approximation
for the system of hard spheres, similarly as has been done
in Refs. [9,12]. Relative mobility of particles K(ϕ) in a
concentrated suspension can be calculated by using Russell’s
approximation [15,16], according to which

K(ϕ) = (1 − ϕ)6.5.

This approximation ignores the anisotropy of particle mobility
in the magnetic field, although this circumstance does not
lead to large errors. The influence of the mobility anisotropy

051401-11539-3755/2012/86(5)/051401(11) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.86.051401


A. F. PSHENICHNIKOV AND A. S. IVANOV PHYSICAL REVIEW E 86, 051401 (2012)

on the transfer processes in magnetic fluids is an order of
magnitude weaker than the influence of the anisotropy of
thermodynamic forces [10,11] accounted for by the first term in
Eq. (1).

The first term in Eq. (1) describes magnetophoresis and
corresponds to the formula for the particle flux density, derived
in the framework of the effective field approximation

jm = nD0K(ϕ)L(ξe)∇ξe.

The effective field is used to describe both the rotational dif-
fusion of particles (in the argument of the Langevin function)
and their spatial drift (under the gradient sign). It is assumed
that the influence of magnetic particles on a probe particle
can be taken into account by replacing the intensity of the
magnetic field H by its effective value He = He(H,ϕ),which
itself is dependent on the field intensity and local concentration
of particles. Such approximation turns out to be very helpful,
because it makes it possible to use formulas derived for dilute
solutions (i.e., ignoring magnetodipole interactions) in the
case of concentrated solutions. In particular, the expression
for the time-averaged force μ0mL(ξ )∇H , acting on the
superparamagnetic particle in dilute liquid, is replaced in the
case of concentrated liquids by the μ0mL(ξe)∇He expression,
which leads to the formula for the magnetophoresis flux. The
accuracy of this approximation depends mainly on the choice
of the He(H,ϕ) function. In the present work, the modified
model of effective field (MMEF) is used. A comprehensive
description of the model is offered in Refs. [17] and [18].
According to this model

He = H + ML(H )

3

[
1 + 1

48

dML(H )

dH

]
, ML = mnL(ξ ),

(2)

M = mnL(ξe)
H
H

, ξe = μ0mHe

kT
, (3)

where n = 6ϕ/(πd3) is the number concentration of particles.
By the field strength H in Eqs. (2) and (3) is meant the
strength of the field in the magnetic fluid (i.e. a superposition of
demagnetizing fields and fields generated by external sources).
Equations (2) and (3) have been subjected to repeated verifi-
cations by different methods. They fit well the experimental
data on the initial susceptibility of magnetic fluids and are
consistent with the results of magnetization calculations by
the Monte Carlo and molecular dynamics methods in the
range of small and moderate values of the parameter of
magnetodipole interactions λ � 2, which is inherent in real
magnetic fluids [18,19]. The effective field method is well
suited to describing the translational Brownian diffusion, as
was demonstrated in the works of Morozov [10,11] and J.-C.
Bacri with coauthors [14]. In the right-hand side of Eq. (1),
the coefficient in front of ∇ϕ enclosed in braces can be
considered as an effective diffusion coefficient D of colloidal
particles

D = D0K(ϕ)

[
1 + 2ϕ(4 − ϕ)

(1 − ϕ)4
− ϕ

∂2(ϕ2G)

∂ϕ2

]
. (4)

Its contribution related to the magnetodipole interparticle
interactions (effective attraction) is equal to


D = −D0ϕK(ϕ)
∂2(ϕ2G)

∂ϕ2

= −8

3
λ2ϕD0K(ϕ)

(
1 − 5

2
λϕ + λ2

25
+ · · ·

)
. (5)

Here we should note a significant difference between
the two ways of describing mass transfer in Refs. [11,14]
on the one hand, and in Ref. [12] on the other hand. In
Refs. [11,14] the influence of interparticle interactions on
the gradient diffusion of particles in the external magnetic
field is taken into account by introducing the anisotropic
diffusion coefficient, which depends on the mutual orientation
of the magnetic field and the gradient of concentration. Unlike
Refs. [11,14], the authors of Ref. [12] consider the strong
anisotropy of thermodynamic forces by way of incorporation
of the additional term in the mass transfer Eq. (1) responsible
for magnetophoresis. This approach allows the researchers
to ignore the anisotropy of the diffusion coefficients. The
coefficient of gradient diffusion (4) remains a scalar function.
Both these approaches give identical results when describing
anisotropic effects caused by interparticle interactions (at least
in the case of the flat layer and in the linear concentration
approximation), but the approach of Ref. [12] is more universal
because it can be used for arbitrary cavity shape and magnetic
field configuration. The isotropic term (5) inserted into the
diffusion coefficient obtained in Refs. [9] and [12] describes
the additional effect, observed in the zero external field.

Expansion of the free energy for the system of interacting
spherical dipoles in terms of particle concentration and
parameter λ to an accuracy of terms quadratic in ϕ is given
in Ref. [12]. Equations (1) and (4) provide a rather good
description of the results of numerical experiments over a
wide range of dimensionless parameters (λ < 2 and ϕ < 0.4),
but do not allow modifications which would take into account
the influence of aggregates because it is impossible to evaluate
the free energy of a partially aggregated system.

In this paper, the isotropic correction for the diffusion
coefficient is derived heuristically. The applied approach is
less rigorous but allows us to write the system of equations,
describing the interacting fluxes of individual particles and
quasispherical aggregates in the framework of a two-fraction
model. This system of equations is used to analyze the spatial
distribution of particles in a thin layer of a concentrated
magnetic fluid placed in the nonuniform magnetic field.

II. EFFECTIVE ATTRACTION BETWEEN PARTICLES

Averaging over the orientations of an anisotropic dipole-
dipole interaction leads to an effective attraction between
colloidal particles, which is one more reason for a drift of
particles in a magnetic fluid in the case of inhomogeneous
particle distribution. Since the corresponding contribution jat

in the particle flux is proportional to the concentration gradient,
it can formally be taken into account by renormalization of
the diffusion coefficient, as has been done in Ref. [9] and
represented in formulas (4) and (5). As has been mentioned
earlier, in contrast to the anisotropic effects described in
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FIG. 1. Schematic view of two adjacent magnetic particles
stabilized by oleic acid.

Refs. [11,14], this term does not vanish even in zero external
field and, in this case of course, it is apparently isotropic.

An approximate structure of the formula allowing for
terms nonlinear in concentration can be obtained with the
help of qualitative reasoning. To this end, we will first find
the magnetostatic energy of a trial colloidal particle placed
in the magnetic fluid with magnetic susceptibility χ . This
trial particle with diameter d2 and diameter of the magnetic
kernel d1 resides in a spherical cavity with diameter d3 > d2,
which is a space inaccessible to neighboring particles due
to steric interactions (see Fig. 1). The kernel of the particle
is magnetized spontaneously and generates in the surrounding
space a nonuniform magnetic field, which orients the magnetic
moment of the neighboring particles. We need to define the
magnetic field strength inside the magnetic kernel H1 in the
nonmagnetic gap between the kernel and the cavity wall
H2, in the magnetic fluid H3 at a distance of r > d3/2 and
magnetostatic energy of the particle. The problem is solved by
a standard method (see, for example, Ref. [20]) and therefore
we will come directly to the expression for the trial particle
energy:

U = −μ0mH1 = −μ0
mMs

3

[
1 + 2χ

3 + 2χ

(
d1

d3

)3
]

, (6)

where Ms = 6m/(πd3
1 ) is magnetization of the particle kernel.

In the medium with inhomogeneous particle concentration the
magnetic susceptibility is a function of coordinates suggesting
that the particle is subject to the force

F = −∇U = 2μ0mMs

(3 + 2χ )2

(
d1

d3

)3

∇χ, (7)

which causes a particle flux density

jat = nb(ϕ)F = nD0K(ϕ)
48λ

(3 + 2χ )2

(
d2

d3

)3

∇χ

= nD0K(ϕ)
6λ

(3 + 2χ )2
∇χ. (8)

Not counting the deformation of the protective shells, the
radius of the sphere inaccessible to the centers of neighboring
particles coincides with the full diameter of the particle and
hence d2/d3 = 0.5.

The formula (8) was derived on the assumption that the
probe particle is immersed into a continuous media with
the static magnetic susceptibility χ . This susceptibility is
defined as a response of a small macroscopic volume of
liquid (averaged over time and over an ensemble of particles)
on the permanent magnetic field. Magnetic particles in this
volume are homogeneously oriented by the external magnetic
field, which causes the appearance of the additional term in
formula (2) that stands for the collective response (i.e., for
the magnetodipole interparticle interactions). Actually, the
magnetic field of the particle is not permanent due to the
rotational fluctuations of its magnetic moment, and not locally
homogeneous because its intensity depends on the polar angle
and decreases by an order of magnitude at the distance of one
particle diameter from its center. The real particle is surrounded
by discrete media, and only a relatively small number of
neighbor particles is affected by the alternative, strongly
inhomogeneous magnetic field of the probe particle. So
formula (8) can be treated as a coarse estimation of the density
of the magnetophoresis flux. Nevertheless, several refinements
can be made according to simple qualitative arguments.

Under the action of thermal fluctuations, the local magnetic
field induced by the probe particle changes randomly and the
moments of neighboring particles respond to its action with a
delay. The influence of the fluctuations is rather strong because
their characteristic frequency ω has an order of magnitude
of the inverse relaxation time of the magnetic moment, 1/τ .
This means that the substitution of the equilibrium value of
susceptibility into Eq. (8) will lead to overvaluation of the
particle flux density. To take into account thermal fluctuations
of the local field we use the Debye formula for dynamic
susceptibility

χ̇ = χL

1 + iωτ
, χL = μ0m

2n

3kT
, (9)

where χL is the Langevin susceptibility. With the constraint
ωτ = 1, χ in Eq. (8) should be replaced by the real part
of dynamic susceptibility defined as χL/2 = 4λϕ. Collective
effects are not taken into account because the magnetic
field of the probe particle is localized in its surrounding, it
is nonuniform with respect to the polar angle, and rapidly
decreases with the distance measured from the center of the
probe particle. There is a small number of nearest-neighbor
particles, and their magnetic moments are oriented in different
directions. In this case

n∇χ = 0.5χL∇n = 4λϕ∇n.

Bearing in mind the above reasoning and assuming that the
temperature of the magnetic fluid is uniform, we can rewrite
Eq. (8) for a density of volume flux of particles:

jat = D0K(ϕ)
24λ2ϕ

(3 + 8λϕ)2
∇ϕ. (10)

The contribution to the diffusion coefficient related to an
effective attraction between the magnetic dipoles is equal to


D = −D0K(ϕ)
24λ2ϕ

(3 + 8λϕ)2

= −8

3
λ2ϕD0K(ϕ)

(
1 − 16

3
λϕ + · · ·

)
. (11)
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Formulas (5) and (11) describe one and the same physi-
cal quantity—the decrease of the particle diffusion coeffi-
cient associated with the effective attraction of the fluctu-
ating magnetic dipoles which, however, has been obtained
by different methods. Earlier the effect associated with
magnetodipole interactions was theoretically predicted in
Refs. [9,11,14] and experimentally confirmed in Refs. [13]
and [14]. In the approximation linear with respect to particle
concentration the right-hand side of Eq. (11) coincides with
the accurate expansion (5) and thereby agrees well with the
results of Refs. [9,12]. However, there is nearly a twofold
overestimation of the coefficient in front of the term quadratic
with respect to Langevin susceptibility χL = 8λϕ. Most likely,
this discrepancy is due to the fact that equation (6)–(8)
have been derived without taking into account one more
essential factors—the spatial inhomogeneity of the magnetic
phase concentration in the vicinity of the trial particle caused
by the local nonuniformity of the magnetic field. Generally
speaking, this nonuniformity can be considered by solving
a coupled (magnetic and diffusion) boundary value problem.
The attempts to find analytical solution to this problem have
failed. Therefore, to allow for inhomogeneity of susceptibility,
the coefficient in front of λϕ in the denominator of Eq. (10) has
been corrected so that the right-hand sides of Eqs. (11) and (5)
agree up to the terms quadratic in χL. In view of this correction
the effective coefficient of particle diffusion in magnetic fluids
is defined as


D = D0K(ϕ)

[
1 + 2ϕ(4 − ϕ)

(1 − ϕ)4
− 8λ2ϕ

3(1 + 1.25λϕ)2

]
. (12)

In the absence of the gravitational force and convective flows
the density of volume flux of particles is written as

J = D0K(ϕ)

{
ϕL(ξe)∇(ξe)

−
[

1 + 2ϕ(4 − ϕ)

(1 − ϕ)4
− 8λ2ϕ

3(1 + 1.25λϕ)2

]
∇ϕ

}
. (13)

We consider expression (12) to be the interpolation formula,
which is valid in the range of moderate values of the parameter
λ � 1. The main conclusion one can make out of this formula
is that the isotropic term in the diffusion coefficient that
describes the mutual attraction of magnetic dipoles in weak
fields is negative. It always decreases the diffusion coefficient
regardless of the values of λ and ϕ parameters. The formal
expansion of Eq. (4) cannot clarify this issue, because the
terms in the right-hand side of Eq. (4) are alternating and have
slow convergence.

Strictly speaking, formula (12) can be used only in the case
of weak fields, because formula (7) is incorrect for strong
fields and can be used to estimate the order of magnitude only.
Nevertheless, we have applied formula (7) in our analysis of
the experimental data obtained for the case of relatively strong
fields, because we are not aware of any other (more reliable)
approximation. We do not expect a large error due to the
heuristic approach to consideration of the effective attraction
between the fluctuating magnetic dipoles, because for the
majority of magnetic fluids the parameter of the magnetodipole
interactions λ � 1. In this case, the last term in Eq. (12)
introduces a rather small error for the diffusion coefficient. The

situation may get worse only at λ � 2 (magnetic fluids with
large particles); if so, this term will require a more thorough
analysis and can potentially lead to spinodal decomposition of
the system [12]. When λ � 1 the major input into the diffusion
coefficient is made by the second term in Eq. (12) that stands
for steric interactions.

III. CONSIDERATION OF AGGREGATES IN
FRAMEWORK OF TWO-FRACTION MODEL

Equation (13) implies identity (monodispersity) of all
colloidal particles inside the fluid. In real fluids, polidispersity
of particles and their aggregation due to van der Waals and
magnetodipole interparticle interactions require application of
a more complicated theoretical model. As a first step towards
the solution of this problem we can use a two-fraction model,
in which the first fraction consists of individual particles
and the second fraction consists of aggregates composed of
few up to a few tens of particles. Previously this model
has been successfully used to describe the results of tests of
particle diffusion in magnetic fluids [21], spectra of dynamic
susceptibility [22,23], and magnetophoresis in dilute magnetic
fluids [5,6]. These studies have shown that experimental data
can be adequately described only in the framework of the
model which takes into account partial aggregation of particles.
In this paper the two-fraction model is used to describe
magnetophoresis in concentrated fluids. In what follows, we
assume that aggregates are quasispherical seemingly formed
as the result of defects of the protective shells. This is at
least true for colloidal solutions of a magnetite stabilized
by oleic acid [21–23]. Quasispherical aggregates are nearly
insensitive to temperature variation (compared to the chains),
behave as independent kinetic formations, and exert a dramatic
effect on the physical properties of magnetic fluids. The
characteristic size of quasispherical aggregates is several
dozens of nanometers.

Magnetic fluids that undergo phase separation and stratify
into dilute and concentrated phases under the influence of
magnetic field are not studied in our work. The stratification
of magnetic fluids (phase transition of “gas-liquid” type)
includes formation of microdroplets of condensed phase (so-
called drop-like aggregates) with characteristic dimensions
1–10 mkm [24]. Drop-like aggregates are macroscopic objects
which are visible with an optical microscope and practically
not involved in Brownian motion. The surface, which sepa-
rates the drop-like aggregate from the surrounding colloidal
solution, has tension that is responsible for the spherical shape
of the aggregate in the absence of the external magnetic field.
Under the influence of external magnetic field, the drop-like
aggregate stretches along the field and in the case of strong
field its shape resembles a needle. This transformation of
drop-like aggregates leads to additional anisotropy of diffusion
processes and rheological properties of magnetic fluids, which
have been studied recently in experimental works [25,26]. On
the other hand, quasispherical aggregates, which are being
discussed in the present work, appear at the stage of preparation
of magnetic fluids. Their characteristic dimensions are several
dozen nm (i.e., they are about 2–3 orders of magnitude smaller
than the drop-like aggregates), and application of the external
magnetic field deforms these aggregates very slightly. Even in
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strong fields (∼100 kA/m), their relative deformation does not
exceed 20%–30% and has no significant effect on the mobility
of such aggregates [6].

In the framework of our model, polidispersity of particles
in the first fraction and discrepancy of aggregates in sizes
are neglected. This assumption should be clarified, because
it restricts the applicability of the model to real polydisperse
magnetic fluids. However, we believe that these restrictions
are not critical to pose serious problems for the comparison
of experimental and theoretical results. This assumption is
justified by the fact that (in the approximation that is linear
with respect to particle concentration) the increment in the
effective viscosity of the solution and relative mobility of
particles is defined by their total volume fraction irrespective
of particle size distribution (inversely proportional), so that the
results of calculations for average-size particles agree with the
experimental data [21]. The possibility of applying the two-
fraction model to the problems of particle magnetophoresis
is less obvious, since the force exerted on a colloidal particle
by the gradient of the magnetic field is proportional to its
magnetic moment m (i.e., cubed diameter of the magnetic
kernel [20,27]). It appears from this that the dependence is
strong. However, there are two circumstances that clear up
the situation. First, the largest particles making the greatest
contribution to the fluid magnetization are combined into
aggregates whose influence is treated separately. Second,
small particles make inessential contributions to the system
magnetization and their influence can be roughly taken into
account. Size distribution of the remaining particles is rather
narrow, so that they can be represented by one fraction. On
the other hand, the difference in dimensions of individual
particles and aggregates cannot be ignored. With reference
to the problem under consideration it means that the fluxes
of individual particles and aggregates must be described by
separate equations.

An expression for the flux of individual particles is
constructed on the basis that the rate of diffusion of aggregates
is relatively small and their size is large compared to the size
of a single particle. Under these conditions the influence of a
separate aggregate is analogous to the influence of a stationary
disk of the equivalent radius. In this case, the flux of individual
particles is described by the expression analogous to Eq. (13),
in which we introduce the correction factor allowing for a
decrease in permeability of the medium. It can be shown that
this correction factor (the ratio of the area of aggregate-free
cross section to the total area) is given by

σ = 1 − ϕagr = 1 − ϕ2

γ
,

where ϕagr is the relative volume occupied by the aggregates,
γ is the coefficient of particle packing in the aggregate. The
equation describing density of the flux of individual particles
takes the following form:

J1 = D0K(ϕ1)

(
1 − ϕ2

γ

) {
ϕ1L(ξe)∇(ξe)

−
[

1 + 2ϕ1(4 − ϕ1)

(1 − ϕ1)4

]
∇ϕ1 + 8λ2ϕ1

3(1 + 1.25λϕ)2
∇ϕ

}
,

(14)

where ϕ1, ϕ2 are the volume fractions of single and aggregated
particles, respectively. The last term in Eq. (14) is written
based on the knowledge that the particle flux caused by mag-
netodipole interactions is proportional to the concentration of
individual particles and the gradient of magnetic susceptibility,
viz. to the gradient of total concentration ϕ = ϕ1 + ϕ2. All
other terms are derived from Eq. (13) by replacing the volume
fraction ϕ by the volume fraction of individual particles ϕ1.

In turn, the aggregates drift in a colloidal solution of small
single particles, which can be viewed as a continuum with rela-
tive viscosity depending on the hydrodynamic concentration of
these particles ϕ1. The concentration dependence of viscosity η

of the magnetic fluid in weak fields can be described perfectly
well by the refined Chong-Christiansen approximation [28]

η1(ϕ1) = η0 [1 + 0.75ϕ1/(γm − ϕ1)]2 , (15)

or by the Chow formula [29]

η1(ϕ1)

η0
= exp

(
2.5ϕ1

1 − ϕ1

)
+ Aϕ2

1

1 − Aϕ2
1γm

. (16)

Here, η0 is the viscosity of the carrier fluid, A = 4.67, and
γm is the coefficient of dense packing of particles. Actually,
the determination of γm poses a problem. Approximating
the unit cell by the cubic centered lattice, Chow supposed
that γm = 0.68, while the random close packing of the dry
particles is equal to 0.64. As for us, we used γm = 0.605,
which corresponds to random packing of particles in highly
concentrated suspensions which are still capable of viscous
flow [30,31].

Formally, the main disadvantage of approximations (15)
and (16) is that they describe the suspension viscosity only
in the case of zero magnetic field. The induced magnetic
field leads to the appearance of the anisotropic increase of
the effective viscosity of the suspension [32,33]. Here, this
increase is not considered (neither is the anisotropic increase
of particle mobility). We can set forth two additional arguments
to validate this approach. First, the anisotropic increase of the
effective fluid viscosity depends on the energy of the magnetic
anisotropy of single-domain colloidal particles. For particles
of magnetite (the most popular material for preparation of
magnetic fluids) it proves to be small. The ratio of the magnetic
anisotropy energy to the thermal energy is no more than one
or two units for most of the magnetite particles. Therefore
the Neel rather than Brown mechanisms of the magnetic
moment relaxation is characteristic of such particles [22].
Under these conditions the anisotropic increase of viscosity
(rotational viscosity coefficient) is an order of magnitude lower
than the hard-dipole limit [34,35]. Second, the errors in the
approximation expression (15), (16) or particle mobility K(ϕ)
affect only the dynamics of magnetophoresis and have no
effect on the equilibrium (steady-state) concentration profiles.
Since in this paper we focus on the equilibrium profiles, it
seems reasonable to restrict ourselves to these approximations
extending them, if necessary, to the case of arbitrary magnetic
field. As for the Einstein diffusion coefficient for aggregates,
with the supposition of their quasispherical shape it can be
conveniently expressed in terms of diffusion coefficient for a
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single particle:

D2 = D1
3

√
γ

N

K(ϕ2/γ )

η(ϕ1)
, (17)

where N is the average number of particles in the aggregate.
At small or moderate values of the magnetodipole interaction
parameter λ � 1 the correlation between the magnetic moment
of aggregate particles is inessential, and thus the force acting
on the aggregate in the external field is N times greater than
the force acting on the single particle. In view of the above
reasoning the density of the aggregated particle flux can be
written as

J2 = D1
3

√
γ

N

K(ϕ2/γ )

η(ϕ1)

{
Nϕ2L(ξe)∇(ξe)

−
[
1 + 2ϕ2γ

2(4γ − ϕ2)

(γ − ϕ2)4

]
∇ϕ2 + 8λ2ϕ2

3(1 + 1.25λϕ)2
∇ϕ

}
.

(18)

The dynamics of the magnetophoresis in the absence of
convective motion is described by the system of two standard
diffusion equations

∂ϕi

∂t
= −∇ · Ji , (19)

with an obvious condition of impermeability of cell boundaries
for colloidal particles

J1n = J2n = 0. (20)

The system of equations (14), (18), (19) with boundary
conditions (20) has been solved numerically using explicit
calculation scheme by the finite volume method for a thin
layer of magnetic fluid in the gradient magnetic field.

IV. NUMERICAL SIMULATION OF MAGNETOPHORESIS

Numerical simulation of the particle segregation in mag-
netic fluids was carried out to determine the role of the
aggregates and to estimate sensitivity of the concentration
profiles to parameters governing the aggregate properties:
average volume fraction 〈ϕ2〉 of the aggregated particles,
average number N of particles in the aggregate, and packing
index γ of particles in aggregates. These parameters cannot be
obtained from independent measurements and in processing
of magnetophoresis experiment data they were used as fitting
parameters. The system of diffusion equations (19) with the
boundary conditions (20) were solved by the method of finite
volumes for a thin layer of the magnetic fluid which is oriented
relative to the external gradient magnetic field, as shown in
Fig. 2 (see Sec. V of the manuscript). The time step size was
defined according to the standard condition of the stability
of the explicit scheme. The computation was carried out
until the system reached an equilibrium state. All parameters
of the system, except for the aggregate parameters, were
determined independently from auxiliary experiments (see the
next section) or calculated. Here the basic challenge is the
evaluation of the parameter of magnetodipole interactions λ

for polydisperse system. According to Ref. [19] we calculated
this parameter by the known particle concentration ϕ using the

FIG. 2. Schematic representation of measuring cell with magnetic
fluid.

relations

χL = 8λϕ, χ = χL

(
1 + χL

3
+ χ2

L

144

)
, (21)

where χ is the value of the initial magnetic susceptibility
measured by the mutual inductance bridge.

Figure 3 shows the results of numerical simulation at a
fixed value of the average particle concentration 〈ϕ〉. The
profiles depicted in Fig. 3 correspond to different values of
N . The simulation was done for a weakly aggregated fluid
under the assumption that the aggregates contain only 5% of
particles. As might be expected, the number of particles in the
aggregate has a profound effect on the concentration profiles:
a smooth distribution ϕ = ϕ(x), taking place at N < 10, gives
way to a stepwise distribution at N � 15. The reason of
this phenomenon is quite clear—with increasing number of
particles in the aggregate, magnetophoresis becomes stronger
according to Eq. (18).

The packing index of aggregated particles γ is also an
important parameter, although its influence on the concentra-
tion profile is not so strong as the influence of the number
of aggregated particles. All other things being equal, the
packing index affects the intensity of steric interactions: with
a decrease in γ the aggregates tend to increase in size and

FIG. 3. Equilibrium distribution of particles along the cell at
different numbers of particles in the aggregate. 〈ϕ〉 = 0.171, 〈ϕ2〉 =
8.5 × 10−3, γ = 0.6. Curve 1 corresponds to N = 7, curve 2
corresponds to N = 10, and curve 3 corresponds to N = 15. The
average strength of the magnetic field 〈H0〉 = 95 kA/m and the mean
gradient of the field strength is 3 × 106 A/m2.
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FIG. 4. Equilibrium distribution of particles along the cell at
different packing index of aggregated particles. 〈ϕ〉 = 0.171, 〈ϕ2〉 =
8.5 × 10−3, N = 10. Curve 1 corresponds to γ = 0.3, curve 2
corresponds to γ = 0.5, and curve 3 corresponds to γ = 0.6. The
average strength of the magnetic field 〈H0〉 = 95 kA/m, mean
gradient of the field strength 3 × 106 A/m2.

the effects of excluded volume are enhanced. An increase
of steric interaction should lead to a decrease of particle
segregation [12], which is the case. The smaller is γ (the larger
the excluded volume), the lower is the spatial inhomogeneity
of concentration in the equilibrium (Fig. 4).

V. CELL GEOMETRY

The experimental measuring cell is represented schemat-
ically in Fig. 2. The cell represents a thin horizontal layer
of magnetic fluid enclosed between two plane-parallel glass
plates and oriented along the magnetic lines of force (along
the z axis). The gradient of magnetic field intensity was
directed along the x axis. The layer thickness y0 (from 20 to
100 μm) was small compared to the horizontal dimensions of
the cell (x0 = z0 ≈ 1.5 mm) and therefore the distribution of
concentration in the cell could be considered plane with a good
degree of accuracy despite the action of the gravitational field
ignored by equations (14) and (18). A small thickness of the
layer allows applying the photometric technique for magnetite
concentration measurements described in detail in Refs. [5,6].
The local concentration of magnetite was defined by the extent
of absorption of a thin (0.02 mm) light beam penetrating
through the layer of the fluid. As it was previously shown in
Ref. [5], light absorption in magnetic fluids is described well
by the Bouguer-Lambert-Beer law. The photometric method
apart from high sensitivity and great resolving power has
one more point in its favor: the useful signal is not sensi-
tive to polydispersity of particles because it is independent
of the ratio of coarse to fine particles in the fluid, provided that
the sizes of the particles are small compared to the length of the
light wave. The coefficient of light absorption is proportional
to the local concentration of magnetite. Horizontal orientation
of the plane layer was chosen to minimize the influence
of the gravitational field. To ensure minimal reduction of
demagnetizing fields, the external magnetic field was oriented

along the fluid layer. Since the gravitational and demagnetizing
fields can essentially affect the results of experiment and
thereby make their interpretation difficult, we will examine
their influence on the particle segregation more thoroughly.

The demagnetizing field is known as a gain of the field in-
tensity inside the substance caused by refraction of force lines
at boundaries of a body. The existence of the demagnetizing
field is the main reason for a difference between the strength of
the field inside the substance and that of the field generated by
an external source. In the case of homogeneous magnetization
the value of the demagnetizing field is defined by the shape of
the body and for geometrically similar bodies is independent of
their dimensions. If the external field is homogeneous and the
body has the shape of a triaxial ellipsoid or its ultimate shapes
(thin plate, sphere, and circular cylinder of infinite length),
then the strength of the field inside the body is related to the
strength of the external field H0 by a simple equation

H = H0 − κM,

where κ = const. is the demagnetization factor and depends
only on the ratio of the ellipsoid axes and their orientation in the
magnetic field. The demagnetization factor is maximal (κ = 1)
for a plane plate magnetized in the transverse direction and is
minimal (κ → 0) for a long cylinder or plate extending along
the force lines. In the latter case the demagnetizing fields can
be ignored whereas in all other cases they must be taken into
account because they produce effects which are similar in order
of magnitude to the effects of magnetodipole interactions.
The evaluation of magnetic fields in a magnetic fluid of
inhomogeneous density is a rather complicated problem [36].
Therefore, a simpler way of solving the problem is to select
the geometry of the measuring cell (and its orientation in
the external field) so that it can provide a rather small
value of demagnetizing fields. In our measuring cell (Fig. 2),
considerable demagnetizing fields are concentrated near the
end surfaces z = ±z0/2 normal to the magnetic field lines. The
region with minimal demagnetizing fields locates in the middle
part of the layer (in cross section z = 0). The concentration
profile ϕ = ϕ(x) in this cross section is the objective of our
investigation.

The effect of demagnetizing fields on the concentration
profiles can be estimated according to real experimental
conditions: average strength of the magnetic field 〈H0〉 =
95 kA/m, mean gradient of the field strength 3 × 106 A/m2,
the saturation magnetization M∞ of the colloids used in
the experiment was about 50 kA/m, and the typical relative
concentration drop along the measuring cell in the state of
thermodynamic equilibrium 
ϕ/〈ϕ〉 was about 10% (see, for
example, Fig. 5). The magnetic field used in our experiment
can be considered strong in the sense that the corresponding
Langevin parameter ξ ≈ 6 � 1 and magnetization changes
weakly with the local strength of the field. Under these con-
ditions the magnetization and concentration inhomogeneity
have the same order of smallness: 
M/〈M〉 ≈ 
ϕ/〈ϕ〉 ≈ 0.1.
For an approximate estimate of the demagnetizing field we
can neglect this inhomogeneity and use the known result
for the demagnetizing field 
H generated by a rectangular
parallelepiped with homogeneous magnetization 〈M〉 [37].
Taking into account the peculiarity of a thin layer (y0 	
x0, y0 	 z0), the wanted expression for the section z = 0 can
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FIG. 5. Distribution of particles in a kerosene-based magnetic
fluid with an average volume fraction of the magnetite 〈φ〉 = 0.171.
Curve 1 is for 〈φ2〉 = 0, curve 2 is for 〈φ2〉 = 0.1〈φ〉, N = 10, γ =
0.34. Dots show the experimental results.

be written as


H = −〈M〉
π

y0

z0

⎧⎨
⎩ (2x + x0)√

(2x + x0)2 + z2
0

− (2x − x0)√
(2x − x0)2 + z2

0

⎫⎬
⎭ . (22)

According to (22) the maximum value of the demagnetization
factor is as high as 3 × 10−2 (the ratio 
H/H � 1.5 × 10−2

for a layer 100 μm thick) and decreases in proportion to the
layer thickness in other cases. In view of this fact we can
consider the demagnetizing field as a small correction and in
the following restrict ourselves to its approximate estimation
using formula (22).

The influence of the gravitational field on the distribution
of particles in the measuring cell can be estimated by making
use of the known solution of the problem obtained within the
approximation for dilute magnetic fluid, which is valid for a
cell of arbitrary shape and the field of arbitrary configuration
[5,12]. As applied to the section z = 0 the spatial distribution
of particles in the magnetic fluid is described by the following
simple expression:

ϕ(x,y) = A
sinh ξ (x,y)

ξ (x,y)
exp(−Gγ y). (23)

Here, the Langevin parameter ξ is considered to be the known
function of coordinates and the normalization constant A is
expressed in terms of the average concentration of particles in
the cell. In the limits of weak magnetic fields, formula (23)
is transformed into the expression for barometric distribution.
As it follows from (23), the isolines of equal concentration
y = y(x) are determined implicitly by

sinh ξ

ξ
exp(−Gγ y) = const. (24)

Under the conditions of our tests ξ = ξ (x), and in the absence
of the gravitational force these lines are arranged vertically.
Under the action of the gravitational field the concentration
isolines are inclined with respect to the vertical by a small
angle β. By differentiating (24) we obtain

tan(β) =
(

dy

dx

)−1

= Gγ

ξL(ξ )

(
1

H

∂H

∂x

)−1

. (25)

The substitution of the relevant experimental parameters into
(25) (Gγ = 3 m−1, ξ = 6, H = 96 kA/m, ∂H/∂x = 3 ×
106 A/m2) gives β ≈ 1.6 × 10−2 	 1. The inclination of
the concentration isolines can be interpreted as an additional
uncertainty in the horizontal coordinates, not exceeding yet
y0β/2 ≈ 0.8 μm. It is obvious that such a small uncertainty
in the coordinates can be neglected with a good degree of
accuracy. In the case of concentrated solutions one might
expect a further decrease in the angle of isoline inclination,
since the magnetodipole interactions increases the effective
Langevin parameter and the steric interactions have equal
effect on the numerator and denominator of the right-hand
side of Eq. (25). For the same reason formula (25) can
also be used in the case when the magnetic fluid contains
both the individual drifting particles and drifting aggregates
including in the average N particles. In this case, each of
the particle fluxes associated with the magnetophoresis and
particle sedimentation in the field of gravity increase by N

times although their ratio remains unchanged.

VI. RESULTS OF EXPERIMENTS

For tests we used the concentrated magnetic fluids, which
were prepared by the standard chemical precipitation method.
The average volume fraction of the magnetite in the so-
lution varied in the range from 0.1 to 0.2, and saturation
magnetization varied from 40 to 60 kA/m. A magnet with
pole pieces was used as a source of the constant gradient
magnetic field. The average magnetic moment of particles and
the average diameter of the magnetic kernel were determined
from the magnetogranulometric analysis using the technique
described in Ref. [38]. The photometric method for measuring
concentration used in this paper allows us to determine the
volume fraction φ of the magnetite whereas the hydrodynamic
concentration ϕ, which is the volume fraction of particles
including the protective shells, enters into Eqs. (14)–(19).
A transition from one concentration to the other can readily
be accomplished due to the fact that the thickness δ of the
protective monolayer, consisting of the molecules of oleic acid,
is the known constant value. In particular, in the case of using
the oleic acid as a stabilizer, δ = 2.1 nm. For a polydisperse
fluid we obtain

ϕ = 〈(dm + 2δ)3〉〈
d3

m

〉 φ, (26)

where dm is the diameter of the hard kernel of the colloidal
particle, and angle brackets denote averaging over the particle
ensemble. The coefficient in front of the right-hand side of
Eq. (26) was calculated for each sample based on the results
of magnetogranulometric analysis.

In our tests, the particles under the action of the nonuniform
magnetic field drift slowly (τD ∼ 105 s) towards the left side
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FIG. 6. Distribution of particles in a polyethylsiloxane-based
magnetic fluid with an average volume fraction of the magnetite
〈φ〉 = 0.1187. Curve 1 is for 〈φ2〉 = 0, curve 2 is for 〈φ2〉 = 0.4〈φ〉,
N = 45, γ = 0.38. Dots show experimental results.

wall of the cell, which in the course of time leads to the
formation of the equilibrium concentration profile. Depending
on the conditions of the experiment, the time of the equilibrium
profile formation varied from 3 to 4 days up to two weeks. The
equilibrium concentration profiles for three samples of the
magnetic fluid prepared on the basis of kerosene are shown in
Figs. 5 and 7 and those on the basis of polyethylsiloxane are
shown in Fig. 6. The solid lines in the figures were obtained by
solving numerically Eqs. (14), (15), (18), and (19). The average
volume fraction 〈φ2〉 of the aggregated particles, the average
number N of particles in the aggregate, and the packing index
γ of particles in the aggregate were used as fitting parameters.
They were determined from the condition of the minimum
mean square deviation of the computed curve from the
experimental points. Dashed lines correspond to the absence
of aggregates and the difference between the dashed and solid
lines demonstrates the contribution of aggregates to spatial
inhomogeneity of the magnetic fluid. As it is evident from
the figures, this contribution is crucial. Neglect of aggregation
reduces the calculated concentration difference by two orders
of magnitude against the experimental data. Thus, including
aggregates into the simulation is a necessary condition for a
correct estimation of the particle segregation both in diluted
[5,6] and concentrated systems. In the general case, the
effect of the aggregates on the spatial segregation of particles
manifests itself as two competing mechanisms. On the one
side, the appearance of aggregates increases the excluded
volume (increases steric interactions), which stabilizes the
system [12]. On the other hand, aggregation leads to a multiple
strengthening of magnetophoresis and increase of particle seg-
regation. Under the conditions of our experiments the second
mechanism at the back of this effect prevails over the first one.
Depending on the relation between the aggregate parameters,
the concentration profile can be close to a linear profile (Fig. 5),
can be convex (Fig. 6), or can be concave (Fig. 7).

For all three samples of the magnetic fluid the calculated
profiles describe the experimental data with sufficient accuracy
except for the periphery zone, in which the strength of the

FIG. 7. Distribution of particles in a kerosene-based magnetic
fluid with an average volume fraction of the magnetite 〈φ〉 = 0.213.
Curve 1 is for 〈φ2〉 = 0, curve 2 is for 〈φ2〉 = 0.1〈φ〉, N = 10, γ =
0.54. Dots show experimental results.

magnetic field is maximal and the volume fraction of the
magnetite is about 0.2. The reason for this discrepancy is still
unclear. In our opinion, the most probable reason is a rather
high degree of inaccuracy of equations (14) and (18) (underes-
timation of the excluded volume and steric interactions) at high
total concentration of particles. A considerable disagreement
is observed for kerosene-based samples, in which the volume
fraction of particles ϕ (excluded volume) is ≈0.4 in the case
when aggregates are absent and ≈0.5 when about 10% of
particles are involved in the formation of aggregates with the
packing index γ = 0.4.

Before concluding this section we should note one more
important feature of the problem on magnetophoresis of col-
loidal particles in magnetic fluids: fitting parameters N, 〈φ2〉,
and γ are not derived uniquely from the results of experiment.
We may find at least several triplets of numbers which
allow us to describe the experimental profile φ = φ(x) with
nearly the same accuracy. As an example, four such triplets,
corresponding to the data of Fig. 6, are presented in Table I.

As seen from the Table I, the average number and
percentage of the aggregated particles found by the fitting
technique can differ essentially. This suggests that the inverse
problem—determination of the aggregate parameters from
the concentration profiles—is not correct, because it may have
several solutions. To eliminate the parameter ambiguity we
need to obtain additional data; for example, from tests on
particle diffusion in a zero magnetic field [21], rheological
measurements, or analysis of dispersion curves for dynamic

TABLE I. Sets of fitting parameters describing with nearly the
same accuracy the experimental data for a magnetic fluid on the basis
of polyethylsiloxane.

No. N γ 〈φ2〉/〈φ〉
1 45 0.38 0.40
2 45 0.42 0.43
3 75 0.50 0.62
4 280 0.49 0.72
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susceptibility [23]. Nevertheless, if we exclude from con-
sideration the last row in Table I, the remaining parameters
agree in order of magnitude with the results obtained by other
methods [21–23].

VII. CONCLUSION

We have proposed the system of equations (14), (18),
and (19) to describe the processes of magnetophoresis
and diffusion of particles in a concentrated magnetic fluid
containing aggregates. These equations take into account
the steric, magnetodipole, and hydrodynamic interparticle
interactions and agree quite well with the results of laboratory
experiments of particle segregation in magnetite colloids in
a gradient magnetic field. A rather wide range of particle
size distribution observed in commercial magnetic fluids is
not taken into account in these equations, which can lead
to errors in calculations. At present we are unable to give
an estimate of possible errors. However, for magnetic fluids
used in our experiments the error is too small to cause
considerable disagreement between the results of simulation
and experimental data.

We also do not expect a large error due to the heuristic ap-
proach to consideration of the effective attraction between the
fluctuating magnetic dipoles, because for the majority of mag-
netic fluids the parameter of the magnetodipole interactions
λ � 1. In this case, the last term in relation (12) introduces a
rather small error for the diffusion coefficient. The situation
may get worse only at λ � 2 (magnetic fluids with large
particles); if so, this term will require a more thorough analysis.

By analogy with Ref. [12], the allowance for steric interac-
tions has been made in the Carnagan-Starling approximation
for the system of hard spheres [39] and for magnetodipole
interactions—in the framework of the modified model of
the effective field [18,19]. Both approximations agree well
with the results of laboratory and numerical experiments.
Some problems may arise only in the range of high particle
concentration (ϕ � 0.4) and high energies of dipole-dipole
interactions (λ � 2).

The laboratory experiments were carried out in thin hor-
izontal layers of the magnetic fluid providing the minimum
level of demagnetizing fields, the minimum effect of the
gravitational field, and the possibility to use the photometric
technique for measuring local particle concentration. Three
samples of the concentrated magnetic fluid have been exam-
ined and in all cases the measured concentration difference
inside the cell was two orders of magnitude higher than
the difference calculated without taking into account the
aggregates. This result is very significant, implying that,
without consideration of aggregates (if only they exist in a
magnetic fluid), a correct computation of the concentration
profiles is impossible.
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