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Origin of rebounds with a restitution coefficient larger than unity in nanocluster collisions
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We numerically investigate the mechanism of super rebounds (rebounds in which the restitution coefficient
is larger than unity) for head-on collisions between nanoclusters. It is confirmed that the temperature and the
entropy of the nanocluters decrease after the super rebounds by our molecular dynamics simulations. It is also
found that the initial metastable structure plays a key role for the emergence of the super rebounds.
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I. INTRODUCTION

Nanoclusters are technologically important for the con-
struction of nanodevices. Because the size of nanoclusters is
mesoscopic, the thermodynamic properties of such materials
are still not well understood [1], though methods to make
nanoclusters such as by adiabatic expansion through a nozzle
and using laser ablation are well established [2].

The dynamics of nanoclusters have been extensively inves-
tigated from both scientific and technological interest. There
are many numerical studies on cluster-cluster and cluster-
surface collisions based on molecular dynamics simulation
[3–18]. We observe a variety of rebound processes for such
systems caused by the competition between the attractive
interaction and the repulsive interaction of two colliding bod-
ies. Binary collisions of identical clusters cause coalescence,
scattering, and fragmentation depending on the cluster size and
the impact energy [11,12]. On the other hand, cluster-surface
collisions induce soft landing, embedding, and fragmentation
[7,15,16]. The attractive interaction plays crucially important
roles in collisions of nanoclusters, so that the modeling of
the cohesive collisions on various scales is actively discussed
these days [19–21].

However, the attractive interaction can be reduced by some
combinations of the two interacting objects and the relative
configuration of colliding molecules [22]. Awasthi et al.
introduced a modified Lennard-Jones model to simulate the
rebound process of a Bi cluster onto a SiO2 surface [10],
in which they introduced a cohesive parameter to reduce the
attractive interaction between different atoms on the surface.
There exists a corresponding experiment on the rebound
process of Bi nanoclusters on a Si surface with the aid of a
V-shaped template etched on a silicon wafer [3]. This suggests
that the modified Lennard-Jones clusters can approximately
describe collisions of real clusters. Similarly, recent papers
have reported that surface-passivated Si nanoclusters exhibit
elastic rebounds on the Si surface due to the reduction
of the attractive interaction between the surfaces [8,23,24].
In particular, Saitoh et al. confirmed that the behavior in
collisions of modified Lennard-Jones clusters is similar to that
of H-passivated Si clusters from their simulation [24]. These
results also support that the modified Lennard-Jones model
can be regarded as a simplified model of nanoclusters.
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In general, thermal fluctuation also plays an important
role for small systems such as nanoclusters. Indeed, the
present authors carried out a molecular dynamics simulation of
colliding thermally activated modified Lennard-Jones clusters
to investigate the impact phenomena and found the existence
of the “super rebound” in which the restitution coefficient
is larger than unity [6]. Recently, it has been reported that
such a rebound can be observed in a molecular dynamics
simulation of a collision of Cu nanoparticles on a rigid wall [5].
In addition, another research group has reported that large
recovery strain after loading (called superelasticity) can be
found in a small system [25]. Although there is a possibility
that such an anomalous mechanical property of small systems
is also concerned with the emergence of super rebounds,
the underlying mechanism for the super rebounds is still
unclear.

In macroscopic systems, a restitution coefficient larger
than unity can be observed in oblique collisions between a
hard sphere and a soft elastic plate [26,27], which differs
from the super rebound. Indeed, the restitution coefficient
can easily become larger than unity if the rebound direction
is changed in oblique collisions. As another example, a
recent study reported that large-scale magnetized plasmoids
can increase their kinetic energy after collision in the he-
liosphere [28]. In contrast, in microscopic systems such
as nanoclusters, true super rebounds can be observed in
normal collisions, which implies that a portion of thermal
energy is converted to macroscopic degrees of freedom. This
may imply a possibility to make a nanoscale object which
extracts work from its internal energy. Although the average
behavior of the restitution coefficient against the relative
impact speed can be approximately understood by the macro-
scopic theory of cohesive collisions [6,19], the mechanism of
curious energy transfer against intuition of the thermody-
namics is important to both fundamental physics and energy
technology.

The aim of this paper is to study the mechanism of the
super rebounds from the viewpoint of the energy transfer
between the microscopic and the macroscopic degrees of
freedom. For this purpose, we investigate the characteristics of
thermodynamic functions such as temperature and entropy in
the super rebounds based on molecular dynamics simulation.
In addition, we also investigate the change in structures of
the colliding nanoclusters characterizing super rebounds by
the introduction of Steinhart’s order parameter [29] and some
related geometrical order parameters.
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The organization of this paper is as follows. In the next
section, we introduce our nanocluster model. In Sec. III we
show the results of our molecular dynamics simulations. In
Sec. IV we discuss the reason why super rebounds can be
observed in our simulation. Section V is devoted to the
summary of this work. In Appendices A and B, we explain
the method of calculating entropy in our simulation and how
to calculate Steinhardt’s order parameters, respectively.

II. MODEL

Let us introduce our model. Our model consists of two
identical nanoclusters, each of which contains 236 “atoms”
(Fig. 1). The clusters have facets due to the small number of
atoms. To construct one cluster, we first make the face-centered
cubic crystal of 9 × 9 × 9 layers of atoms. Next, we cut out
a spherical cluster from the cube. In Fig. 1, we call the upper
projectile and the lower target clusters Cp and Ct , respectively.
All the atoms in one cluster are bound together by the modified
Lennard-Jones potential

U (rij ) = 4ε

{(
σ

rij

)12

− c

(
σ

rij

)6
}

, (1)

where rij is the distance between two arbitrary atoms i and
j in this system, and σ and ε are the core diameter and the
scale of energy, respectively. Here, c is the cohesive parameter
which changes the magnitude of cohesion between atoms. In
our simulation, we adopt c = 0.2 between atom i on the lower
surface of Cp and atom j on the upper surface of Ct while c = 1
between all the atoms in each cluster. Here the definitions of
the surface and the bulk atoms are as follows. Each cluster
consists of 9 layers of atoms. We define the atoms outside
the concentric inscribed sphere as the surface atoms while the
other atoms are the bulk atoms. We assume that the surface
atoms are different from the bulk atoms, which may cause a
weak cohesive interaction between the clusters [10,22].

Let us introduce the volume fraction ϕ, which is defined by

ϕ ≡ 1
6πρσ 3, (2)

where ρ is the number density. Figure 2 shows the relationship
between ϕ and the initial potential energy of one cluster. To
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FIG. 1. (Color online) Snapshot of our model after equilibration
to T = 0.02ε. Each nanocluster contains 236 “atoms” which are
bound together by the modified Lennard-Jones potential.
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FIG. 2. Relationship between volume fraction of atoms and
potential energy of one cluster.

construct a cluster, we adopt the value for ϕ as ϕ = 0.56 in
which the potential energy is minimum, while we adopted
ϕ = 0.21 in our previous work [6].

The procedure of our simulation is as follows. As the initial
condition of the simulation, the centers of mass of Cp and
Ct are placed along the z axis with separation 4R between
the centers of mass of Cp and Ct , where R is the radius of
the cluster (Fig. 1). The two clusters are placed in mirror
symmetric positions with respect to z = 0 so that a facet of
one cluster is placed face to face with that of another cluster.
We have checked that the relative rotational orientation of
the clusters around the z axis little affects the relationship
between the restitution coefficient and the colliding speed in
our previous work [6]. The initial velocities of the atoms in
both Cp and Ct satisfy the Maxwell-Boltzmann distribution
with initial temperature T . The sample average is taken over
different sets of initial velocities.

We numerically solve the equation of motion of each atom
i described by

M
d2xi

dt2
=

∑
j �=i

Fij +
∑

k

Fik, (3)

where M and xi are the mass of an atom and the position of
the ith atom, respectively. Fij is the modified Lennard-Jones
force, which is calculated from Eq. (1) as

Fij = −∂U (rij )

∂rij

. (4)

Numerical integration of the equation of motion for each
atom is carried out by using a second-order symplectic
integrator with time step dt = 1.0 × 10−2σ/

√
ε/M . To reduce

computational costs, we introduce the cutoff length rc of the
Lennard-Jones interaction as rc = 2.5σ . The rate of energy
conservation, |E(t) − E0|/|E0|, is kept within 10−5, where E0

is the initial energy of the system and E(t) is the energy at
time t .

We equilibrate the clusters by using the velocity scaling
method [30,31] as the thermostat in the initial 2000 simulation
steps. Here, we introduce the kinetic temperature,

T = 2

3N

∑
i

1

2
M(vi − vc)2, (5)

where N and vc are the number of atoms and the velocity
of the center of mass of one cluster, respectively. It has been
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confirmed that the temperature of the system converges to a
desired temperature during equilibration.

After equilibration we give the translational velocity to Cp

and Ct to make them collide against each other without the
thermostat. We give the translational speed with acceleration
g = 0.02ε/(σM). The typical value of the relative impact
speed in our simulation is V = 0.1

√
ε/M , which is slightly

less than the thermal velocity of the system defined by
Vth = √

T/M when T = 0.02ε.

III. SIMULATION RESULTS

A. Macroscopic properties

Here we show the macroscopic properties of the colliding
nanoclusters in our simulation. To characterize the rebound
behavior of macroscopic inelastic collisions, we calculate the
restitution coefficient e defined by

e = Vz(t̄∗)

Vz(0)
, (6)

where Vz(t̄∗) is the z component of the relative translational
speed of Cp to Ct , and t̄∗ is the scaled time of separation of the
clusters, t̄∗ ≡ t∗/(σ/

√
ε/M). We define the time of separation,

t∗, by the time when the relative rebound speed becomes stable
after the collision.

Figure 3 shows the histograms of e for initial temperatures
T = 0.01ε, 0.02ε, and 0.04ε, respectively. Each histogram
is constructed from 1000 samples with an initial speed of
Vz = 0.2

√
ε/M . We find 12 samples of the super rebound at

T = 0.04ε while all samples are ordinary rebounds at T =
0.01ε. At T = 0.02ε we found that only one sample is a super
rebound. On the other hand, if we adopt Vz = 0.3

√
ε/M , most

of the rebounds are ordinary. We can find only two samples of
super rebounds even at T = 0.04ε. Thus, the super rebounds
can be observed only if the colliding speed is lower or almost
equal to the thermal speed.

B. Thermodynamic properties

Here we show the time evolution of kinetic temperature
defined by Eq. (5). Figure 4 shows typical examples of the
changes in temperature in an ordinary rebound and a super
rebound. t̄ is the scaled time, t̄ ≡ t/(σ/

√
ε/M). A slight

discrepancy in temperature between Cp and Ct is observed
after the equilibration in Fig. 4(a). The temperature increases
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FIG. 3. (Color online) Histogram of e for several temperatures of
clusters with Vz = 0.2
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FIG. 4. (Color online) Time evolution of temperature for (a) an
ordinary rebound and (b) a super rebound.

after the collision around t̄ = 9 for an ordinary rebound [see
Fig. 4(a)], where a part of the translational energy is converted
to internal energy. On the other hand, the temperature decreases
in Ct while the temperature of Cp increases after the collision
for a super rebound [Fig. 4(b)].

Next let us investigate the entropy change �S defined by
Eq. (A8) in Appendix A. Figure 5(a) plots the time evolution
of �S for Cp and Ct in a super rebound, which shows that
the entropy increases in Ct while it decreases in Cp during
collision for t̄ < 15.8. On the other hand, Fig. 5(b) shows
that the discrepancy of entropy change remains finite after
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FIG. 5. Time evolution of �S of a super rebound in (a) t̄ � 15.8
and (b) t̄ � 15.8. Chain and solid lines show �S in Cp and Ct ,
respectively. At t̄ = 30, �S of Ct becomes −0.243.
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TABLE I. Numbers of fcc atoms for ordinary rebound.

Numbers of fcc atoms Q4 Q6

Before collision 649 0.19105 0.56897
After collision 574 0.1908 0.5689

the collision for t̄ > 15.8. In addition, it is remarkable that
the entropy of Ct decreases corresponding to the decrease of
temperature.

So far, we have reported the results of our simulation
on thermodynamic quantities. What we confirm is that the
behavior of such quantities in super rebounds is seemingly
in contrast to what is expected from the second law of
thermodynamics. However, we should note that the second
law is only strictly valid after an ensemble average is taken.
In this sense, our result does not violate the second law of
thermodynamics.

C. Structural change during collision

Let us investigate the structural change of the clusters
induced by collisions. To characterize the structural change,
we first introduce a local bond order parameter known as
the time-averaged Steinhart’s bond order parameter Ql [see
Eq. (B3) for its explicit definition] [29,32,33]. We note that
Steinhardt’s bond order parameters are used to characterize
the structural change in nanoclusters associated with collisions
[34] and melting [35,36] as well as equilibrium structures of
crystalline solids. According to the definition of the bond
order parameter summarized in Appendix B, we calculate
Q4(i) and Q6(i) of each atom i before and after collision,
respectively. For the time average in the calculation of Q4(i)
and Q6(i), we use tb = 5.5σ/

√
ε/M and ta = 20σ/

√
ε/M for

before and after collision, respectively, with the time interval
τα = 1.5σ/

√
ε/M , where ta and tb, respectively, correspond

to t0 in Eq. (B3).
In the Q4–Q6 plane, the highest peak can be found around

(Q4,Q6) = (0.190,0.574), which is characteristic for an fcc
crystal structure. We cannot find a visible shift of the peak
position in the Q4–Q6 plane during the collision in either
super or ordinary rebounds. However, we find that the number
of atoms at the highest peak decreases after the collision for
ordinary rebounds, which means that the number of atoms in
the fcc bond order decreases after the collision (see Table I). In
contrast, for super rebounds, the number of atoms at the highest
peak increases after the collision (see Table II), which means
that the fcc bond order becomes intensive after the collision.
Thus, the super rebounds are characterized by the increase of
the number of atoms with fcc bond order during collisions.

To investigate the details of the structural change, we also
calculate the distribution of |q6m(i)|2 defined by Eq. (B1).
To construct these distributions, we use the particle data at the

TABLE II. Numbers of fcc atoms for super rebound.

Numbers of fcc atoms Q4 Q6

Before collision 690 0.1890 0.5735
After collision 718 0.1911 0.5692
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final instant of the initial thermalization by the velocity scaling
method. Because qlm is equal to (−1)mq∗

lm, we only investigate
the case of m � 0.

We present the histogram of |q64(i)|2 in Fig. 6. The solid
curve represents the frequency distribution for ordinary re-
bounds while the broken curve is that for super rebounds. One
can find a slight discrepancy between those two distributions.
We should mention that the discrepancy is invisible for the
other m, though we do not present the corresponding figures.

To quantify the discrepancy between those two distribu-
tions, we introduce χ2

m defined by

χ2
m =

∑
j

[Om(j ) − Sm(j )]2

Om(j ) + Sm(j )
≡

∑
j

γ 2
m(j ), (7)

where Om(j ) and Sm(j ) are the frequencies of |q6m(i)|2 in
the j th bin for ordinary and super rebounds, respectively.
We calculate χ2

m for each value of m to investigate the
relationship between m and χ2

m. Figure 7 shows the relationship
between m and χ2

m, which characterizes the difference between
super rebounds and ordinary rebounds. This figure shows
that the discrepancy between the distributions of |q64(i)|2 is
remarkably large compared to other values of m. In addition,
we show the relationship between γ 2

4 (j ) introduced in Eq. (7)
and |q64(i)|2 in Fig. 8, where a remarkable difference can be
found in the range of |q64(i)|2 � 0.02.

IV. DISCUSSION

Let us discuss our results. In the previous section, we have
demonstrated that a structural difference of clusters can be
found between the super and the ordinary rebounds. Here

 0
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 200

 300

 400

 500
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FIG. 7. Relationship between m and χ 2
m, which is defined by

Eq. (7).
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we investigate the potential energy of the characteristic local
structures included in the clusters which induce the super
rebounds.

Focusing on the noticeable peaks in Fig. 8, we select
the atoms with the order in the range 1.1643 × 10−2 �
|q64(i)|2 � 1.7425 × 10−2 from 20 clusters which induce the
super rebounds. The reason why we choose the range of
|q64(i)|2 is as follows. The characteristic peaks in Fig. 8
are characterized by |q64(i)|2 = (1.4534 ± 0.2891) × 10−2, so
that we pick up atoms in the above range. For each of the
selected atoms, we define the neighboring atoms which are
located within a distance of 1.6σ . We define a local structure
by the collection of the selected atom and its neighboring
atoms. Figure 9 is a snapshot of a cluster including two local
structures, each of which is centered by the atom which has the
order (red or medium gray). This figure shows that the local
structures are located on the surface of the cluster. Moreover,
the local structures seem to be unstable due to the less-ordered
orientation of atoms, which may lead to the high potential
energy.

Next, we calculate the average potential energy of those
local structures. For this purpose, we calculate the potential
energy of each atom in the cluster with a cutoff of 3.5σ and
sum the potential energy over all the atoms in a local structure
to obtain its potential energy. Among 20 clusters which induce
super rebounds, we find 372 atoms that satisfy 1.1643 ×
10−2 � |q64|2 � 1.7425 × 10−2, by which we calculate the
average potential energy of one local structure. From our
calculation, the average potential energy per one local structure
becomes −97.827ε.

FIG. 9. (Color online) Cluster which induces super rebounds. Red
(medium gray) particles show the atoms with the order 1.1643 ×
10−2 � |q64(i)|2 � 1.7425 × 10−2 while blue (dark gray) particles
are neighboring atoms.

For comparison, we focus on the potential energy of the
local structure which belongs to the highest peak in Fig. 6
because we find the same number of local structures in both
super rebounds and ordinary rebounds. The local structure
in this case is defined by the collection of atoms with the
order around the peak, 2.8 × 10−2 � |q64|2 � 3.0 × 10−2,
and its neighboring atoms in the clusters which induce
the super and the ordinary rebounds. From the calculation
with 482 local structures in the clusters which induce super
rebounds, we obtain the average potential energy per one
local structure as −104.814ε. In the case of the clusters
which induce ordinary rebounds, the average potential en-
ergy becomes −104.202ε from the calculation of 512 local
structures.

From these results, we conclude that the clusters for the
super rebound have more metastable local structures with
higher potential energy than the clusters for the ordinary
rebound. Thus, we conjecture that a part of the high potential
energy is transferred to the macroscopic degrees of freedom
during the super-rebound collision. Moreover, we can also
conjecture that the decreases of temperature and entropy after
collision are connected with the decrease of the potential
energy. In this paper, we focus on the relationship between
the local structure and the super rebound. It is also important
to understand the role of macroscopic structural change. The
macroscopic deformation of nanoclusters after the collision
will be reported elsewhere [37].

V. CONCLUSION

In this paper, we have performed molecular dynamics
simulation of colliding nanoclusters to study the origin of super
rebounds. Through the investigation of the thermodynamic
properties, we have found that the decreases of the temperature
and the entropy are observed in one of the binary clusters
when the super rebound is observed. This may be attributed
to the biased distribution of the local bond order parameters
after the collision, which is caused by the initial metastable
configuration of atoms.

Through the investigation of the local bond order parame-
ters, we have found the discrepancy of the distributions of the
order |q64(i)|2 between the super and the ordinary rebounds.
The average potential energy of the local structure which
belongs to the characteristic peak in the |q64(i)|2 distribution
is larger than the typical local structures which are abundant
in our cluster. Thus, energy transfer from the local structure
to the macroscopic degree of freedom accompanied by the
structural change during collision plays an important role in
super rebounds. Moreover, the change of entropy associated
with the change in the internal state of order after the collision
is the key point for understanding the emergence of the super
rebounds. Further investigation of the relationship between the
local structural change and the entropy decrease will be one of
our future tasks.
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APPENDIX A: CALCULATION OF ENTROPY

In this Appendix, we explain the method used to calculate
the entropy in our system. Let us assume that the collision of
Cp onto Ct does work δW and changes the internal energy of
Ct . Because each cluster is an isolated system, we assume that
the change in heat, δQ, of Ct is determined by the first law of
thermodynamics,

δQ = dE + δW, (A1)

where dE is the change in the internal energy.
The internal energy E is calculated as

E =
∑

i

p2
i

2m
+ 1

2

∑
i

∑
j �=i

U (rij ), (A2)

where pi and m are the relative momentum of an atom in Ct

with respect to the center of mass and the mass of an atom,
respectively. U (rij ) is the potential energy between atoms i

and j in Ct .
The amount of work δW (t) acting on Ct is defined as

follows. Let us define the work done by atom j of Cp to
atom i of Ct (Fig. 10). Assuming that the displacements of the
atoms are caused by the interactive force Fij , we can write the
amount of work δWij (t) done by atom j to atom i during an
interval dt as

δWij (t) = Fij · [rij (t + dt) − rij (t)], (A3)

where rij (t) = ri(t) − rj (t). Thus, the work δW (t) done by
Cp to Ct may be expressed as

δW (t) = 1

2

∑
i

∑
j

δWij (t). (A4)

Using these quantities, we define the entropy difference
�S(t) = S(t) − S(0) as

�S(t) =
∫ t

0

δQ(t ′)
T (t ′)

. (A5)

. .

j i
δriδrj

C C

Fij

P T

FIG. 10. Interaction between an atom in Ct and an atom in Cp.

Here we use the kinetic temperature [Eq. (5)] as T . To calculate
�S(t) by Eq. (A5), we first smooth the temperature and the
heat as

T̃ (t) =
∫ t+�t

t−�t

T (t ′)dt ′, (A6)

δQ̃(t) =
∫ t+�t

t−�t

δQ(t ′)dt ′, (A7)

with �t = 0.565σ/
√

ε/m because those data change rapidly
against time. By using those smoothed parameters, the entropy
change of Ct may be rewritten as

�S(t) =
∫ t

0

δQ̃(t ′)
T̃ (t ′)

, (A8)

where we adopt the simple trapezoidal rule for the evaluation
of the integral.

APPENDIX B: CALCULATION OF THE
ORDER PARAMETER

In this Appendix, we introduce Steinhardt’s order parameter
to characterize the structure of our model [29,32,33]. Let us
assume that an atom i in a crystalline structure is surrounded
by Nb(i) atoms within the cutoff length rc. That is, the distance
rij between the ith atom and one of the neighboring atoms j

is less than the cutoff length rc. In our analysis, we adopt
rc = 1.6σ .

First, for each atom, we calculate the average of spherical
harmonics, which depends on rij as follows:

qlm(i) = 1

Nb(i)

Nb(i)∑
j=1

Ylm(rij ). (B1)

Next, we introduce ql(i) according to the following definition:

ql(i) =
√√√√ 4π

2l + 1

l∑
m=−l

|qlm(i)|2. (B2)

Instead of ql(i), we use the time-averaged value defined by

Ql(i) = 1

τα

∫ t0+τα

t0

ql(i)dt (B3)

with the time interval τα .
Each crystalline structure, such as a bcc and a fcc, has

characteristic distributions of those parameters. For example,
the distributions of q4 and q6 in an fcc structure shows two
peaks while the distributions in other structure has a single
peak in a Lennard-Jones system [33]. The mean values of
those distributions are summarized in Table III [32].

TABLE III. Bond orientational order parameters for fcc, bcc, and
hcp crystals [32].

q4 q6

fcc 0.191 0.575
bcc 0.036 0.511
hcp 0.097 0.485
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