
PHYSICAL REVIEW E 86, 051140 (2012)

Conductivity of Coniglio-Klein clusters
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(Received 17 July 2012; revised manuscript received 26 September 2012; published 30 November 2012)

We performed numerical simulations of the q-state Potts model to compute the reduced conductivity exponent
t/ν for the critical Coniglio-Klein clusters in two dimensions, for values of q in the range [1,4]. At criticality,
at least for q < 4, the conductivity scales as C(L) ∼ L− t

ν , where t and ν are, respectively, the conductivity and
correlation length exponents. For q = 1, 2, 3, and 4, we followed two independent procedures to estimate t/ν.
First, we computed directly the conductivity at criticality and obtained t/ν from the size dependence. Second,
using the relation between conductivity and transport properties, we obtained t/ν from the diffusion of a random
walk on the backbone of the cluster. From both methods, we estimated t/ν to be 0.986 ± 0.012, 0.877 ± 0.014,
0.785 ± 0.015, and 0.658 ± 0.030, for q = 1, 2, 3, and 4, respectively. We also evaluated t/ν for noninteger
values of q and propose the conjecture 40gt/ν = 72 + 20g − 3g2 for the dependence of the reduced conductivity
exponent on q, in the range 0 � q � 4, where g is the Coulomb gas coupling.

DOI: 10.1103/PhysRevE.86.051140 PACS number(s): 05.50.+q, 64.60.al, 89.75.Da

I. INTRODUCTION

The q-state Potts model was initially developed to study the
onset of ferromagnetic order, but its range of applications is
much wider and includes, for example, problems in materials
science [1,2], biology [3], opinion dynamics [4], image
processing [5], and quantum chromodynamics [6]. The general
interest for statistical physics stems from its rich critical
behavior and the fact that it generalizes several other models,
e.g., spanning trees (q = 0), bond percolation (q = 1), and
the Ising model (q = 2) [7]. The critical properties of the
order-disorder transition in the Potts model depend on the
dimensionality and this transition might even be absent on
complex geometries [8–11]. In particular, in two dimensions,
the nature of the transition is second order for q � 4 and first
order for q > 4.

The theorem of Kasteleyn and Fortuin shows that, for all
real values of q > 0, the magnetic transition can be described
by a purely geometrical model, where the partition function
is a sum over bond percolation configurations weighted by
a factor depending on the number of possible states and
clusters [12]. This beautiful result has provided the necessary
ingredients to develop advanced analytic and computational
techniques to characterize the critical properties of the model
[13,14]. Numerically, as proposed by Coniglio and Klein,
geometrical clusters can be obtained starting with magnetic
clusters, defined as sets of neighboring spins in the same state
[15–17], and diluting bonds in such a way that, at criticality,
their percolationlike properties are equivalent to the magnetic
ones [18–20].

The geometrical properties of Coniglio-Klein clusters have
been intensively studied, obtaining several numerical and exact
results [21,22]. In this work, we study the conductivity of these
clusters for values of q between 0 and 4 in two dimensions.
Given the self-similar properties of the clusters at criticality
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for q � 4, we assume that the conductivity C between two
points scales as

C(r) ∼ r− t
ν , (1)

where r is the distance between the points, t the conductivity
exponent, and ν the critical exponent of the correlation length;
t/ν is then the reduced conductivity exponent, the focus of our
work.

For bond percolation (q = 1), the conductivity has been
studied with different methods, e.g., diffusion methods [23],
transfer matrix methods [24–26], and star-triangle transforma-
tions [27–29]. Some conjectures which have been proposed for
the conductivity exponent [30,31] were ruled out by numerical
data [26]. In our study, we extend the calculation of the
conductivity exponent to q = 1.5, 2, 2.5, 3, 3.5, and 4.

The paper is organized as follows. In Sec. II we describe
the q-state Potts model and its relation with bond percolation.
In Sec. III we present the two procedures to estimate the value
of the reduced conductivity exponent. In Sec. IV we report our
results, which are then discussed in Sec. V. The concluding
remarks are in Sec. VI.

II. MODEL

In the q-state Potts model on a graph, each node is a spin
and can assume q different states, σ = 0,1, . . . ,q − 1. The
Hamiltonian of the model is

H = −
∑
〈i,j〉

Jij

(
δσiσj

− 1
)
, (2)

where δσiσj
is unity if σi = σj and zero otherwise, Jij is the

coupling strength between spins i and j , and the summation
is over all pairs of interacting spins. For simplicity, we assume
only interactions among nearest neighbors with the same
coupling strength, Jij ≡ J .

A geometrical description of the model which reproduces
the scaling behavior of the magnetic transition is provided
by the Kastelyn-Fortuin theorem [12]. The partition function
associated to the q-state Potts model can be written as a sum
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FIG. 1. (Color online) Largest cluster of a configuration for q = 1
and a lattice size of 32. The backbone between the two dotted vertices
is formed by blobs of bonds belonging to parallel paths [blue (dark)
bonds] linked together by red (grey) bonds. The other bonds [yellow
(white) bonds] are dangling ends.

over all possible bond configurations {ν},
Z =

∑
{ν}

qNcpb(1 − p)(Nb−b), (3)

where Nb is the total number of bonds, and b and Nc are,
respectively, the number of occupied bonds and clusters in the
configuration ν. This is equivalent to a sum over configurations
of bond percolation in the original graph, weighted by a
factor of qNc , and, consequently, for q = 1, one recovers the
generating function of the random bond percolation model.
Bonds are established between neighboring spins in the same
state with probability p = 1 − e−K , where K = J

kBT
, T is the

temperature, and kB is the Boltzmann constant. Coniglio-Klein
clusters are then defined as sets of spins (nodes) connected
through these bonds. This equivalence has been useful in the
development of efficient Monte Carlo procedures where the
critical slowing down is significantly reduced [13,14].

Let us consider now any two points on the largest cluster.
One can define the backbone as the set of all possible paths
joining these two points. All the bonds of the largest cluster
outside the backbone are dangling ends. In the backbone, one

TABLE I. Numerical results for the reduced conductivity expo-
nent Dσ , random walk dimension dw , and fracton dimension ds .
(t/ν)rw is the reduced conductivity exponent obtained with Eq. (8).

q ν Dσ dw ds

(
t

ν

)
rw

1 4
3 0.987 ± 0.013 2.617 ± 0.009 1.247 ± 0.007 0.985 ± 0.013

2 1 0.877 ± 0.014 2.587 ± 0.012 1.325 ± 0.014 0.873 ± 0.022
3 5

6 0.785 ± 0.015 2.535 ± 0.024 1.396 ± 0.025 0.766 ± 0.039

can distinguish the red from the blue bonds: red bonds are
singly connected bonds that, if one of them is removed, split
the cluster into two, while all the others are blue bonds (see
Fig. 1). The typical picture of the largest cluster at criticality
is a set of blue bonds forming blobs, i.e., sets of parallel paths,
linked together by red bonds [32–34].

Describing the bonds as resistors, one can analyze the
transport properties of the cluster. In this work, we apply a
potential difference between two points of the largest cluster,
separated by a distance r , and we solve Kirchhoff’s law for the
network of resistors. We characterize the dependence of the
conductivity on the distance between the points and compute
the conductivity exponent for different values of q.

III. SIMULATIONS

We simulate the q-state Potts model on a square lattice
with periodic boundary conditions in vertical and horizontal
directions. The Coniglio-Klein clusters are generated using
the Swendsen-Wang algorithm [13]. As described above,
critical clusters are identified by establishing bonds between
neighboring spins in the same state, with probability pc =
1 − e−Kc , where Kc = J

kBTc
and Tc is the critical temperature

[35]. We focus on the largest cluster without periodic boundary
conditions. Therefore, we compute the part of the largest
cluster that is in the middle of the lattice. In order to do so, we
look for a node belonging to the largest cluster, starting from
the nearest point that is down and to the right from the center
of the system. If it does not belong to the largest cluster, we
continue, going through the nodes of the lattice by scanning
the lattice in two directions at the same time: starting from the
middle point, we go up from left to right and down from right to
left. When we reach a node that belongs to the largest cluster,
we clip the fraction of the largest cluster, without periodic
boundary conditions, containing this node. We then identify
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FIG. 2. (Color online) Conductivity C as a function of the distance r between the highest and lowest points of the largest cluster for (a)
q = 1, (b) q = 2, and (c) q = 3. The solid lines are guides to the eye of the form C(r) = bCr−Dσ . In the inset, the rescaled conductivity
C(r)/r−Dσ is plotted as a function of the distance r for different values of the reduced conductivity Dσ .
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FIG. 3. (Color online) Mean square displacement of the random walk 〈R2〉 as a function of the number of steps, N , for (a) q = 1,

(b) q = 2, and (c) q = 3. The solid lines are guides to the eye of the form 〈R2(N )〉 = bRN
2

dw . In the inset, the rescaled mean square

displacement 〈R2(N )〉/N 2
dw is plotted as a function of the number of steps, N , for different values of the random walk exponent dw .

the lowest and the highest node: the lowest node is defined
as the first node belonging to the cluster when one scans
through the lattice from the bottom to the top (left to right),
whereas the highest node is the first node belonging to the
cluster when scanning through from the top to the bottom (right
to left). Since the current vanishes in the dangling ends and
only flows through the backbone, we restrict our calculation
to the latter, which can be identified with the burning method
proposed by Herrmann et al. [36]. Using Kirchhoff’s laws, for
every node i in the backbone, we have

∑
j

Cij (Vi − Vj ) = 0, (4)

where the sum is over all neighboring spins j , and the
conductivity Cij between nodes i and j is unity if there is a
bond between them or zero otherwise. We impose the boundary
condition V = L2 for the highest node and zero potential for
the lowest one. We then invert the (sparse) conductivity matrix,
with elements Cij , using a sparse matrix solver [37] and obtain
the potential for every node as well as the global conductivity.
We compute the dependence of the conductivity on the distance
r . For q < 4, we show that the conductivity C as a function
of the distance r is a power law and we estimate the reduced
conductivity exponent Dσ , given by

C(r) ∼ r−Dσ . (5)

The value V = L2 has been chosen to avoid the sparse matrix
solver to deal with small potentials, as the backbone mass is
scaling with an exponent larger than 1 [38].

Simulations were performed on lattices of size L =
32,64,128,256,512,1024,2048, for q between 1 and 3, and
for q = 1 a lattice size of L = 4096 was also studied. For
q = 4, only system sizes up to 1024 where considered. The
number of samples generated for each lattice size ranges from
108 for the smallest system sizes to about 104 for the largest
system sizes. As the analyses of the conductivity and random
walks are computationally demanding, we discarded samples
between measurements to remove correlated samples that
would not improve the precision of the results. To decorrelate
from the initial configuration, we reject the first 2L, 3L,
and 16L sweeps, for q = 2, 3, and 4, respectively. Between
measurements, we reject 8, 16, and 64 sweeps, for q = 2, 3,
and 4, respectively. We then use a binning procedure and the
integrated autocorrelation time from Ref. [39] to obtain the
error bars. For q = 1, since all spins are in the same state,
each generated configuration is a random bond percolation
configuration independent of the previous one.

We also implemented a procedure based on the diffusion
of a random walk on the backbone to estimate the reduced
conductivity exponent. Such diffusion can be related to
the transport properties since, on a random fractal medium,
the walker’s mean square displacement 〈R2(N )〉 relates to the
number of steps, N , as

〈R2(N )〉 ∼ N
2

dw , (6)

where dw is the random walk dimensionality. The mean
probability to return to the initial position scales as

〈P0(N )〉 ∼ N− df

dw ∼ N− ds
2 , (7)
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FIG. 4. (Color online) Mean probability to return to the initial position 〈P0〉 as a function of the number of steps, N , for (a) q = 1, (b) q = 2,
and (c) q = 3. The solid lines are guides to the eye of the form 〈P0〉 = bP N− ds

2 . In the inset, the rescaled return probability 〈P0(N )〉/N− ds
2 is

plotted as a function of the number of steps, N , for different values of the fracton dimension ds .

051140-3
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FIG. 5. (Color online) Conductivity C as a function of the
distance r , for q = 4. The line corresponds to the fit with the
power-law ansatz, in Eq. (5), where Dσ = 0.658. In the inset,
the rescaled conductivity C(r)/r−Dσ is plotted as a function of the
distance r between the highest and the lowest points of the largest
cluster for different values of Dσ .

where df is the fractal dimension of the backbone and ds is the
fracton dimension [30]. The reduced conductivity exponent
can then be computed from the identity [40](

t

ν

)
rw

= dw − df = dw

(
1 − ds

2

)
. (8)

The diffusion of a random walk on the backbone can
be computed exactly following the algorithm proposed in
Ref. [23]. Once the largest cluster and the lowest and highest
points have been identified with the method described before,
one chooses an initial point in the middle of the backbone and
restricts the diffusion process to a constant chemical length
from this point. To do so, one takes the site of the largest cluster
which is closer to the middle of the line joining the lowest and
the highest point. The diffusion is solely considered on the
subset of sites in the largest cluster which are distant from the
middle point by less than a maximum chemical length. This
distance is defined as the minimum number of steps for the
walker to go from one site to the other. At each step, for every
node in the backbone, one computes exactly the probability
of the walker to be at this node and we measure 〈R2(N )〉 and
〈P0(N )〉. Following this procedure, we performed simulations
on lattices of lateral size L = 1024, averaging results over 104

configurations. We limited the walker to a maximum chemical
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distance of 300 steps from the origin of the walk. With dw and
ds , we deduced the value of the reduced conductivity exponent
using Eq. (8).

IV. RESULTS

We start discussing the cases q = {1,2,3}, followed by the
special values q = 4 and q = 0. For all cases, we compare
the estimates for the reduced conductivity obtained from
both the conductivity measurement Dσ and the random walk
method (t/ν)rw. We use the results from both methods to
estimate the reduced conductivity t/ν for different values of q.
We also present results on the reduced conductivity exponent
for noninteger values of q, namely, q = 1.5, 2.5, and 3.5.

A. q = 1, 2, and 3

Figure 2 shows the dependence on the distance r of the
conductivity obtained with the sparse matrix solver method. In
the insets, we show the rescaled conductivity, C(r)/r−Dσ , for
different values of Dσ . To reduce the influence of finite-size
effects, the value of the reduced conductivity exponent Dσ

and respective error bar are estimated by checking for which
interval of values for Dσ a plateau is asymptotically observed
for C(L)/L−Dσ . We obtained the values of Dσ for q = 1, 2,
and 3, as summarized in Table I, where error bars are estimated
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FIG. 8. (Color online) Conductivity C as a function of the lattice
size L, for q = 0. The solid line is a guide to the eye of the form
C(L) = bCL−Dσ , where Dσ = 5/4.
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FIG. 9. (Color online) Conductivity C as a function of the distance r between the highest and lowest points of the largest cluster for (a)
q = 1.5, (b) q = 2.5, and (c) q = 3.5. The solid lines are guides to the eye of the form C(r) = bCr−Dσ . In the inset, the rescaled conductivity
C(r)/r−Dσ is plotted as a function of the distance r for different values of the reduced conductivity Dσ .

from the asymptotic behavior in the insets of Fig. 2. Figures 3
and 4 show, respectively, the data for the mean square
displacement 〈R2(N )〉 and the probability of return, 〈P0(N )〉.
Given the proposed relations Eqs. (6) and (7), we obtain dw

and ds . From Eq. (8), we estimate the reduced conductivity
exponent (t/ν)rw. All results are summarized in Table I.

The results obtained with the sparse matrix solver and
with the random walk method are consistent with each
other. Overlapping the confidence intervals obtained with both
methods, we estimate the value of the reduced conductivity
to be t/ν = 0.986 ± 0.012, t/ν = 0.877 ± 0.014, and t/ν =
0.785 ± 0.015 for q = 1, 2, and 3, respectively. For q = 1,
random bond percolation is recovered. Our result in this limit
is consistent with the ones previously reported in the literature
using different methods: 0.9745 ± 0.0015 [26], 0.977 ± 0.010
[28], and 0.9826 ± 0.0008 [29].

B. q = 4

In two dimensions, the nature of the magnetic transition in
the q-state Potts model crosses over from second order, for
q � 4, to first order, for q > 4, and, therefore, logarithmic
prefactors are typically observed for q = 4. For example,
several works based on renormalization group theory show
that such prefactors are necessary for the specific heat,
spontaneous magnetization, and susceptibility [41,42]. We
compared, for q = 4, the power-law scaling of Eq. (5) with
a power law including logarithmic prefactors of the form
C(r) ∼ r−Dσ |ln(r)|D̃σ . We did not observe an improvement
of the fit including the logarithmic prefactor. Therefore, we
used the same power-law behavior as considered for q < 4.

Figure 5 shows the conductivity as a function of r , giving
Dσ = 0.658 ± 0.030. From Figs. 6 and 7 we obtain dw =
2.465 ± 0.020 and ds = 1.467 ± 0.026 and using Eq. (8)
(t/ν)rw = 0.657 ± 0.037. The results obtained with the sparse
matrix solver and with the random walk are in agreement.
From both methods we estimate t/ν = 0.658 ± 0.030.

C. q = 0

As q → 0 the critical temperature Tc diverges and, conse-
quently, the critical probability pc vanishes. As a result, no crit-
icality is observed at finite temperature for q = 0 [43]. How-
ever, it is possible to show that in some limits the partition func-
tion for q = 0 is equivalent to the one of the uniform spanning

trees [44], i.e., a sum over the ensemble of all possible spanning
trees. Here we study the conductivity of spanning trees.

The backbone between any two points on a spanning tree
is a single fractal path of fractal dimension 5/4 [38], an
exponent that can be obtained exactly, for example, from the
size dependence of the number of red bonds [21,45]. If each
bond is a resistor with the same resistance, we expect the
fractal dimension of the conductivity to be the same as the
one of the shortest path (and the backbone), i.e., Dσ = 5/4. In
Figure 8 we show that this result still holds when we consider
a spanning tree where all the points in the top row (V = L2)
are connected with all the points in the bottom one (V = 0).

D. q = 1.5, 2.5, and 3.5

To obtain intermediary values of the reduced conductivity
exponent for noninteger values of q we have computed
the conductivity of Coniglio-Klein clusters for q = 1.5, 2.5,
and 3.5. We generated the bond configuration using the
Chayes-Machta algorithm [46], which is a generalization of
the Swendson-Wang algorithm. The simulations were done
for q = 1.5 and 2.5 for lattice sizes between 16 and 1024,
and for q = 3.5 for lattice sizes between 16 and 512. Results
are averages over 105 samples for the smallest system sizes to
103 for the largest ones. For q = 2.5 and 3.5, respectively, we
rejected the first 3L and 16L sweeps to thermalize and 26 and
358 configurations between two consecutive measurements
[39]. The estimates of the reduced conductivity exponent
obtained in Fig. 9 are Dσ = 0.918 ± 0.013, Dσ = 0.826 ±
0.015, and Dσ = 0.734 ± 0.020 for q = 1.5, q = 2.5, and
q = 3.5, respectively.

V. DISCUSSION

In Table II, we summarize the results for the conductivity
exponents for q � 4. For q > 4, the magnetic transition is
first order in nature and the backbone (as the largest cluster) is
compact [38]. Therefore, asymptotically, no dependence of the
conductivity on the distance between two points is expected.
We have confirmed this behavior with simulations for q = 5
(not shown).

Our estimates of the reduced conductivity are monoton-
ically decreasing with q. This is in line with the results
for the dimension of the backbone, which increases with q

and approaches the spatial dimension for q = 4 [38]. As the
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TABLE II. Values of the conjectured conductivity exponent
t/ν(g) and the measured reduced conductivity exponent t/ν for
q = 0,1,1.5,2,2.5,3,3.5,4 and the corresponding Coulomb gas
parameter g.

q g t

ν
(g) t

ν

0 2 5
4

5
4

1 8
3 0.975 0.986 ± 0.012

1.5 2.8391 0.921 0.918 ± 0.013
2 3 0.875 0.877 ± 0.014
2.5 3.1609 0.832 0.826 ± 0.015
3 10

3 0.790 0.785 ± 0.015
3.5 3.5399 0.743 0.734 ± 0.020
4 4 0.650 0.658 ± 0.030

dimension of the backbone increases, it becomes a dense object
and the conductivity exponent vanishes, being zero for q > 4.

The conductivity C as a function of the distance r shows
a bump in the reduced conductivity C(r)/r−Dσ around
r = 16 for q between 1 and 4. This behavior was also
previously observed for q = 1 on the square lattice, with
the star-triangle transformation, and is not due to statistical
fluctuations [27–29].

We have only considered integer values of q in the range
between 0 and 4. However, the Potts model can be defined
for any real value of q [12]. From the obtained conductivity
exponents we can conjecture a dependence on the value of q.
The relation between the q-state Potts model and the Coulomb
gas theory [47,48] has been very useful to develop exact
relations for the red bond and hull fractal dimensions [21,49],
and also to conjecture the shortest path fractal dimension [50].
The Coulomb gas coupling g is related with q by

q = 2 + 2 cos

(
gπ

2

)
, (9)

with 2 � g � 4. From the obtained results we propose the
following conjecture for the dependence of the conductivity
exponent on g:

t

ν
(g) = 9

5g
+ 1

2
− 3

40
g. (10)

0.6

0.8

1.0

1.2

2.0 2.5 3.0 3.5 4.0

t/
ν

g

FIG. 10. (Color online) Reduced conductivity exponent t/ν as a
function of the Coulomb gas parameter g (data points), and conjecture
(solid line).

This conjecture fits, within the error bars, the data points
in Fig. 10 and displays a continuous behavior in the limit
q → 0, where it converges to the value 5/4. It was obtained
by a weighted least-squares fit, under the assumption that
the reduced conductivity exponent takes the form t

ν
(g) =

ag + b + c/g, with a, b, and c rational, and that it converges
towards 5/4 for q → 0. The values of the constants a, b, and
c have been obtained by fitting the equation to our results.

VI. CONCLUSION

We implemented two independent methods to compute the
reduced conductivity exponent t/ν for different values of q

in the q-state Potts model. In the first method we compute
directly the conductivity on Coniglio-Klein clusters, whereas
in the second one we compute exactly the diffusion of a random
walk on the backbone of these clusters. The results obtained
with both methods are in agreement with each other. From the
data of the values of the reduced conductivity exponent t/ν for
integer values of q, and for the intermediary values q = 1.5,
2.5, and 3.5, we propose a conjecture which interpolates from
our results the conductivity for any real value of q between
0 and 4.
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