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We discuss the decoding performance of error-correcting codes based on a model in which quantum fluctuations
are introduced by means of a transverse field. The essential issue in this paper is whether quantum fluctuations
improve the decoding quality compared with the conventional estimation based on thermal fluctuations, which is
called finite-temperature decoding. We found that an estimation incorporating quantum fluctuations approaches
the optimal performance of finite-temperature decoding. The results are illustrated by numerically solving
saddle-point equations and performing a Monte Carlo simulation. We also evaluated the upper bound of the
overlap between the original sequence and the decoded sequence derived from the equations of state for the order
parameters, which is a measure of the decoding performance.
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I. INTRODUCTION

Problems in information processing have recently been
investigated in terms of a mean-field spin glass model. For
example, problems dealing with image restoration, error-
correcting codes, neural networks, and optimization can be
represented as a mean-field spin glass model, and their infor-
mation processing quality levels have been investigated from
a statistical mechanical viewpoint [1–4]. In particular, Sourlas
has represented error-correcting codes in terms of a mean-field
spin glass model that can be considered as a generalization of
the Mattis model [2,5]. Rujan suggested that the decoding
procedure of the model can be modified so it operates not
in the ground state but in a state at a finite temperature
[6]. The decoding of other error-correcting codes, e.g., the
low-density parity check code and the convolutional code,
has also been investigated by means of statistical-mechanical
analysis [7,8].

Quantum spin glass models have been investigated since
the 1980s in order to clarify the microscopic properties of
spin glasses. A well-known problem is how the transverse
field, which induces the tunneling effect between states,
affects the quantum phase transition [9]. The properties of the
Sherrington-Kirkpatrick model with a transverse field have
been investigated by using the mean-field approximation and
the replica method, and it has been found that there is a phase
transition from the spin glass phase to the paramagnetic phase
depending on the strength of the transverse field [10,11]. The
replica method has also been used to investigate the random
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energy model [12]. Moreover, the replica symmetry breaking
solution when quantum effects are taken into account has been
researched [13,14].

Although there have been numerous studies on information
processing using classical spin glasses as a model and on
the properties of quantum spin glasses themselves, the effect
of introducing a transverse field, i.e., quantum fluctuation,
into an information processing model has not been thoroughly
investigated. We expected that quantum fluctuations would
induce some changes in decoding quality compared with
classical decoding, as inspired by the annealing method. The
quantum annealing is an algorithm for finding the global
minimum of an objective function for a process analogous
to simulated annealing by using quantum fluctuation, and
that is known to be a useful method in the optimization
problems [15,16]. Inoue has investigated the topic of image
restoration by using quantum fluctuations, but that problem
corresponds not to a spin glass model, which has random
interactions among spins, but to a random field model [17].

In this paper, we focus on the SOURLAS code, an error-
correcting code that can be described in terms of a mean-field
spin glass model. We investigate the decoding performance of
the SOURLAS code on the basis of a model in which a quantum
fluctuation is introduced by means of the transverse field.

This paper is organized as follows. In Sec. II, we present
a Bayes formulation of the SOURLAS code. In Sec. III, we
pose an open question and state the goal of this paper. In
Sec. IV, we analyze the model. In Sec. V, we present analytical
and simulation results and evaluate the upper bound of the
overlap, which is a measure of the decoding performance of the
SOURLAS code. Section VI contains a summary and discussion
of the results.
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II. ERROR-CORRECTING CODES AND QUANTUM
SPIN GLASS MODEL

First, we describe the error-correcting code model and the
maximum a posteriori probability (MAP) and the maximizer
of the posterior marginals (MPM) estimates. Next, we extend
the model to one with a quantum transverse field, i.e., with
quantum fluctuations.

The idea of error-correcting codes is to add redundancy to
messages so that receivers can recover the original message
from noisy output. Suppose that the original message is repre-
sented by a configuration of Ising spins ξ = {ξ1, . . . ,ξN } (ξi =
±1,i = 1, . . . ,N ) that has been generated according to a
probability distribution function P (ξ ). We can formulate the
SOURLAS code as a mean-field model with p-body spin inter-
actions [2]. We assume that the sender transmits all possible
combinations NCp of the products of p-components in an
N -dimensional vector ξ with components ξi1, . . . ,ξip through
a Gaussian channel with mean J0p!ξi1, . . . ,ξip/Np−1 and vari-
ance J 2p!/2Np−1. That is, the output probability is given by

P (Ji1,...,ip|ξi1, . . . ,ξip)

=
(

Np−1

J 2πp!

) 1
2

exp

{
− Np−1

J 2p!

(
Ji1,...,ip

−J0p!ξi1, . . . ,ξip

Np−1

)2}
, (1)

where J and J0 are independent of N and p, and
J0/J denotes the signal-to-noise ratio. The expression
P (Ji1,...,ip|ξi1, . . . ,ξip) denotes the conditional probability of
the signal Ji1,...,ip given the encoded message ξi1, . . . ,ξip.
Furthermore, we assume that each bit ξi in the original
message ξ is generated independently (the so-called
memoryless channel), i.e.,

P ( J |ξ ) =
N∏

i=1

P (Ji1,...,ip|ξi1, . . . ,ξip), (2)

and the prior probability of the message is uniform, i.e.,
P (ξ ) = 2N .

We can express the posterior probability P (σ |J) in terms
of Eqs. (1) and (2) by using the Bayes formula,

P (σ |J) = P ( J |σ )P (σ )

TrσP ( J |σ )P (σ )
(3)

∝ exp

(
β
∑

i1<···<ip

Ji1,...,ipσi1, . . . ,σip

)
, (4)

where β (≡1/T ) is the controlled parameter in the signal
retrieval algorithm. The optimal retrieval can be achieved if
a β corresponding to the noise level is chosen as 2J0/J

2 in the
Gaussian channel (1) [25].

We shall write the dynamical variables used for decoding
as σ = {σ1, . . . ,σN } (σi = ±1,i = 1, . . . ,N). Equation (4)
represents the probability distribution of the inferred spin
configuration σ given the output J . We can regard the right-
hand side of Eq. (4) as being a Gibbs-Boltzmann distribution,
and hence we shall call β the inverse temperature.

We might choose the spin configuration that maximizes
Eq. (4) as the decoded sequence. This is the MAP estimate
corresponding to finding the ground state of the following

Hamiltonian:
H = −

∑
i1<···<ip

Ji1,...,ipσi1, . . . ,σip. (5)

The sum in this Hamiltonian runs over all possible combina-
tions of p spins out of N spins. Therefore, we can see that the
problem of the error-correcting code model is closely related to
a ground-state search in the mean-field models of spin glasses,
e.g., the SK model (p = 2) and the random energy model
(p → ∞) [18,19].

In the MPM estimate framework, we focus on a single bit
σi and consider the posterior marginal probability:

P (σi |J) =
Trσ (�=σi ) exp

(
β
∑

i1<···<ip
Ji1,...,ipσi1, . . . ,σip

)
Trσ exp

(
β
∑

i1<···<ip Ji1,...,ipσi1, . . . ,σip

) .

(6)

Let us compare P (σi = +1|J) and P (σi = −1|J). The
inferred spin in terms of the MPM estimate is given by
ξ̂i = sgn[P (σi = +1|J) − P (σi = −1|J)]

= sgn
(
Tr
σi

σiP (σi |J)
) = sgn

(
Trσσie

−βH

Trσ e−βH

)
≡ sgn〈σi〉β,

(7)

where we have defined the brackets 〈·〉β as

〈·〉β = Trσ (·)e−βH

Trσ e−βH
. (8)

Equation (7) means calculating the local magnetization at a
finite temperature T (≡1/β). Hence, the MPM estimate is
also called finite-temperature decoding.

Now, let us introduce the overlap M , defined as

Mclassic(β) = Tr
ξ

∫ ∏
i1<···<ip

dJi1,...,ipP ( J |ξ )P (ξ )ξisgn〈σi〉β

(9)

≡ [ξisgn〈σi〉β], (10)

which is the quality of the retrieved signal. Henceforth, we
use the bracket [·] for the data average over the distribution
P ( J |ξ )P (ξ ) as in Eq. (9). The larger the overlap is, the better
the decoding performance will be. It is known that the MPM
estimate is better than the MAP estimate, i.e., ground-state
decoding, if we choose the temperature appropriately [6,20].
This temperature is well known as the Nishimori temperature,
which is β = 2J0/J

2 ≡ βp for Eqs. (1) and (4).
We can extend the above formulation to the quantum case

by adding a quantum transverse field term leading to the tunnel
effect,

Ĥ1 ≡ −�
∑

i

σ̂ x
i , (11)

to the Hamiltonian (5) as a quantum fluctuation. The expres-
sion σ̂ x

i denotes the x component of the Pauli matrix, and �

controls the quantum fluctuation strength. Thus, a quantum
Hamiltonian can be obtained by adding a transverse field (11)
to the classical Hamiltonian (5):

Ĥ = −
∑

i1<···<ip

Ji1,...,ipσ̂ z
i1, . . . ,σ̂

z
ip − �

∑
i

σ̂ x
i ≡ Ĥ0 + Ĥ1,

(12)
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where σ̂ z
i is the z component of the Pauli matrix. In the case of

� = 0, the system corresponds to a classical system without
any quantum effects. To understand the effect of this quantum
fluctuation [Eq. (11)], let us consider the case of a single-spin
system. Denoting the eigenstates of σ̂ z as |+〉 = (1,0)t and
|−〉 = (0,1)t , the x component of the Pauli matrix becomes
σ̂ x = |+〉 〈−| + |−〉 〈+|. Thus, we find that σ̂ x |±〉 = |∓〉, that
is, the up-state described by |+〉 transits to the down-state
described by |−〉 by means of the tunnel effect.

The overlap in the case of a quantum system (12) is defined
as

M(β,�) = Tr
ξ

∫ ∏
i1<···<ip

dJi1,...,ipP ( J |ξ )P (ξ )ξisgn
〈
σ̂ z

i

〉
β,�

= [
ξisgn

〈
σ̂ z

i

〉
β,�

]
. (13)

The inferred spin in terms of the MPM estimate including a
quantum fluctuation corresponding to Eq. (7) is written as a
density matrix: ρ̂ ≡ e−βĤ (σ | J )/Tre−βĤ (σ | J ) [21]:

ξ̂i = sgn
[
Tr
(
σ̂ z

i ρ̂
)]

. (14)

III. OPEN QUESTION

Figure 1 sketches the solution presented in this paper. First,
we describe a system without quantum fluctuations. We use
a MAP estimate to infer the ground state corresponding to
the state with T = 0. After that, we consider the case of
finite-temperature decoding in a model without a quantum
fluctuation. The corresponding MPM estimate clearly gives a
different result from the MAP estimate, and it results in optimal
decoding at the Nishimori temperature [6,20]. This means the
overlap M is at a maximum at the optimal temperature (see
the left panel in Fig. 1). Thus, in the case of the SOURLAS code,
it is important to control the temperature of decoding. We call
such an estimate without considering quantum fluctuations a
thermal MPM estimate.

However, it is still unclear how quantum fluctuations
affect the decoding performance of error-correcting codes
represented as mean-field spin glass models. It is well known
that the annealing method can use quantum fluctuations to
find the lowest energy state, i.e., the ground state, instead
of thermal ones [15,22]. This annealing method is called
quantum annealing (QA), in contrast to simulated annealing
(SA) using thermal fluctuations. In this context, quantum
fluctuations behave similarly to thermal fluctuations. Here,
we shall focus on the decoding performance in the �/J -T/J

space in Fig. 1 and investigate whether a maximum overlap
exists and whether it is more maximal than the classical one

FIG. 1. Sketch of this paper. Quantum annealing (QA) and
simulated annealing (SA) are methods for finding the ground state.

given by the thermal MPM estimate. That is, the problem is to
clarify the decoding performance of the MPM estimate based
on quantum fluctuations (the right panel in Fig. 1). The key
point of the MPM estimate incorporating quantum fluctuations
is making an appropriate ensemble according to the noise of
a Gaussian channel by using not only thermal fluctuation but
also quantum fluctuation.

To address this, we find a way to express the overlap as a
function of the macroscopic parameters by using the standard
replica and saddle-point methods. The results obtained by
these analytical approaches and by numerical experiments
using the Monte Carlo method are then presented, and an
inequality is derived to establish an upper bound of the overlap
for the quantum fluctuations.

IV. ANALYSIS OF THE MEAN-FIELD MODEL

To explicitly calculate the decoding performance of the
error-correcting code model with quantum fluctuations, we
use the standard replica method to express the overlap equation
[Eq. (13)] from the saddle-point equations that determine the
equilibrium state.

First, we apply a Suzuki-Trotter (ST) decomposition [23],

exp(K̂ + Û ) = lim
P→∞

(eK̂/P eÛ/P )P , (15)

to the partition function Z = Tr exp(−βĤ ) with Û =
−∑ Ji1,...,ipσ̂ z

i1, . . . ,σ̂
z
ip, K̂ = −�

∑
i σ̂

x
i in order to cast the

problem as an equivalent classical spin system. Accordingly,
Z and the effective Hamiltonian Heff are given by

Z = lim
P→∞

(
1

2
sinh

2β�

P

) NP
2

Trσ exp(−Heff), (16)

Heff = β

P

P∑
t=1

∑
i1<···<ip

Ji1,...,ipσi1(t), . . . ,σip(t)

+ 1

2
log

(
coth

β�

P

) N∑
i=1

P∑
t=1

σi(t)σi(t + 1), (17)

where P is called the Trotter number and t is the Trotter
index. We can see that the dimensionality of the corresponding
classical system after application of the ST formula increases
by 1. Using the well-known replica method [18],

[log Z] = lim
n→0

[Zn] − 1

n
, (18)

we calculate the free energy density [log Z] in terms of
[Zn]. The subsequent application of a gauge transformation
Ji1,...,ip → Ji1,...,ipξi1, . . . ,ξip and σi → σiξi in [Zn] removes
ξ from the integrand of the SOURLAS code model. Thus, the
problem turns out to be equivalent to the case of ξi = 1(∀ i),
i.e., the ferromagnetic gauge. Hence, in the thermodynamic
limit N → ∞, we can obtain the saddle-point equations with
respect to the order parameters [21,24]:

[〈
σ

μ

i (t)
〉
β,�

] ≡ m =
∫

Dw

∫
Dz

� sinh 	


	
, (19)

[〈
σ

μ

i (t)σ ν
i (t ′)

〉
β,�

] ≡ q =
∫

Dw

(∫
Dz

� sinh 	


	

)2

, (20)
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[〈
σ

μ

i (t)σμ

i (t ′)
〉
β,�

]
≡ χ =

∫
Dw




∫
Dz

(
β2�2 sinh 	

	3
+ �2 cosh 	

	2

)
,

(21)

	 =
√

�2 + β2�2, (22)

φ ≡ �

β
= pJ0m

p−1 + wJ

√
pqp−1

2

+ zJ

√
p(χp−1 − qp−1)

2
, (23)


 ≡
∫

Dz cosh 	. (24)

Here, μ and ν mean the replica indices and
∫

Du(·) =∫∞
−∞ du(·)e− u2

2 /
√

2π . Note that the above equations of state
for the order parameters (19)–(24) are obtained under replica
symmetry and the static approximation [25].

The final goal in this section is to derive the expression
of the overlap M . The overlap in the quantum case can be
obtained in a similar way as is done in the classical system [26].
The physical meanings of m and q are the magnetization
and the spin glass order parameter, respectively, and each
parameter can be denoted as m = [〈σi〉β,�], q = [〈σi〉2

β,�].
By comparing these expressions and Eqs. (19) and (20), we
see that

∫
Dz� sinh 	


	
is closely related to 〈σi〉β,� . We can

confirm this by adding h
∑

i σ
μ

i (t)σ ν
i (t ′) to [Zn]. The detailed

calculations are given in Appendix A. The final form of the
overlap M(β,�) is

M(β,�) =
∫

Dw sgn

(∫
Dz

� sinh 	


	

)
. (25)

In the case of a classical system, i.e., � = 0, the overlap
Mclassic can be derived from Eq. (25) for

∫
Dz� sinh 	


	
=

tanh β(wJ
√

pqp−1

2 +pJ0m
p−1) as

Mclassic(β) =
∫

Dw sgn

(
wJ

√
pqp−1

2
+ pJ0m

p−1

)
. (26)

This form is the same one derived from the previous work [20].

V. RESULTS

Below, we numerically solve Eqs. (19)–(25) and discuss
the performance of decoding based on a model with quantum
fluctuations. We also show the results of a quantum Monte
Carlo simulation and calculate an upper bound of the overlap.

A. Stability of error correction

As a preliminary step to calculating the decoding perfor-
mance, we shall determine whether decoding is possible by
solving Eqs. (19)–(24). As we increase the strength of the
transverse field �/J , i.e., the quantum fluctuation, we observe
a first-order transition at a finite �/J for p = 3, T/J = 0.1,
and J0/J = 1.0 [see Fig. 2(a)]. In the ferromagnetic phase
(ferro: m > 0, q > 0, χ > 0), the overlap M has a finite value,
which means that error correction is possible. On the other

FIG. 2. (a) Dependence of the order parameters m, q, and χ on
the level of quantum fluctuation �/J for p = 3, T/J = 0.1, and
J0/J = 1.0. (b)–(d) Phase diagram for each parameter with p = 3.

hand, the paramagnetic phase (para: m = 0, q = 0, χ > 0) is
a random guess phase for which error correction is impossible.

The phase diagrams of the model are shown in Figs. 2(b)–
2(d). As the signal-to-noise (SN) ratio J0/J increases, the
ferromagnetic phase becomes larger. We can see that the
ferromagnetic phase exists in the low-temperature region
T ∼ 0. Moreover, the ferromagnetic phase disappears, and
then the nonretrieval spin glass phase (spin glass: m = 0,
q > 0, χ > 0) appears in its place as the SN ratio J0/J

decreases. Note that the phase boundary in the low-temperature
limit (T → 0) has not been determined.

B. Decoding performance

Now let us investigate the decoding performance in the
ferromagnetic phase by calculating the overlap M analytically
and in Monte Carlo simulations.

1. Analytical results

First, we numerically solved Eqs. (19)–(25) and plotted
the dependence of the overlap M on T/J for p = 3 and
J0/J = 1.0. Figure 3(a) shows that the optimal amplitude of
temperature T/J at �/J = 0.0 is 0.5, which corresponds to
the Nishimori temperature in the case of J0/J = 1.0. The
overlap for �/J = 0.3 is at a maximum for a finite T/J

smaller than 0.5. The maximum value of M is approximately
0.983, which is equal to the case of � = 0.0. Thus, the MPM
estimate with a quantum fluctuation seems to achieve the same
optimal decoding performance as the thermal MPM estimate.
Next, let us consider a large quantum fluctuation, �/J =
0.8. In this case, the overlap M decreases monotonically
as the temperature T/J increases. In the low-temperature
region, however, we find that the overlap due to the quantum
fluctuation is larger than in the classical case. This means that
the quantum fluctuations do make the decoding performance
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FIG. 3. (a) Dependence of the overlap M on temperature T/J

for p = 3 and J0/J = 1.0, where �/J is fixed to 0.0, 0.3, and 0.8.
(b) Dependence of M on the level of quantum fluctuation �/J for
p = 3 and J0/J = 1.0, where T/J is fixed to 0.1, 0.5, and 0.8. In
these cases, the Nishimori temperature corresponds to 0.5. These
results correspond to lines (a) and (b) in Fig. 1, respectively.

better than a classical estimate based on the thermal fluctuation
when the temperature is lower than the Nishimori temperature.

Figure 3(b) shows the dependence of the overlap M on �/J .
At low temperature, T/J = 0.1, there is a quantum fluctuation
that maximizes the overlap at the finite amplitude of �/J . The
maximum overlap is approximately 0.983, which is equal to
the value in the classical case. We see that the overlap in
the case of T/J = 0.5, which corresponds to the Nishimori
temperature, reaches a maximum at � = 0.0. The overlap has
a lower value in the case of T/J = 0.8.

Figure 4 shows the overlap for p = 2 and 4. These overlaps
are qualitatively similar to those in Fig. 3. We also find that the
overlap is large if the number of spin interactions p is large.
In the case of the random energy model, p → ∞, we can use
Eqs. (19)–(24) to prove that M → 1 for χ ∼ q ∼ 1,m ∼ 1
[24].

Figure 5 shows the phase diagram for the overlap in T/J -
�/J space. The gradation indicates the amount of the overlap,
and the solid line represents the maximum overlap 0.983.
These results imply that the system’s decoding performance
can be made optimal by using quantum fluctuations.

2. Quantum Monte Carlo results

A d-dimensional quantum system can be transformed into
a (d + 1)-dimensional classical system by using the Trotter
decomposition, as mentioned in Sec. IV. The local field at site
x and the Trotter axis k can be written as

hx(k) = − β

2M

∑
i �=x

Jixσi(k) − B

2
[σx(k − 1) + σx(k + 1)].

(27)

FIG. 4. Dependence of the overlap M on the level of quantum
fluctuation �/J for p = 2 (a) and p = 4 (b) for J0/J = 1.0.

FIG. 5. Phase diagram for p = 3 and J0/J = 1.0. The gradation
represents the amount of the overlap. The solid line represents the
maximal value of the overlap, i.e., M ∼ 0.983.

In the METROPOLIS algorithm, the spin system is updated by the
transition probability, prob[σx(k) = −σx(k)] = exp(−�Heff)
with �Heff = 2hx(k)σx(k) [27]. Accordingly, we can calculate
the expectation 〈σi〉 and the overlap M under the ferromagnetic
gauge.

Figures 6(a) and 6(b) plot the overlap M as a function
of T/J in the cases of the classical system and �/J = 0.1
for p = 2, N = 500, and P = 20. We find that the overlap
decreases in an overall sense. Figure 6(b) is a magnified view of
Fig. 6(a), and the solid horizontal line is the maximum overlap
obtained from the analysis. Here, we can see that each overlap
is nonmonotonic and is a maximum at a finite temperature
T/J . The decoding performance in the classical case is
optimal at T/J ∼ 0.5, which corresponds to the Nishimori

FIG. 6. (a) Dependence of overlap M on temperature T/J for
p = 2 and J0/J = 1.0. (b) Magnified view of (a). (c) Dependence
of overlap M on quantum fluctuation �/J for p = 2 and J0/J =
1.0. (d) Magnified view of (c). In (b) and (d), the horizontal line is
the maximum value, 0.944, obtained by solving Eqs. (19)–(25) [see
Fig. 4(a)]. The error bars in each figure were calculated by averaging
over ten independent runs.
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temperature. On the other hand, the optimal temperature shifts
to the low-temperature region in the case of �/J = 0.1, but the
maximum overlap, about 0.944, does not change. Figures 6(c)
and 6(d) show the overlap M as a function of quantum
fluctuation �/J . The overlap reaches a maximum (0.944)
at finite �/J . These findings are qualitatively similar to the
analytical results presented in the previous subsection.

3. Upper bound of the overlap

By theoretically estimating the upper bound of the overlap,
we can show that the decoding performance in the presence of
quantum fluctuations reaches the optimal performance for the
classical system, � = 0.

To show this, we rewrite the overlap in the classical case
defined by (9) as follows:

Mclassic(β) = Tr
ξ

∫ ∏
i1<···<ip

dJi1,...,ip

C
1/2
Np

2N
ef (Ji1,...,ip) exp

⎛
⎝βp

∑
i1<···<ip

Ji1,...,ipξi1, . . . ,ξip

⎞
⎠ ξisgn

(
Trσie

−βH

Tr e−βH

)

�
∫ ∏

i1<···<ip

dJi1,...,ip

C
1/2
Np

2N
ef (Ji1,...,ip)

∥∥∥∥∥∥Tr
ξ
ξi exp

⎛
⎝βp

∑
i1<···<ip

Ji1,...,ipξi1, . . . ,ξip

⎞
⎠
∥∥∥∥∥∥
∥∥∥∥sgn

(
Trσie

−βĤ

Tr e−βĤ

)∥∥∥∥
�
∫ ∏

i1<···<ip

dJi1,...,ip

C
1/2
Np

2N
ef (Ji1,...,ip)

∥∥∥∥∥∥Tr
ξ
ξi exp

⎛
⎝βp

∑
i1<···<ip

Ji1,...,ipξi1, . . . ,ξip

⎞
⎠
∥∥∥∥∥∥ ≡ Mclassic

max . (28)

Here, CNp = Np−1/J 2πp!, f (Ji1,...,ip) = −Np−1J 2p!
∑

J 2
i1,...,ip − J0p!NCp/J 2Np−1 for Eq. (1), and Mclassic

max means the upper
bound in the classical case. For the quantum system, the overlap (13) can be rewritten as follows:

M(β,�) = Tr
ξ

∫ ∏
i1<···<ip

dJi1,...,ip

C
1/2
Np

2N
ef (Ji1,...,ip) exp

⎛
⎝βp

∑
i1<···<ip

Ji1,...,ipξi1, . . . ,ξip

⎞
⎠ ξisgn

(
Trσ̂ z

i e−βĤ

Tr e−βĤ

)

�
∫ ∏

i1<···<ip

dJi1,...,ip

C
1/2
Np

2N
ef (Ji1,...,ip)

∥∥∥∥∥∥Tr
ξ
ξi exp

⎛
⎝βp

∑
i1<···<ip

Ji1,...,ipξi1, . . . ,ξip

⎞
⎠
∥∥∥∥∥∥
∥∥∥∥sgn

(
Trσ̂ z

i e−βĤ

Tr e−βĤ

)∥∥∥∥
�
∫ ∏

i1<···<ip

dJi1,...,ip

C
1/2
Np

2N
ef (Ji1,...,ip)

∥∥∥∥∥∥Tr
ξ
ξi exp

⎛
⎝βp

∑
i1<···<ip

Ji1,...,ipξi1, . . . ,ξip

⎞
⎠
∥∥∥∥∥∥ = Mclassic

max . (29)

Thus, the optimal decoding performance in the presence of quantum fluctuations is the same as in the case of thermal fluctuation.
Here, we can see that the maximum overlap of the classical system corresponds to the overlap at the Nishimori temperature
βp = 2J0/J

2 for Eq. (28):

Mclassic
max =

∫ ∏
i1<···<ip

dJi1,...,ip

C
1/2
Np

2N
ef (Ji1,...,ip)

[
Trξξi exp

(
βp

∑
i1<···<ip Ji1,...,ipξi1, . . . ,ξip

)]2∥∥Trξξi exp
(
βp

∑
i1<···<ip Ji1,...,ipξi1, . . . ,ξip

)∥∥
= Tr

ξ

∫ ∏
i1<···<ip

dJi1,...,ip

C
1/2
Np

2N
exp

⎧⎨
⎩− Np−1

J 2Np−1

∑
i1<···<ip

(
Ji1,...,ip − J0p!

Np−1
ξi1, . . . ,ξi1

)2
⎫⎬
⎭ ξi

× Trξξi exp
(
βp

∑
i1<···<ip Ji1,...,ipξi1, . . . ,ξip

)
∥∥Trξξi exp

(
βp

∑
i1<···<ip Ji1,...,ipξi1, . . . ,ξip

)∥∥
= Tr

ξ

∫ ∏
i1<···<ip

dJi1,...,ip

C
1/2
Np

2N
exp

⎧⎨
⎩− Np−1

J 2Np−1

∑
i1<···<ip

(
Ji1,...,ip − J0p!

Np−1
ξi1, . . . ,ξi1

)2
⎫⎬
⎭ ξisgn〈ξi〉βp

= M(βp). (30)

The calculations in this section are similar to those presented in previous works [17,20].
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VI. SUMMARY AND DISCUSSION

We discussed decoding the SOURLAS code in terms of a
mean-field spin glass model with p-body interactions and
quantum fluctuations introduced by means of a transverse
field. First, we found that there is a phase transition from a
ferromagnetic phase, which corresponds to an errorless phase,
to a paramagnetic phase, which corresponds to a random
guess phase, by solving the saddle-point equations derived
by statistical mechanics. We also found that a spin glass phase
occurs as the SN ratio decreases. Thus, we must appropriately
control the quantum and thermal fluctuations in order to
retrieve the original message.

Second, we evaluated the decoding performance in the
presence of quantum fluctuations by solving the equation of
the overlap between the original sequence and the decoded
sequence derived from the equations of state for the order
parameters. The MPM estimate incorporating quantum fluctu-
ations seems to have roughly the same optimal performance as
the thermal MPM estimate, i.e., finite-temperature decoding
without quantum fluctuations. Thus, if we choose appropriate
parameters for the quantum and thermal fluctuations, the
decoding performance can be optimized, although it cannot
exceed that of the thermal MPM estimate. A quantum Monte
Carlo simulation with a finite number of spins was also carried
out, and the results support the analysis.

Third, we found an upper bound for the overlap. The
maximum overlap, which is a function of the thermal and
quantum fluctuations, is that of the classical case. This means
that the decoding performance with quantum fluctuations
cannot exceed the classical case, but it can approach the
optimal performance at the Nishimori temperature for the
thermal MPM estimate. The analytical and simulation results
contain this claim. Although the upper bound inequality does
not clearly show that the MPM estimate based on the quantum
fluctuation can achieve the same optimal performance as the
thermal MPM estimate, it is nonetheless significant that the
overlap has a (single) peak resulting in a maximum value at
finite amplitude of the quantum fluctuation, even if we utilize
numerical approaches instead of a mathematically rigorous
argument to show this.

In obtaining our results, we used several approximations,
including the replica symmetric approximation (RS) and the
static approximation (SA). To clarify rigorously the properties
of the error-correcting code described as the spin glass
model, we will need to carefully check the validity of these
approximations. The validity of the RS under SA could be
checked by calculating the Almeida-Thouless (AT) line. The
AT line has been analytically calculated for the SK model;
however, the analysis was done under the SA only [14]. Ray
et al. also attempted to draw the AT line by using Monte
Carlo simulations, and they found that it might be possible to
conclude that there is no replica symmetry breaking due to the
quantum tunneling effects even in the low-temperature regime
[29]. On the other hand, the validity of the SA has been shown
in the case of the random energy model (p → ∞) by using a
large-p expansion. However, the SA may be invalid for the case
of a finite p [24]. Hence, the limitation of the RS and SA is still
an open question in the research field of spin glasses. Moreover,
although we focused on the region of finite thermal and
quantum fluctuation in this paper, the decoding performance of
a pure quantum system that has no thermal fluctuation remains
an open question. An analytical treatment of this question
will require one to derive the equations of state for the order
parameters and the overlap in the low-temperature limit.
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APPENDIX: DERIVATION OF THE OVERLAP

Here, we derive the expression for the overlap M (25) in a
similar way to the classical case [26]. Adding h

∑
i σ

μ

i (t)σ ν
i (t ′)

to the partition function [Zn], we obtain

[Zn] = 1

2N
Tr
ξ

∫ ∏
ii<···<ip

dJi1,...,ip

(
Np−1

πJ 2p!

) 1
2

exp

{
−Np−1

J 2p!

∑
i1<···<ip

(
Ji1,...,ip − J0p!

Np−1
ξi1, . . . ,ξip

)2
}

× Tr
σ

exp

(
β

P

∑
μ

∑
ii<···<ip

∑
t

Ji1,...,ipσ
μ

i1
(t), . . . ,σμ

ip
(t) + B

∑
μ

∑
i

∑
t

σ
μ

i (t)σμ

i (t + 1) + h
∑

i

σ
μ

i (t)σ ν
i (t ′)

)
, (A1)

where B = log(coth β�

P
)/2, and σ = (σ 1, . . . ,σ n),σ k = [σ k

1 (t), . . . ,σ k
N (t)], t = 1, . . . ,P from Eqs. (1) and (17). The expression

μ and ν represent the replica indices and t represents the Trotter index. Applying a gauge transformation

σi → σiξi, Ji1,...,ip → Ji1,...,ip ξi1, . . . ,ξip (A2)

to Eq. (A1) removes ξ from the integrand. The problem is equivalent to the case of ξi = 1 (∀i), i.e., the ferromagnetic gauge.
Thus, we can carry out the Gaussian integration in Eq. (A1), in which the form of [Zn] is written as
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[Zn] = Tr
σ

exp

{
B
∑
i,t,μ

σ
μ

i (t)σμ

i (t + 1) + h
∑

i

σ
μ

i (t)σ ν
i (t ′) + β2J 2N

4P 2

∑
t,t ′

∑
μ,ν

(
1

N

∑
i

σ
μ

i (t)σ ν
i (t ′)

)p

+ J0Nβ

P

∑
t,μ

(
1

N

∑
i

σ
μ

i (t)

)p}
. (A3)

Let us rewrite (A3) in terms of new variables,

mμ(t) = 1

N

∑
i

σ
μ

i (t), (A4)

Qμν(t,t ′) = 1

N

∑
i

σ
μ

i (t)σ ν
i (t ′), (A5)

Qμμ(t,t ′) = 1

N

∑
i

σ
μ

i (t)σμ

i (t ′). (A6)

Now we can evaluate the integral in the thermodynamic limit N → ∞, and we rewrite the partition function as

[Zn] � Fn(mμ(t),m̂μ(t),Qμμ(t),Q̂μμ(t),Qμν(t),Q̂μν(t)) = exp(−βnNf ), (A7)

−βnf =
∑
t,μ

(
J0β

P
mμ(t)p − 1

P
m̂μ(t)mμ(t)

)
+
∑
t,t ′,μ

(
β2J 2

4P 2
Qμμ(t,t ′)p − 1

P 2
Q̂μμ(t,t ′)Qμμ(t,t ′)

)

+
∑

t,t ′,μ<ν

(
β2J 2

2P 2
Qμν(t,t ′)p − 1

P 2
Q̂μν(t,t ′)Qμν(t,t ′)

)
+ log Tr

σ
eL, (A8)

L = 1

P

∑
t,μ

m̂μ(t)σμ(t) + 1

P 2

∑
t,t ′,μ

Q̂μμ(t,t ′)σμ(t) + 1

P 2

∑
t,t ′,μ<ν

Q̂μν(t,t ′)σμ(t)σ ν(t) + B
∑
t,μ

σμ(t)σμ(t + 1) + hσμ(t)σ ν(t ′),

(A9)

where (·̂) means the Fourier-transformed expressions. The above equations contain an additional field hσμ(t)σ ν(t ′), which is a
simple extension of previous research [24,28].

We differentiate −βnf with respect to h, as follows:

∂(−βnf )

∂h
= Trσσμ(t)σ ν(t ′)eL

Trσ eL
, (A10)

where we see that σμ(t ′)σ ν(t ′) is outside the exponent eL. Our goal is to calculate Eq. (A10) in the limit of n → 0, h → 0 and
to prove the expression (25) in the same sense as in the previous study [26].

The replica symmetry (RS) and static approximation (SA) lead to

∑
μ

∑
t,t ′

σμ(t)σμ(t ′) =
∑

μ

(∑
t

σ μ(t)

)2

, (A11)

∑
μ<ν

∑
t,t ′

σμ(t)σ ν(t ′) = 1

2

⎧⎨
⎩
(∑

μ

∑
t,t ′

σμ(t)

)2

−
∑

μ

(∑
t

σ μ(t)

)2
⎫⎬
⎭ . (A12)

By using the Hubbard-Stratonovich transformation,

exp

(
x2

2

)
=
∫

dz√
2

exp

(
−z2

2
+ xz

)
=
∫

Dz exp(xz),

(
Dz ≡ dz√

2π

)
, (A13)

we can calculate the exponent in Eq. (A8) as follows:

eL = exp

(
m̂

P

∑
t,μ

σμ(t) + B
∑
t,μ

σμ(t)σμ(t + 1) + σμ(t ′)σ ν(t)

)

×
∫

Dw exp

(√
q̂

P

∑
t,α

σμ(t)w

)∏
μ

∫
Dz exp

(√
2χ̂ − q̂

P

∑
t

σ μ(t)z

)
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=
∫

Dw
∏

γ �=μ,ν

∫
Dz exp

(
B
∑

t

σ γ (t)σγ (t + 1) + m̂ + √
q̂w + √

2χ̂ − q̂z

P

∑
t

σ γ (t)

)

×
∫

Dz exp

(
B
∑

t,γ=μ,ν

σ γ (t)σγ (t + 1) + m̂ + √
q̂w + √

2χ̂ − q̂z

P

∑
t,γ=μ,ν

σ γ (t) + hσμ(t)σ ν(t ′)

)
. (A14)

Using the Trotter formula, we can take the spin trace in the limit P → ∞ as

Tr
σ

exp

(
B
∑

t

σ μ(t)σμ(t + 1) + �

P

∑
t

σ μ(t)

)
= Tr

σ
exp(�σ̂ x + �σ̂ z)

= 2 cosh
√

�2 + �2

= 2 cosh 	, (A15)

where �/β = m̂ + √
q̂w + √

2χ̂ − q̂z and 	 ≡
√

�2 + β2�2. Therefore, we obtain the final form of Trσ eL and
Trσσμ(t)σ ν(t ′)eL in the limit h → 0, respectively. The results are given by

Tr
σ

eL =
∫

Dw

(∫
Dz cosh 	

)n

, (A16)

Tr
σ

σμ(t)σ ν(t) eL =
∫

Dw

(∫
Dz 2 cosh 	

)n−2

Tr
σμ

∫
Dz σμ(t) exp

(
B
∑

t

σ μ(t)σμ(t + 1) + �

P

∑
t

σ μ(t)

)

× Tr
σ ν

∫
Dz σν(t) exp

(
B
∑

t

σ ν(t)σ ν(t + 1) + �

P

∑
t

σ ν(t)

)
. (A17)

Equation (A16) corresponds to the denominator of Eq. (A10), which is equal to 1 in the limit of n → 0.
To calculate the right-hand side of Eq. (A17), we differentiate both sides of the Trotter formula (A15) with respect to �. Then

we have

Tr
σ

1

P

∑
t

σ μ(t) exp

(
B
∑

t

σ μ(t)σμ(t + 1) + �

P

∑
t

σ μ(t)

)
= 2�√

�2 + �2
sinh

√
�2 + �2. (A18)

Thus, we obtain the following equation:

Tr
σ

σμ(t)σ ν(t) eL =
∫

Dw

(∫
Dz 2 cosh 	

)n
(∫

Dz �
	

2 sinh 	
)2

(∫
Dz 2 cosh 	

)2 →
∫

Dw

(∫
Dz �

	
sinh 	∫

Dz cosh 	

)2

(n → 0) (A19)

for

Tr
σ ν

∫
Dz σν(t) exp

(
B
∑

t

σ ν(t)σ ν(t + 1) + �

P

∑
t

σ ν(t)

)
=
∫

Dz
�

	
2 sinh 	 (A20)

under the RS and SA. We can extend the above methods to the case of an external field with the product of k spins,
h
∑

i σ
μ

i (t)σ ν
i (t ′), . . . . In such a case, we get

[〈σ 〉kβ,�

] =
∫

Dw

(∫
Dz �

	
sinh 	∫

Dz cosh 	

)k

. (A21)

For an arbitrary function F (x) that can be expanded around x = 0, the above equation can be expanded to

[F (〈σ 〉β,�)] =
∫

Dw F

(∫
Dz �

	
sinh 	∫

Dz cosh 	

)
. (A22)

If we take F (x) to be a function sgn(x) [e.g., tanh(ax) with a → ∞], we obtain the overlap M in the form

M(β,�) = [sgn(〈σ 〉β,�)] =
∫

Dw sgn

(∫
Dz �

	
sinh 	∫

Dz cosh 	

)
. (A23)
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