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Two coarse-grained models which capture some universal characteristics of stripe forming systems are studied.
At high temperatures, the structure factors of both models attain their maxima on a circle in reciprocal space,
as a consequence of generic isotropic competing interactions. Although this is known to lead to some universal
properties, we show that the phase diagrams have important differences, which are a consequence of the particular
k dependence of the fluctuation spectrum in each model. The phase diagrams are computed in a mean field
approximation and also after inclusion of small fluctuations, which are shown to modify drastically the mean
field behavior. Observables like the modulation length and magnetization profiles are computed for the whole
temperature range accessible to both models and some important differences in behavior are observed. A stripe
compression modulus is computed, showing an anomalous behavior with temperature as recently reported in
related models. Also, a recently proposed scaling hypothesis for modulated systems is tested and found to be

valid for both models studied.
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I. INTRODUCTION

Stripe forming systems are common in nature. Examples
range from solid state systems, like ultrathin ferromagnetic
films [1,2], stress-induced submonolayer islands on several
substrates [3], and strongly correlated electron systems [4,5],
to soft matter systems like Langmuir monolayers [6], block
copolymers [7,8], colloids, and soft core systems [9-11]. The
origin of stripe structures can be traced back to some strong
universal mechanisms [12]. At the heart of stripe formation
there is usually a competition between different kinds of
interactions which lead to frustration and the formation of
patterns or microphases. Common examples involve compe-
tition between a short range attractive interaction and a long
range repulsion [13].

Although several general properties of stripe forming
systems are well known, as mean field phase diagrams and the
behavior of the order parameter near the transition temperature
[14-16], the behavior at lower temperatures is less explored
and new phenomena continue to appear. An example of this
is the recently reported reentrance in the phase diagram of
frustrated dipolar ferromagnets in an external magnetic field
[17,18].

These facts motivate us to look for a deeper understanding
of the phase behavior of these kinds of systems. In the
present work we address several questions which to a large
extent remain open. We present a complete study of two very
well known models of stripe forming systems, defined at a
coarse-grain level, in which the main characteristic defining
the phase behavior of the systems is the form of the effective
spectrum of fluctuations, i.e., the wave vector dependence of
the bare inverse correlation at low energies. This is known to
determine the existence and type of phase transition, at least at
mean field level. We define a coarse-grained free energy which
is suitable for analyzing the low temperature behavior of rel-
evant quantities, like magnetizations and modulation lengths,
besides allowing the determination of the complete phase
diagrams, in the whole temperature range. We show results
from mean field approximation and also when fluctuations are
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taken into account. An efficient numerical implementation of
the solutions allows us to compute several quantities with high
accuracy.

The two models studied here are usually considered in the
literature as yielding essentially the same physics. Instead,
we show that besides obvious common characteristics, both
models have very different phase diagrams and very different
behaviors of important quantities, like the temperature de-
pendence of modulation length. By introducing fluctuations
to the mean field results we show that the nature of the
transitions changes and the behavior of key quantities like
magnetizations are drastically affected by fluctuations. An
important characteristic of stripe forming systems with long
range interactions is the temperature dependence of the
modulation length and of the domain wall widths. We compute
the T dependence of the modulation length in the whole T
range, verify the well known square dependence near the
transition, and show that our analytic results compare very well
with recent experimental data [3] down to low temperatures.
We also introduce a measure of the width of domain walls and
compare the T dependence of the width relative the behavior
near the transitions, where a single mode approximation
usually works fine. Finally, motivated by recent work on a
scaling hypotesis for modulated systems [19] we compute a
response function, the stripe compressibility, and show that
it presents an anomalous behavior at low temperatures, in
agreement with scaling predictions of systems with power
law competing interactions. Interestingly, the general scaling
behavior seems to work well also for a model which does
not correspond to a system with long range interactions, our
model 2, defined below. This points to a wider applicability of
the proposed scaling hypothesis for stripe forming systems.

The paper is organized as follows: in Sec. II we introduce
the coarse-grain free energy in terms of a generic spectrum
of fluctuations. We define the equations of state at the mean
field level and when fluctuations are included and show how
to solve them in an efficient way. In Sec. III we introduce the
two particular models studied, and present the main results on
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the phase diagrams and temperature dependence of several
quantities. In Sec. IV we present the results of the stripe
response function for both models. Finally, the conclusions
of our work are discussed in Sec. V.

II. MEAN FIELD APPROACH INCLUDING
FLUCTUATIONS

We consider a generic model in two spatial dimensions
defined by the coarse-grained free energy:

Hp] = 4?3 (Ve)? +
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Here, a represents the lattice spacing, B = 1/kgT is the
inverse temperature, y and § are phenomenological constants,
and ¢ is the saturation value of the order parameter. The
first term favors homogeneous configurations of the order
parameter ¢ and the second term is intended to represent
a competing force, represented by the kernel J(x). These
two terms can be considered the continuum limit of more
microscopic competing interactions, as e.g. exchange and
dipolar interactions in thin magnetic films [15], hydrophobic
and hydrophilic components in microemulsions or block
copolymers [16], or charge separation due to long range
Coulomb forces in low dimensional electron systems [5]. The
third term represents the mean field entropy. This effective
Hamiltonian can be formally obtained, e.g., by a Hubbard-
Stratonovich transformation [20] plus a coarse-grain process
from an Ising model with competing short and long range
interactions (represented by the nonlocal term). A more
common approach assumes an expansion of the entropy term
for small ¢, which leads to the well known double well
potential [15,20]. We will consider instead the full form given
by (1), which allows us to compute the phase diagrams down
to low temperatures.

Writing the quadratic part of (1) in reciprocal space and
normalizing the order parameter field to its saturation value
yields

Hlgp] = ¢’° /dzkA(k)qﬁkq& +2ﬁ /dzx{ 1+ ()]
X ln[l + X))+ [1 — p(X)]In[1 — ¢(X)] — 21In2},
)

where the spectrum of fluctuations is given by

AR = K>+ = 1. 3)
25

We consider systems in which the fluctuation spectrum has
a single isotropic minimum at a nonzero wave vector ky. If
A(kg) < 0 the system will develop modulated structures. With
some additional transformations it is possible to express the
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effective Hamiltonian in dimensionless form:
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In this way all magnitudes but the characteristic energy Ey in
expression (4) are dimensionless. This expression was used
for all the numerical computations in this work.

The mean field solutions of (4) are given by

SH[¢]
8¢(X) g—oy
Fluctuations to the mean field solution can be introduced in

the form ¢ = (¢) + . The new stationary solutions are given
by

=0. (6)

<w> —0, (7)

3(p(X))

where the average is relative to the mean field measure.

A. Stripes solutions

It is well known that, in the absence of external fields, the
solutions which minimize the free energy of model (4) are one

dimensional modulations of the order parameter, i.e., stripe
solutions in d = 2, which can be written as
> X
= " m;sin (2720 + 1 —), 8
$(x) = Y misin (27(2i + D ®

i=0

where A is the “modulation length.” In all calculations, the
number of modes considered was i, = 60. This allow us
to make a full characterization of the modulation profiles, as
shown in the following sections. The mean field equation (6)
reads

— tanh | —3 @k *3 A (k)b 9
$(x) = tanh | —f / e ot |- )

To obtain the solution at a given temperature, equations (8)
and (9) are solved for fixed A. Then the free energy is
minimized with respect to A to get the final solution.

B. Stripes solutions including fluctuations
Up to second order in the fluctuation fields, Eq. (7) is given
by
SHIB)]  12(07)@ () @)
() B 1 —(d)* DI
In order to solve this equation the mean squared local
fluctuations (12)(xX) have to be computed. To do this we used

=0. (10)
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FIG. 1. (Color online) Local relation between the fluctuations
amplitude and the mean order parameter.

the following method: let us consider the field ¢(x) in the
presence of a local unknown molecular field due to the rest of
the system.

The partition function for a single site in an external field &
is

1
Z(h) = / d exp[—BHo(h. )], (11
-1
where
BHy(h.$) = —Bh + L[(1 +$)In(1 + 6)
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Of course, the value of the local molecular field # remains
unknown. Numerically, we can consider it as a free parameter
to determine parametrically the nontrivial relation between
the mean square fluctuations (1%)(¢) and the mean local
order parameter. The parametric solution of the system (12)
is shown in Fig. 1. It is important to note that, as a result of
the temperature dependence of the potential used, the relation
between () and (¢) is temperature independent.

The equation of state including the fluctuation fields now
reads

[1—¢(0)]?
(13)

_ o [ R g 29200(0)](0)
¢(x)—tanh[—ﬁ / T A(k)¢k+—]

The effect of fluctuations is to add a new term in the effective
field, which tends to rise up the order parameter profile in the
region corresponding to domain walls. This means that when
fluctuation effects are present profiles should be more sharp
and correspondingly domain walls will be thinner.
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In the following we apply the method described above to
solve Egs. (9) and (13) for two well known models with stripe
phases.

III. PHASE DIAGRAMS

We focus our study in systems which present isotropic
interactions, meaning that A(/?) = A(k). Due to our selection
of dimensionless variables, the minimum of the fluctuation
spectrum is reached at k = 1 and then A(1) = —1. Besides
these universal characteristics, different models are defined by
the particular form of the fluctuation spectrum. The first model
considered (model 1) is defined by [14,18,21]

Aty = =1+ a(k — 1)? (14)
and the second (model 2) by [22]
Ak) = =1 + a(k® — 1. (15)

Model 1 has a leziding k dependence, for small l_é, which
is linear in k = |k|, i.e., it is nonanalytic. It is a good
model of, e.g., an ultrathin ferromagnetic film with strong
perpendicular anisotropy, in which short range ferromagnetic
exchange interaction competes with the long range dipolar
interaction [19]. Model 2 is known as the Swift-Hohemberg
model, and was introduced to describe the physics at a
convective instability [22,23]. Alternatively, it can represent
the continuum limit of a system with isotropic attractive nearest
neighbors interactions plus repulsive next-nearest neighbor
interactions [24,25].

Although both models are similar in that they have a single
minimum at a nonzero wave vector modulus, they nevertheless
show important differences which are shown in what follows. !
Neglecting a detailed comparison of models of this kind has
frequently led to erroneous conclusions about their behavior.

A. Model 1

Figure 2 shows the mean field phase diagram for model
1. The parameter a is proportional to the curvature of the
fluctuation spectrum at the minimum wave vector:

1 d*Ak)
a=—- .
204G dk? |y,

(16)

Note that, due to our choice of dimensionless variables, the
temperature dependence is included in A, defined as the inverse
of T/ T,. This is the reason why the critical line is horizontal.
This line defines a second order phase transition between

'In a classic Landau approach the mean field transition is driven
by the most unstable mode k(, which corresponds to the wave vector
minimizing the spectrum. Very near the transition, we can consider
that (k — ko) is very small, and then it is easy to see that model 2
reduces to model 1. Then the mean field transition yields essentially
the same result. Nevertheless, as soon as the temperature is reduced
below the transition, other modes enter the scene and new phenomena
emerges, as, e.g., the temperature dependence of the modulation
lengths. Analytical and even numerical studies of the low temperature
phase are difficult and rare in the literature.

051130-3



ALEJANDRO MENDOZA-COTO AND DANIEL A. STARIOLO

1.0fee
. ‘\‘\\\
o8 o Tl
\\ \\t\\‘\o\
Y Tl

0.6 .. e,
N~ . T

0.4 haN

\.\\\
0.2 T
0.0k " " " \\\0. "
0.0 0.2 0.4 0.6 0.8 1.0

FIG. 2. (Color online) Mean field phase diagram for model 1. The
dashed-dotted lines represent equal modulation length (1) curves. The
upper full line (blue online) corresponds to a second order transition
between a modulated and a disordered phase. Dots represent the
results of the numerical solution.

a low temperature modulated phase and a high temperature
disordered one.

The dashed-dotted curves represent lines of constant
modulation length A. In fact, for fixed a the modulation
length decreases steadily as the temperature increases towards
T. and then curves nearer the critical line correspond to
smaller values of A. The full temperature dependence of the
modulation length is shown in Fig. 4 (dots), which shows that
it varies continuously with temperature with an asymptotic
value corresponding to the minimum of the spectrum.

The phase diagram of model 1 including fluctuations is
shown in Fig. 3. At first sight it seems similar to the mean
field diagram. The critical temperature is depressed relative
to the mean field one, as expected when fluctuations are
included. The main difference with the mean field results is
that the transition is discontinuous, i.e., fluctuations change the
nature of the phase transition. In this case, the critical line was
determined at the temperatures where the difference between
the free energies of the disordered and modulated solutions
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FIG. 3. (Color online) Mean field phase diagram for model
1 including fluctuations. The dashed-dotted lines represent equal
modulation length (A) curves. The upper full line (blue online)
corresponds to a discontinuous transition between a modulated and a
disordered phase. Dots represent the results of the numerical solution.
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FIG. 4. (Color online) Temperature dependence of modulation
length (1) of model 1 for @ = 1, normalized to the value correspond-
ing to the minimum of the spectrum, A¢. Superior and inferior dots
correspond to the results of the case without fluctuations and when
fluctuations are included, respectively. The full lines represent the
best fits of numerical results by the proposed functionality (17). The
lower full line (red online) is interrupted because of the transition to
the disordered phase.

changes sign. This characterizes a first order transition induced
by fluctuations.

The behavior of the lines of constant modulation length is
different from that of the mean field case. In Fig. 2 all the lines
of constant A approach a limiting value of A = 1 at T, the value
corresponding to the minimum of the spectrum A(k), as can
be seen in Fig. 4 (upper dots). When fluctuations are included
the transition line is not an equal modulation length curve, in
such a way that the modulation length at the transition point is
a decreasing function of a.

While it is well known that the modulation length grows
quadratically with temperature near the transition [18,26], the
low temperature behavior of A is less known. Based on scaling
approaches from other authors, Mentes et al. [3] proposed
a numerical fit for their data on stripe forming ultrathin
Pd/W(110) films. The proposed functionality, which takes into
account fluctuation effects on the interface free energy and
domain wall width, is the following:

MT)=ro+a(l —bT)exp(—cT). a7

In Fig. 4 we show the results obtained directly from our
numerical solutions (dots) together with the best fits from
Eq. (17) (solid lines) for both approximations, mean field
and mean field plus fluctuations, showing that the physically
motivated form (17) is compatible with our numerical data.
In Fig. 5 the behavior of the amplitude of the modulated
solution is shown. The temperature in the horizontal axis is
scaled relative to the critical temperature of the mean field
solution. A notable fact is that the first order transition induced
by fluctuations is very strong; the amplitude stays at very high
values in the whole modulated phase, until the transition takes
place. This is also reflected in the behavior of the domain wall
width relative to the modulation length, which is shown in
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FIG. 5. (Color online) Temperature dependence of the modula-
tion amplitude (M) for model 1 with @ = 1. The lower full line (blue
online) corresponds to the mean field solution and the upper full
one (red online) is the solution when fluctuations are included. Dots
represent the results of the numerical solution.

Fig. 6. The definition used for the domain wall width was

S Foox dx
£=2 T (18)
Jo fx)dx
where the weight function f(x)is f(x) = M — ¢(x), and M
corresponds to the maximum value of the ¢(x) profile. In our
definition of ¢(x) we fix the phase of the modulation, taking
¢(0) = 0 and ¢(x) positive in the interval (0,A). For example,
for a sinelike profile, the domain wall width is

£ 21— sin(9)10d6

Ao [T = sin0)1do

~ 0.1303. (19)

This value would be a superior bound for the domain wall
width, corresponding to the case of single mode approxima-
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FIG. 6. (Color online) Temperature dependence of the domain
wall width () normalized to the modulation length (1) for model
1 with a = 1. The superior full line (blue online) is the mean field
solution and the lower one the solution with fluctuations included.
The limit value of this magnitude for a perfect sine profile (single
mode) is represented by the horizontal line. Dots represent the results
of the numerical solution.
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FIG. 7. (Color online) Mean field phase diagram for model 2. The
dashed-dotted lines represent equal modulation length (A1) curves. The
full superior line (blue online) corresponds to a second order transition
between a modulated and a disordered phase. The full lower line
(red online) defines a transition between the modulated phase and a
uniform phase. Dots represent the results of the numerical solution.

tion. In Figs. 6 and 11 this value was indicated by a horizontal
line. We can see in each case how close profiles are of a sine
function when the transition takes place.

B. Model 2

The mean field phase diagram for model 2 is shown in Fig. 7.
An important difference with respect to the corresponding
diagram of model 1 is the presence of a uniform phase for
small T and a values. This diagram has some similarity
with phase diagrams of anisotropic models with short range
competing interactions, like the axial next-nearest neighbor
Ising (ANNNI) model [27]. Nevertheless, at variance with the
ANNNI model, in the present case there is no direct transition
from the uniform to the disordered phases, at least up to
very small values of a, where the precision of our algorithm
breaks down. Instead, a sequence of two phase transitions with
increasing temperature is observed. The modulated-uniform
transition line characterizes a discontinuous transition at which
the modulation length diverges, as can be seen in Fig. 8.
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FIG. 8. (Color online) Free energy of model 2 as a function of
modulation length for different temperatures. Two top curves (blue
online) show a single minimum at A slightly larger than 1. In the two
curves at the bottom (green online) a second minimum to the right of
the figure appears, signaling a discontinuous transition to a uniform
state.
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FIG. 9. (Color online) Mean field phase diagram for model
2 including fluctuations. The dashed-dotted lines represent equal
modulation length (1) curves. The top line (blue online) corresponds
to a second order transition to a disordered phase. Below the full
bottom line (red online) a uniform phase has less free energy than the
modulated one. Note the bending of the constant A curves, meaning
an increasing modulation length with a at the transition temperature.
Dots represent the results of the numerical solutions.

Note that in the modulated region the free energy shows a
single minimum at a finite modulation length A, but as the
temperature is lowered a second minimum at the far right of
the figure appears. Numerically, this minimum is compatible
with an infinite value of A, typical of a homogeneous solution.

Figure 9 shows the phase diagram of model 2 when
fluctuations to the mean field solution are included. As was
the case for model 1, a first effect of fluctuations is to depress
the transition line between the modulated and disordered lines.

The curves of constant A for model 2 in the mean field
approximation are shown in Fig. 7. They tend smoothly to the
critical line, as in model 1 in such a way that higher curves
corresponds to lower values of A. The modulation length at
the transition is a constant independent of a, corresponding to
that of the minimum of the fluctuation spectrum. On the other
hand when fluctuations are included the shape of the equal A
curves changes, as shown in Fig. 9. While upper curves still
correspond to lower values of the modulation length, in this
case the modulation length at the transition is an increasing
function of a, at variance with the behavior of model 1, where
the modulation length at the transition is a decreasing function
of the parameter a.

In Fig. 10 the behavior of the modulation length with
temperature is shown for model 2. Note that the values of A
stay very near A, the value at the transition, meaning that in the
present model the modulation length has a weak dependence
with temperature. This is an important difference with respect
to the behavior of model 1. Nevertheless, as shown by the solid
lines in the same figure, a fit to the expression (17) still works
very well.

The behavior of the domain wall width for model 2 is
shown in Fig. 11. Comparing with Fig. 6 for model 1, we
note that in the present model the profile is always very close
to a sine, even at low temperatures. Besides that, fluctuations
seem to be unimportant for the behavior of the domain wall
width, at variance with the behavior observed in model 1.
Nevertheless, the amplitude of the order parameter behaves

PHYSICAL REVIEW E 86, 051130 (2012)

1.06

1.04

~|.s 1.02

0.98

0.96L, . . . . .
0.0 0.2 0.4 0.6 0.8 1.0

T
T,

FIG. 10. (Color online) Temperature dependence of modulation
length (1) for model 2 with a = 0.5. Superior and inferior dots
correspond to the results without fluctuations and when fluctuations
are included, respectively. The full lines represent the best fits of
numerical results by the proposed functionality (17). The lower line

(red online) is interrupted because of the transition to the disordered
phase.

similarly to that of model 1, staying practically at saturation
until the transition temperature is reached, in the case when
fluctuations are included. The fact that for model 2 the profiles
stay very near the single mode case can be understood due
to the presence of the quartic contribution in the fluctuation
spectrum which implies that the energy required to excite
higher harmonics at low temperatures is larger than in the
quadratic case of model 1.

IV. ANOMALOUS BEHAVIOR OF STRIPE
COMPRESSIBILITY

A measure of a stripe compressibility in modulated systems
can be obtained through the compression or Young modulus
B(T). This magnitude is related with the energy cost associated
with deviations from the equilibrium modulation length [A(T')]
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0.12F oo

0.10

0.08
~

0.06

0.04

0.02

000 ™02 ""07 06 08 10

Nl

T
T.

FIG. 11. (Color online) Temperature dependence of the domain
wall width (£) normalized to the modulation length (1) fora = 0.51in
model 2. The upper line (blue online) is the mean field solution and
the lower one (red online) is the solution with fluctuations included.
The limit value of this magnitude for a perfect sine profile (single

mode) is represented by the horizontal line. Dots represent the results
of the numerical solution.
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and it is defined as [19]

2F(A,T)

B(T) = M(T)? .
LY s

(20)

We calculated the compression modulus directly from the
free energy F(A,T). In a recent work, Portmann et al. [19]
have proposed some scaling relations for modulated matter.
A scaling relation for the compression modulus was obtained
in terms of the equilibrium modulation length [A(7)] and the
modulation amplitude [M (T)]:

B = ¢ M(T)> \(T)™, (1)

where ¢ is a constant and A is an exponent related with
the system dimensionality and the microscopic nature of
interactions. One of the main predictions of the proposed
scaling relations is an anomalous behavior of the Young
modulus when the exponent A is negative. This is the case,
e.g., in a dipolar frustrated ferromagnet in two dimensions,
which has an effective free energy of the type of model 1
in this work. More interestingly, Portmann and collaborators
find the same form of scaling for the behavior of the critical
magnetic field as a function of the modulation length [19].
This implies a reentrant or inverse transition in the external
field vs temperature phase diagram at low temperatures for
all systems which have a negative value of the exponent A.
This interesting result is supported by experimental measures
in ultrathin films of Fe/Cu(001) from the same group [17], and
it has been reported in a Ginzburg-Landau model for the same
system [18].

In Figs. 12 and 13 we show the results of a direct
calculation of the compression modulus (full curves) for both
model 1 and model 2 via Eq. (20). The typical behavior
of B(T) in a normal system is a monotonically decreasing
function of temperature, growing temperature leading to
weaker bonds between particles, and a weaker elastic response.
However, we can see in Figs. 12 and 13 a regime for low
enough temperatures where the compression modulus is an
increasing function of temperature. Furthermore, the inclusion
of fluctuations in both models do not destroy this behavior but
strengthen the anomaly even more, which suggests a robust
physics behind the numerical calculations. It is worthwhile to
mention that for very low temperatures the domain walls for
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FIG. 12. (Color online) Continuous curves corresponds to the
calculated Young modulus with and without fluctuations for model
1. The dots represent the best fit using the scaling relation Eq. (21).
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FIG. 13. (Color online) Continuous curves corresponds to the
calculated Young modulus with and without fluctuations for model
2. The dots represent the best fit using the scaling relation Eq. (21).

model 1 become very sharp and as result numerical instabilities
appear which can be seen in Fig. 12.

We also tested the proposed scaling relation by fitting our
analytical results with expression (21). Results are shown with
dots in Figs. 12 and 13. In all cases the proposed scaling law
fits very well our numerical results. As part of our checking of
the scaling predictions we allow the initially fixed (quadratic)
exponent of M(T) in Eq. (21) to vary. The results for this
exponent as well as for A in model 1 were very close to those
predicted in [19] for the 2d dipolar frustrated ferromagnet.
On the other hand, for model 2 important deviations were
found. Nevertheless, in this case deviations for the values
of exponents are expected because, strictly speaking, model
2 does not correspond to the kind of system considered by
Portmann and collaborators.

It is interesting that the scaling relations seem to be valid
for a wider class of models. Future work should address the
extension of the scaling relations to more general microscopic
interactions as well as the origin of the anomalous behavior of
the Young modulus in stripe forming systems.

V. CONCLUSIONS

We have presented several interesting results regarding
two well known effective models for stripe forming systems
in two dimensions. The models can be thought of as the
continuous limits of some microscopic models with competing
isotropic interactions, or alternatively, they can be defined
directly through the form of the high temperature structure
factor. A common feature of both models is that the structure
factor has its maximum in a ringlike region in reciprocal
space, which has strong consequences for the low temperature
physics. Nevertheless, contrary to what is usually assumed
in the literature, important differences were found in their
properties and phase diagrams that lie in the specific wave
vector dependence of the high-T structure factor, with model
1 defined by a nonanalytic dependence on the modulus of wave
vector and model 2 defined by an analytic form. Model 1 is a
good small k representation of some systems with long range
interactions, like the dipolar frustrated ferromagnet and stripe
forming systems with elastic interactions with the subtrate,
while model 2 can be obtained as an effective model for
competing finite range isotropic interactions, which leads to
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an analytic expression for the k dependence of the structure
factor.

We have computed the full phase diagrams of both models
in two approximations: mean field, and mean field plus
fluctuations. Relevant equations were solved numerically. In
both cases it is observed that fluctuations have a strong
effect on the phase diagrams and other observables. With
regard to phase diagrams, the main effect of fluctuations
is to change the order of the isotropic to modulated phase
transition from continuous in the mean field approximation
to a strongly discontinuous transition when fluctuations are
taken into account. Besides the isotropic-modulated transition,
model 2 shows another discontinuous phase transition from
the modulated to a uniform (infinite modulation length) phase
below a critical value of the parameter a, which characterizes
the curvature of the fluctuation spectrum at the minimum.

In both models, the modulation length X is a smooth
function of temperature, characterizing incommensurate mod-
ulations. The temperature dependence of A is strong for
model 1 and weak for model 2. While in the mean field
approximation the modulation length attains its minimum
value at the transition, which corresponds to the wave vector
at the minimum of the structure factor, when fluctuations
are taken into account A can take values less than that
corresponding to the minimum of the structure factor. Another
quantity of interest is the width of the domain walls §.
We have introduced an operational definition of the width,
taking as a reference value that corresponds to a single mode,
sinelike solution, valid near the transition in the mean field
approximation. As was the case with the modulation length, &
has a stronger dependence with temperature for model 1. Also
important is the fact that £ is smaller when fluctuations are
included, meaning sharper domain walls, in line with the sharp
phase transitions obtained in this case, where the amplitude
of the modulations stay near saturation already below the
transition.

PHYSICAL REVIEW E 86, 051130 (2012)

Finally we have shown results for a response function, the
compression modulus of stripes B(T). This quantity shows
an anomaly in its behavior, when compared with normal
systems, having a maximum at intermediate temperatures. The
anomalous behavior follows a recent prediction from a scaling
hypothesis for modulated systems, which was obtained in the
context of models with some particular long range interactions.
We have verified its validity for both model 1 and model 2.
Interestingly, although model 2 does not belong to the kind
of models for which the scaling hypothesis was predicted,
it shows the same kind of scaling, with a particular scaling
exponent. The scaling exponent for model 1 corresponds, to
a good numerical approximation, to the value predicted for a
model with dipolar competing interactions.

In summary, we have computed some relevant quanti-
ties for models with modulated phases in two dimensions,
complementing old results and clarifying some differences
between two models usually presented in the literature as
giving essentially the same physics. We have shown that,
despite the obvious similarities, both models have important
differences. An interesting outcome of our results is the
evidence of anomalous behavior in a response function in both
models considered, in line with recent results in related models
and experiments in ultrathin magnetic films. Future work
should address the mechanisms that originate the anomalous
behavior and the generality of this for other systems. Last
but not least, the straightforward numerical implementation of
the coarse-grained models defined in this work allowed us to
access the whole temperature range of the phase diagrams,
complementing already known results, usually limited to
temperatures near the phase transition lines.
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