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Diffusion in sparse networks: Linear to semilinear crossover
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We consider random networks whose dynamics is described by a rate equation, with transition rates wnm that
form a symmetric matrix. The long time evolution of the system is characterized by a diffusion coefficient D. In
one dimension it is well known that D can display an abrupt percolation-like transition from diffusion (D > 0) to
subdiffusion (D = 0). A question arises whether such a transition happens in higher dimensions. Numerically D

can be evaluated using a resistor network calculation, or optionally it can be deduced from the spectral properties
of the system. Contrary to a recent expectation that is based on a renormalization-group analysis, we deduce that
D is finite, suggest an “effective-range-hopping” procedure to evaluate it, and contrast the results with the linear
estimate. The same approach is useful in the analysis of networks that are described by quasi-one-dimensional
sparse banded matrices.
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I. INTRODUCTION

The study of network systems is of interest in the diverse
fields of mathematics, physics, and computer and life sciences.
Commonly a network is described by a symmetric matrix
that consists of real non-negative elements, e.g., the adjacency
matrix or the link probability matrix, that have unique spectral
properties [1,2]. Physically motivated, in this work we consider
d-dimensional network systems, whose dynamics is described
by a rate equation

dpn

dt
=

∑
m

wnmpm. (1)

The off-diagonal elements of w are the transition rates, while
the diagonal elements are the decay rates

wnn = −γn, γn ≡
∑

m(�=n)

wmn. (2)

We assume a symmetric matrix and write schematically

w = matrix{wnm}. (3)

In some sense, one can regard w as a discrete Laplacian
that is associated with the network. Clearly the physical
problem is related to the study of random walk in a disordered
environment [3–5].

For presentation purposes we regard the nodes of the
network as sites, each having a location xn. By construction, we
assume that the transition rates wnm are given by the expression
w0e

−εnmB(xn−xm), where B(r) describes the systematic de-
pendence of the coupling on the distance between the sites, and
ε is a random variable that might represent, say, the activation
energy that is required to make a transition. Consequently the
network is characterized by two functions:

w(r,ε) ≡ w0 e−ε B(r), (4)

ρ(r,ε) ≡ local density of sites. (5)

The latter is defined as the density of sites in (r,ε) space, rela-
tive to some initial site. Obviously the functional dependence
of this density on r is affected by the dimensionality of the
network.

Sparsity. Our interest is focused on “sparse” networks. This
means that the transition rates between neighboring sites are
log-wide distributed as in glassy systems. These rates span
several orders of magnitudes as determined by the dispersion
of r or by the dispersion of ε. In particular (but not exclusively)
we are interested in a random site model where the rates depend
exponentially on the distance between randomly distributed
sites, namely, B(r) = exp(−r/ξ ). In this particular case one
can characterize the sparsity by the parameter

s = ξ/r0, (6)

where r0 is the average distance between neighboring sites.
We refer to such networks as “sparse” if s � 1.

Sparsity vs percolation. The problem that we consider is a
variant of the percolation problem [6]. Instead of considering
a bimodal distribution (“zeros” and “ones”) we consider a
log-wide distribution of rates [7], for which the median is
much smaller than the mean value. We call such a network
sparse because the large elements constitute a minority.

Sparsity vs disorder. While the standard percolation prob-
lem can be regarded as the outcome of extreme sparsity, the
latter can be regarded as arising from an extreme disorder.
Accordingly, the model that we are considering is a close
relative of the Anderson localization problem, and therefore
we shall dedicate some discussion to clarify the relation.

Physical context. The model that we address is related
and motivated by various physical problems, for example,
phonon propagation in disordered solids [8–10], Mott hopping
conductance [7,11–15], transport in oil reservoirs [16,17],
conductance of ballistic rings [18], and energy absorption by
trapped atoms [19]. Optionally these models can be fabricated
by combining oscillators, say, mechanical springs or electrical
resistor-capacitor elements. In all these examples the issue is
to understand how the transport is affected by the sparsity of
a network. If the rates are induced by a driving source, this
issue can be phrased as going beyond the familiar framework
of linear response theory, as explained below.

Diffusion and subdiffusion. Our interest is focused on
the diffusion coefficient D that characterizes the long time
dynamics of a spreading distribution. The simplest way
to define it, as in standard textbooks, is via the variance
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S(t) ≡ 〈r2〉t . Namely,

D ≡ (2d)−1 lim
t→∞

S(t)

t
. (7)

Optionally it can be defined or deduced from the decay of the
survival probability P(t) ∼ (Dt)−d/2. Hence it is related to the
spectral properties of the transition rate matrix.

In the d = 1 case, it is well known [20] that D can display
an abrupt percolation-like transition from diffusive (D > 0) to
subdiffusive (D = 0) behavior, as the sparsity parameter drops
below the critical value scr = 1. Similar anomalies are found
for fractal structures with d < 2, also known as “random walk
on percolating clusters,” see [21–25]. A question arises as to
whether such a transition might happen in higher dimensions.

In [10] the spectral properties in the d = 2 case were
investigated: on the basis of the renormalization group (RG)
procedure it was deduced that P(t) decays in a logarithmic
way, indicating anomalous (sub) diffusion. In the present work
we shall introduce a different approach that implies, contrary
to the simple RG treatment, that in spite of the sparsity, the
long time dynamics is in fact diffusive rather than subdiffusive.

Resistor network picture. One can regard the pn in Eq. (1)
as the charge in site n; each site is assumed to have unit
capacitance; hence pn−pm is the potential difference, and
wnm(pm−pn) is the current from m to n. Accordingly Eq. (1)
can be regarded as the Kirchhoff equation of the circuit. While
calculating D it is illuminating to exploit the implied formal
analogy with a resistor network calculation [12,14,18,26].
Namely, regarding wnm as connectors, it follows that D is
formally like conductivity. It follows that D[w] is in general a
semilinear function:

D[λw] = λD[w], (8)

D[wa + wb] > D[wa] + D[wb]. (9)

If the rates are induced by a driving source, the above super
additivity implies that the analysis should go beyond the
familiar framework of linear-response theory [27].

In this work we obtain an improved estimate for D that we
call effective range hopping (ERH). Using this approach we
show that in the d = 2 case, as s becomes small, the functional
D[w] exhibits a smooth crossover from linear behavior to
semilinear VRH-type dependence. Our approach is inspired
by the resistor network picture of [7,12–19,27], and leads in
the appropriate limit to the well-known Mott’s variable range
hopping (VRH) estimate for D.

Outline. We first describe some known results and some
additional numerical results for the spectral properties of
d = 1 and d = 2 networks and for the dependence of D

on the sparsity. Then we show that an ERH procedure is
useful in describing the crossover from the linear regime (no
sparsity) to the semilinear regime. In the latter regime a resistor
network approach is essential, and the percolation threshold
manifests itself in the calculation. Finally we demonstrate
that the same ERH procedure can be applied in the case of
a quasi-one-dimensional network that is described by a sparse
banded random matrix. The latter is of relevance to previous
studies of energy absorption by a weakly chaotic system [27].
We conclude with a discussion and a short summary.

II. RANDOM SITE HOPPING MODEL

Consider a network that consists of sites that are distributed
in space, locations xn. With each bond nm we associate an
activation energy εnm > 0, and assume

wnm = w0 e−εnm e−|xn−xm|/ξ . (10)

Accordingly we have the identification

B(r) = e−r/ξ . (11)

We note that in the traditional formulation of the Mott problem
the activation energies are not due to some barriers, but are
determined by the on-site binding energies, namely, εnm =
|εn − εm|/T , where T is the temperature. In this paper we
treat the εnm as an uncorrelated random variable.

The density of sites relative to some initial site is charac-
terized by a joint distribution function

ρ(r,ε)dr dε = �d rd−1dr

rd
0

f (ε)dε, �d = 2,2π,4π. (12)

We distinguish between the Mott hopping model and the
degenerate hopping model. Namely,

f (ε) = 1 Mott hopping model, (13)

f (ε) = δ(ε) Degenerate hopping model. (14)

The normalization of f (ε) as defined above fixes the value
of the constant rd

0 , which we regard as the “unit cell.” In the
numerics we set the units of distance such that r0 = 1.

In the traditional formulation of the Mott problem it is
assumed that mean level spacing within ξd is �ξ , such that
the number of accessible sites is (dε/�ξ ) (d3r/ξd ). By the
convention of Eq. (12) this implies that the unit cell dimension
is temperature dependent

rd
0 =

(
�ξ

T

)
ξd [for Mott model]. (15)

We reemphasize that the number of sites per unit volume in the
Mott problem is infinite, but effectively only ∼ T/�ξ sites are
accessible within ξd per attempted transition. It is convenient
to characterize a random site model by a sparsity parameter
that is defined as in Eq. (6). Accordingly

s ≡ ξ

r0
=

(
T

�ξ

)1/d

[for Mott model]. (16)

We refer to a network as sparse if s � 1.
The lattice model with near-neighbor (n.n.) transitions is

one of the most popular models in statistical mechanics: in
particular the random walk problem on a lattice is a standard
textbook example. If the rates are generated from a log-wide
distribution, it can be regarded as a variant of the random site
hopping model. For details see Appendix A. In particular we
note that the d = 1 version is formally equivalent: it does not
matter whether the distribution of w is due to random distances
r or due to random activation energies ε.

Finally we note that a quasi-one-dimensional version of the
random site model arises in the study of energy absorption as
explained in Appendix B, and later addressed in Sec. XI.
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III. CHARACTERIZATION OF TRANSPORT

The long time dynamics that takes place on the network
is characterized by the spreading S(t) and by the survival
probability P(t). If the system is diffusive, these functions
have the following functional form:

S(t) = 〈r2〉t ∼ (2d)Dt, (17)

P(t) ∼ rd
0

(4πDt)d/2
. (18)

See Appendix C for details. The diffusion coefficient D

appears here in consistency with its definition in Eq. (7). We
note that in the case of subdiffusion

S(t) ∝ tα, [α < 1], (19)

which implies by Eq. (7) that D = 0.
The spectrum of the matrix w consists of the trivial eigen-

value λ0 = 0 that is associated with a uniform distribution,
and a set of negative numbers −λk that describe the decaying
modes. The spectral function N (λ) counts the number of
eigenvalues up to the value λ. We normalize it per site such
that N (∞) = 1. The associated density of eigenvalues g(λ) is
related to P(t) by a Laplace transform. See Appendix C for
details. It follows that in the case of a diffusive system

N (λ) =
∫ λ

g(λ)dλ ∼
(

r0

2π

)d[
λ

D

]d/2

. (20)

In Appendix D we clarify that this expression agrees with
the Debye law. Accordingly the calculation of D parallels the
calculation of the speed of sound c in the Debye model.

Regarded as a transport coefficient D relates the probability
current to the density gradient. This is known as Fick’s law.
From the discussion in the Introduction it follows that D is
like the conductivity of a resistor network, which relates the
electrical current to the voltage difference. Some further details
on the practical calculation of the conductivity are presented
in Appendix E. On the basis of this analogy it should be clear
that D[w] is in general a semilinear function of the rates,
see Eq. (9).

IV. EXACT AND NUMERICAL RESULTS
FOR THE d = 1 LATTICE MODEL

In the case of a d = 1 lattice model with n.n. transitions
it is natural to use the notation wn = wn,n−1. Pointing out the
analogy with adding connectors in series, the expression for
D is

D =
(

1

N

∑
n

1

wn

)−1

= s − 1

s
w0[s > 1]. (21)

The calculation that leads to the last equality has been done
with the distribution of Eq. (A2), where s ≡ ξ/r0. Note
that we have here a serial addition of resistors R = ∑

n Rn,
where Rn = 1/wn. For s < 1 the distribution of each Rn is
dominated by the large values, hence R = ∞. On the other
extreme for s > 1 the distribution of the Rn has finite first and
second moments, and accordingly the result for R becomes
self-averaging, as implied by the central limit theorem. This

(a) (b)

FIG. 1. (Color online) Spreading in (a) the d = 1 lattice model
and (b) the d = 2 degenerate random site model. Panel (a) is based
on known exact results. Its dashed blue line is the power α of the
spreading, showing a subdiffusive regime for s < 1, and a diffusive
regime for s > 1. Its solid red line is the diffusion coefficient D, which
is zero in the subdiffusive regime. Panel (b) displays numerical results
that refer to a network that consists of N = 2000 sites randomly
scattered over a square with periodic boundary conditions. The
vertical axis is the diffusion coefficient D in a logarithmic scale, while
the horizontal axis is X = −1/s. The numerical red dots are based on
a resistor network calculation (see Appendix E), while the stars are
extracted from the spectral analysis (see Fig. 2). The dashed line is
the linear estimate (corresponds to nc = 0), while the solid line is the
ERH estimate with nc = 4.5. One observes that the ERH calculation
describes very well the departure from the linear prediction.

means the D is well defined only for s > 2. For 1 < s < 2 the
result for the average R is finite but not self-averaging.

The dependence of D on s is illustrated in Fig. 1(a). In the
subdiffusive regime (s < 1), where the result for the diffusion
coefficient is D = 0, the dynamics becomes subdiffusive.
The explicit results for the survival probability and for the
spreading are known [20]:

S(t) ∼ t2s/(1+s), (22)

P(t) ∼ t−s/(1+s), (23)

and the associated spectral function is

N (λ) ∼ λs/(1+s). (24)

The numerical demonstration of the latter expectation is
displayed in Fig. 2 (left upper panel). We clearly see that
for s < 1 the asymptotic slope corresponds to subdiffusion,
while for s > 1 it corresponds to diffusion.

V. NUMERICAL RESULTS FOR
THE d = 2

RANDOM SITE MODEL

Results for the spectral counting function of the degenerate
d = 2 random site model are presented in Fig. 2 (right
upper panel). We also display there (in the lower panel)
the participation number (PN) for each eigenstate. The PN
of an eigenstate that corresponds to an eigenvalue λk is
conventionally defined as

PN ≡
[∑

n

|〈n|λk〉|4
]−1

. (25)

051120-3



YARON DE LEEUW AND DORON COHEN PHYSICAL REVIEW E 86, 051120 (2012)

FIG. 2. (Color online) Cumulative eigenvalue distributions N (λ)
for the d = 1 (1D) and for the d = 2 (2D) models of Fig. 1, and the
respective PN of the eigenstates (lower panels). Several representative
values of s are considered. The dots are determined via numerical
diagonalization of N × N matrices, each representing a network that
consists of N = 1000 sites randomly scattered over a square with
periodic boundary conditions. There is a striking difference between
the d = 1 and the d = 2 cases. For d = 1, the log-log slope of N (λ),
see dashed lines, is less than d/2 for sparse networks (s < 1), meaning
that we have subdiffusion. In the d = 2 case the small-λ log-log slope
is always d/2, which corresponds to normal diffusion. The solid lines
in the upper 2D plot are according to the RG analysis of [10], namely,
Eq. (26). The horizontal dashed line in the lower panels indicates the
special value PN= 2 that corresponds to dimer formation.

As expected from the study of localization in a disordered
elastic medium [28], the PN becomes larger in the limit λ → 0,
without apparent indication for a mobility threshold.

Assuming localized modes that are conceived via dimeriza-
tion of neighboring sites, N (λ) should equal the probability
exp[−V(r)/rd

0 ] not to have any neighboring site within the
volume V(r) of the sphere 2w0 exp(−r/ξ ) > λ. The RG
analysis of [10] refines this naive expectation, adding a factor
of 2 in the exponent, leading to

N (λ) = exp

{
− �d

2d

[
− s ln

(
λ

2w0

)]d}
, (26)

where s ≡ ξ/r0. This expectation is represented in Fig. 2 (right
upper panel) by solid lines. We see that it fails to capture the
small λ regime, where the distribution corresponds to diffusive
behavior.

Extracting D via fitting to Eq. (20) we get Fig. 1(b). We
see that in the d = 2 model there is no abrupt crossover
to subdiffusion. We therefore would like to find a way to
calculate D, and hence to have the way to determine the small
λ asymptotics.

Note added. One should conclude that the RG of Ref. [10]
applies only to the analysis of the high frequency response,
while our interest is focused in the low frequency (direct
current) analysis. The crossover between the two regimes
is implied. For more details in this direction see a followup
work [29] that confirms our physical picture and demonstrates
numerically the implied crossover.

VI. LINEAR AND ERH ESTIMATES
FOR THE DIFFUSION COEFFICIENT

The standard way to calculate diffusion in a d = 1 random
walk problem is to inspect the transient growth of the variance
Var(n) = 2Dt . In the stochastic context, if we start at site n

we have Var(n) = ∑
n′ pn′ (n′ − n)2, with pn′ = wn′nt , hence

Dn = 1

2

∑
n′

(n′ − n)2 wn′n. (27)

The generalization to more than one dimension is straight-
forward. Averaging the transient expression over the starting
point we get the result

Dlinear = 1

2d

∫∫
w(r,ε)r2ρ(r,ε)dε dr. (28)

This expression is strictly linear. It describes correctly the
average transient spreading. In the absence of disorder we can
trust it for arbitrary long time. But if we have a disordered or
sparse network, the possibility for transport is related to the
theory of percolation [7,13,14]. We are therefore motivated to
introduce an approximation scheme that takes the percolation
aspect into account. We shall refer to this scheme as effective
range hopping (ERH) because it is a variation on the well-
known VRH procedure.

Inspired by [7,13,14] we look for the threshold wc that is
required for percolation. In the ERH scheme we suggest using
the following equation for its determination:∫∫

w(r,ε)>wc

ρ(r,ε)dr dε = nc. (29)

Here nc is the effective coordination number that is required
for getting a connected sequences of transitions. For a d = 2
square lattice model it is reasonable to set nc = 2, reflecting
the idea of forming a simple chain of transitions. Rephrased
differently the requirement is to have an average of 50%
connecting bonds per site. For a d = 2 random site model
one should be familiar with the problem of percolation in
a system that consists of randomly distributed discs. The
effective coordination number that is required for getting
percolation in such a model is nc = 4.5, as found in [30],
and further discussed in Sec. IV A 1 of [31].

The second step in the ERH scheme is to form an effective
network whose sparse elements are suppressed to the threshold
value. Then it is possible to use the linear formula Eq. (28).
Hence we get

DERH = 1

2d

∫∫
min{w(r,ε),wc} r2 ρ(r,ε) dε dr. (30)

This expression, as required, is semilinear rather than linear.
It looks like the linear estimate of Eq. (28), but it involves
a network with wnm that are equal or smaller to the original
values. The “suppressed” connectors are those that are too
sparse to form percolating trajectories.

VII. VARIABLE RANGE HOPPING ESTIMATE

The ERH is similar to the generalized VRH procedure that
we have used in previous publications [18,19]. The traditional
VRH is based on the idea of associating an energy cost ε(r) to
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a jump that has range r . Namely,

ε(r) ∼
[
�d

d
rd

]−1

�0, (31)

corresponding to the average level spacing of the sites within
a range r . In our notation, ε(r) ≡ ε(r)/T . For the general
network models that we consider here, the relation between ε

and r is determined through the equation∫ ε

0

∫ r

0
ρ(r ′,ε′)dr ′ dε′ = n∗, (32)

where n∗ is of order unity. In fact we shall deduce later, in
Sec. X, that for consistency with the ERH estimate this value
should be n∗ = nc/d. With the substitution of Eq. (12) the
tradeoff equation can be written as

�d

(
r

r0

)d

F (ε) = nc, (33)

where F (ε) is the cumulative distribution function that
corresponds to the density f (ε). In the Mott problem F (ε) = ε,
and Eq. (31) is recovered. In words, Eq. (32) asks what is the ε

window that is required in order to guarantee that the particle
will be able to find with probability of order unity an accessible
site within a range r . Larger jumps allow smaller cost. Then
we estimate D as follows:

DVRH ∼ w∗(r∗)2, (34)

where r∗ is the optimal range that maximizes w(r,ε(r)), with
associated energy cost ε∗ = ε(r∗), and effective transition rate
w∗ = w(r∗,ε∗). See Fig. 3 for illustration.

The VRH estimate, unlike the ERH, does not interpolate
with the linear regime. It can be used to estimate D only
if the system is very sparse (s � 1). It can be regarded as
an asymptotic evaluation of the ERH integral: it assumes
that the hopping is dominated by the vicinity of the optimal
point (r∗,ε∗). Accordingly, VRH-to-ERH consistency requires

ε

r

ERH threshold
VRH trade−off
VRH optimum

const "w" contours

FIG. 3. (Color online) Comparing VRH with the ERH procedure.
The solid blue line that corresponds to the ERH threshold wc encloses
an “area” that corresponds to nc. The VRH tradeoff is represented by
the dashed red line. The VRH optimum is represented by the thick
red dot. The VRH-to-ERH consistency requirement [Eq. (46)] is to
have the VRH optimum sitting on the solid blue line.

the identification w∗ = wc. However, using known results
from percolation theory, one possibly can further refine the
determination of the optimal value w∗. Namely, a somewhat
smaller value than the threshold value wc might allow a better
connectivity. As s becomes very small, the effective range δw

in the ERH integral, which contains the dominant contribution,
becomes very small compared with wc − w∗, and one should
be worried about the implied (subdominant) correction. This
speculative crossover is beyond the scope of the present study,
and possibly very hard to detect numerically. A useful analogy
here is with the crossover from “mean-field” to “critical”
behavior in the theory of phase transition, as implied by the
Ginzburg criterion.

VIII. ERH CALCULATION FOR
THE d = 2 LATTICE MODEL

The d = 2 lattice model, as defined in Appendix A, is the
simplest and most common example for studies of percolation
and percolation-related problems. We substitute into Eq. (29)
the effective density Eq. (A3) with the coordination number
cL = 4, and deduce that wc is merely the median value of the
n.n. transition rates. The ERH calculation using Eq. (30) with
Eq. (A3) requires a simple f (ε)dε integration, which can be
rewritten as a f̃ (w)dw integral. This integral is the sum of
w > wc and w < wc contributions, namely,

DERH =
[

1

2
wc + 1

2

∫ wc

0
wf̃ (w)dw

]
r2

0 . (35)

Note that the first term in the square brackets originates from
the w > wc contribution. Note also that the result is D = wcr

2
0

for a delta distribution, i.e., in the absence of disorder.

IX. ERH CALCULATION FOR THE DEGENERATE
HOPPING MODEL

We now turn to the calculation of the ERH estimate
for the degenerate hopping model. The ERH threshold can
be written as wc = w0 exp(−rc/ξ ), where rc is determined
through Eq. (29), which takes the form∫ rc

0

�dr
d−1dr

r2
0

= nc, (36)

leading to

wc = w0 exp

(
− rc

ξ

)
, (37)

rc ≡
(

d

�c

nc

)1/d

r0. (38)

The calculation of the ERH integral of Eq. (30) is detailed in
Appendix F. We note that the linear approximation of Eq. (28)
is formally obtained by setting rc = 0, leading to

Dlinear = (d+1)! �d

2d
sd+2 w0r

2
0 . (39)

Then it is possible to write the result of the ERH integral as

DERH = EXPd+2

(
1

sc

)
e−1/sc Dlinear (40)
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where sc = ξ/rc, and

EXP
(x) =

∑

k=0

1

k!
xk. (41)

The linear result is formally obtained by setting nc = 0 or in
the d → ∞ limit. In the other extreme of s � 1 we get a
VRH-like dependence

D ∼ e−1/sc , for s � 1. (42)

Numerical verification. To obtain an ERH estimate we
have to fix the parameter nc in Eq. (36). One approach is
to regard it as a free fitting parameter. But it is of course better
not to use any fitting parameters. Fortunately we know from
[30,31] that nc = 4.5 is the average number of bonds required
to get percolation. The verification of the ERH estimate for the
random site model with this value is demonstrated in Fig. 1(b).

X. ERH CALCULATION FOR THE MOTT
HOPPING MODEL

We turn to calculating the ERH estimate for the nonde-
generate Mott hopping model, and contrast it with the linear
approximation, and with the traditional VRH estimate. The
ERH threshold is determined through Eq. (29), leading to

wc = w0 exp(−εc), (43)

εc ≡
(

d

�d

nc

sd

)1/(d+1)

. (44)

In the VRH procedure the optimal hopping range is found
by maximizing w(r,ε) along the tradeoff line of Eq. (33), as
illustrated in Fig. 3, leading to

r∗ =
(

d2

�d

n∗ s

)1/(d+1)

r0, (45)

and the associated rate is

w∗ = wc provided n∗ = nc/d. (46)

This identification is necessary if we want the VRH to describe
correctly the asymptotic dependence of D on s.

The calculation of the ERH integral of Eq. (30) is detailed
in Appendix F. Thanks to our conventions the linear result is
the same as Eq. (39), and the the final result can be written as
follows:

DERH = EXPd+3(εc) e−εcDlinear, (47)

where EXP(x) is the polynomial defined in Eq. (41). The linear
result is formally obtained by setting εc = 0 or in the d → ∞
limit.

We see that the VRH estimate can be regarded as an asymp-
totic approximation that holds for s � 1. Using Eqs. (15) and
(16) we deduce from Eqs. (39) and (47) that

Dlinear ∝ T , (48)

while for s � 1,

DERH ∼
(

1

T

)2/(d+1)

exp

[
−

(
T0

T

)1/(d+1)]
, (49)

where T0 is a constant.

XI. ERH CALCULATION FOR THE BANDED
QUASI-ONE-DIMENSIONAL MODEL

We can apply the ERH calculation also to the case of
the quasi-one-dimensional model that we have studied in the
past [18,19]. This model is motivated by studies of energy
absorption [27]. For details see Appendix B. The network is
defined by a banded matrix w. For simplicity we assume that
the sites are equally spaced and that the reason for the sparsity
is the log-wide distribution of the in-band elements.

The ERH threshold wc is deduced from Eq. (29). For a
general B(r) and f (ε) one can integrate over dε, and then it
takes the form∫ ∞

0

�d rd−1dr

rd
0

F

[
log

(
w0

wc

B(r)

)]
= nc, (50)

where F (ε) is the cumulative distribution function that
corresponds to the density f (ε). Here we are considering a
d = 1 network. However, we are dealing with a banded matrix
which in some sense is like adding an extra (but bounded)
dimension to the lattice.

Specifically we assume that B(r) = 1 within the band,
and zero for |r| > b. The nonzero elements have a log-box
distribution, namely, ε is distributed uniformly over a range
[0,σ ]. To have large σ means “sparsity.” One should notice that
this sparsity is less traumatic than having s � 1 in the d = 1
lattice model that we considered in Sec. IV. This is because the
distribution is bounded from below by finite nonzero values.
Accordingly we cannot have subdiffusion here.

We now turn to estimate D using the the ERH procedure.
It should be clear that the success here is not guaranteed
for reasons that we further discuss in the last paragraph of
this section. From Eq. (50) it follows that wc = w0 exp(−εc),
where εc is the solution of

2bF (εc) = nc. (51)

For the assumed ε distribution the solution of this equation is
trivial

εc = nc

2b
σ. (52)

While doing the ERH integral of Eq. (30) note that the integral
dr should be replaced by a sum. It is convenient to define

b̃ ≡
b∑

r=1

r2 = 1

6
b(b + 1)(2b + 1). (53)

Then the ERH estimate takes the form

DERH = 1

σ

[(
1 + nc

2b
σ

)
e− nc

2b
σ − e−2σ

]
b̃w0. (54)

The linear estimate of Eq. (28) is formally obtained by setting
nc = 0, and in the absence of disorder it obviously reduced to
D = b̃w0. We define

gs = D/Dlinear. (55)

Numerical results are presented in Fig. 4, and they agree with
the ERH estimate.

At this point one wonders whether D can be extracted
from the spectral analysis, i.e., via fitting to Eq. (20). In
Fig. 4(c) we plot the D that is extracted from the spectral
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(a)

(b)

(c)

FIG. 4. (Color online) We consider a quasi d = 1 network that
consists of N = 1000 sites with periodic boundary conditions. The
network is described by a sparse banded matrix. The bandwidth is b,
and the log-width of the rate distribution is σ . See text for details.
(a) The numerical result for gs = D/Dlinear imaged as a function of
σ and b. The values of D are found via a numerical resistor network
calculation, see Appendix A. (b) Subset of results that refer to the b =
10 matrix. The curve is the ERH prediction. (c) Scatter diagram shows
the correlation between the D that was extracted from the spectral
analysis and the D that was found via the resistor network calculation.

analysis versus the D that has been found via the resistor
network calculation. We observe that the obtained values are
much smaller. Our interpretation for that is as follows. The
density of eigenvalues is related to the survival probabilityP(t)
via a Laplace transform. For a quasi-one-dimensional system
there is a short-time, d = 2 like, relatively fast transient.
Consequently the d = 1 decay holds only asymptotically with
a smaller prefactor. Accordingly we do not know whether there
is a wise way to deduce D from the spectral analysis in the
case of a quasi-one-dimensional network.

Concluding this section we would like to warn the reader
that the use of the percolation picture in d = 1 is some-
what problematic: strictly speaking there is no percolation
transition. Obviously for b = 1 we are back with the d = 1
lattice model for which there is subdiffusion if s < scr with
scr = 1. However, if b is reasonably large, it is not feasible to
encounter such an anomaly in practice. Even if the distribution
is not bounded from below, the redundancy due to b > 1

would lower the effective value of scr. Furthermore, in the
Fermi-golden-rule picture (see next section) the occurrence
of “weak links” along the band are practically not possible
because the matrix elements Vnm are not uncorrelated random
variables. We can refer to this as the rigidity. This rigidity is
implied by semiclassical considerations.

XII. SEMILINEAR RESPONSE PERSPECTIVE

Considering models of energy absorption (see Appendix B),
it is assumed that the transition rate wnm, between unperturbed
energy levels m and n, is determined by a driving source that
has spectral content S̃(ω). The Fermi golden rule can be written
as

wnm = S̃(En − Em) |Vnm|2, (56)

where Vnm is the perturbation matrix in the Hamiltonian.
Accordingly we can write instead of D = D[w] an implied
relation D = D[S̃(ω)]. This relation is in general semilinear.
This means that only the first property below, which corre-
sponds to Eq. (8), is satisfied, not the second one.

D[λS̃(ω)] = λ D[S̃(ω)], (57)

D[S̃a(ω) + S̃b(ω)] = D[S̃a(ω)] + D[S̃b(ω)]. (58)

To have a semilinear rather than linear response may serve as an
experimental signature for the applicability of resistor-network
modeling of energy absorption. We note, however, that if the
the driving were added “on top” of a bath, the response would
become linear at small intensities. Namely, if one substituted

S̃(ω)total = S̃bath(ω) + S̃(ω), (59)

it would be possible to linearize D with respect to the S̃(ω) of
the driving source.

The statement that VRH is a “semilinear response” theory
rather than “linear response” theory is a source for noncon-
structive debates on terminology. The reason for the confusion
about this point is related to the physical context. Do we
calculate “current vs bias” or do we calculated “diffusion
vs driving”? The response is linear in the former sense, but
semilinear in the latter sense.

XIII. DISCUSSION

It should be clear that there are two major routes in
developing a theory for D. Instead of deducing it from spectral
properties as in [10], one can try to find ways to evaluate it
directly via a resistor network calculation [7,12–15], leading
in the standard Mott problem to the VRH estimate for D.

In [18,19,27] this approach was extended to handle “sparse”
banded matrices whose elements have log-wide distribution,
leading to a generalized VRH estimate. In this work we have
pursued the same direction and obtained an improved estimate
for D, the ERH estimate. Using this approach we showed that
in the d = 2 case, as s becomes small, the functional D[w]
exhibits a smooth crossover from linear behavior to semilinear
VRH-type dependence.

Relation to other models. Disregarding the sparsity issue,
the model that we were considering is a close relative of the
Anderson localization problem. However, it is not the same
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problem, and there are important differences that we would like
to highlight. For the purpose of this discussion it is useful to be
reminded that the hopping problem that we have addressed is
essentially the same as studying the spectrum of vibrations in
a disordered elastic medium. Hence D1/2 parallels the speed
of sound c of the Debye model. See Appendix D.

Mott vs Anderson. In the hopping model all the off-diagonal
elements are positive numbers, while the negative diagonal
elements compensate them. It follows that we cannot have
“destructive interference,” and therefore we do not have gen-
uine Anderson localization. Consequently in general we might
have diffusion, even in d = 1. In d = 2 we have a percolation
threshold, which is again not like Anderson localization. See
the discussion of fractons in [24].

Debye vs Anderson. In the standard Anderson model the
eigenvalues form a band λ ∈ [−λc,λc]. The states at the edge
of the band are always localized. The states in the middle
of the band might be delocalized if d > 2. The spectrum
that characterizes the hopping model does not have the same
properties. With regard to the localization of vibrations in
a disordered elastic medium [28], it has been found that
the spectrum is λ ∈ [0,λc]. The ground state is always the
λ = 0 uniform state. The localization length diverges in the
limit λ → 0. Consequently the Debye density of states is not
violated: the spectrum is asymptotically the same as that of a
diffusive (nondisordered) lattice. It follows that the survival
probability should be like that of a diffusive system, and
therefore we also expect, and get, diffusive behavior for the
transport: spreading that obeys a diffusion equation.

XIV. SUMMARY

This work was originally motivated by the necessity to
improve the resistor-network analysis of the diffusion in
quasi-one-dimensional networks [18], and additionally from
the desire to relate it to the recent RG studies [10] of the
spectral properties of random site networks. The key issue that
we wanted to address was the crossover from linear-like to
semilinear dependence of D on the rates. This crossover show
up as the “sparsity” of the system is varied.

It should be clear that unlike the RG-based expectation of
[10], our analysis indicates that there is no subdiffusive behav-
ior in d = 2. Accordingly, the anomalous log(t) spreading that
is predicted in [10] should be regarded as a transient: for very
small value of the sparsity parameter this transient might have a
very long duration, but eventually normal diffusion takes over.

One can regard sparsity as an extreme type of disorder:
the rates are distributed over many orders of magnitude. Still,
unlike the d = 1 case, the implication of sparsity in d = 2
is not as dramatic: there is no phase transition between two
different results, but a smooth crossover. It is therefore clear
that our statements are consistent with those of older works
that relate to the diverging localization properties of the low
frequency vibrations in a disordered elastic medium [28].

The effective range hopping (ERH) procedure that we tested
in this paper is a refinement of well-known studies of variable
range hopping [7,11–15]. We used the insight of [7,13,14] that
connects VRH with the theory of percolation.

Disregarding possible inaccuracy in the determination of
the optimal rate, the ERH calculation provides a lower bound

for D. Accordingly, by obtaining a nonzero result it is
rigorously implied that D is finite. The purpose of the numerics
was to demonstrate that in practice the outcome of the ERH
calculation provides a very good estimate of the actual result,
interpolating very well the departure from linearity.

It was important for us to clarify that a large class of
networks can be treated on an equal footing. In particular
we demonstrated that the application of the ERH estimate
does not require any fitting parameters. We have verified
that the same prescription can be applied to both the d = 2
lattice model and the d = 2 random site model, provided one
uses the appropriate percolation threshold that is known from
percolation theory.

For the traditional Mott hopping model and its degenerated
version we obtained the refined expressions Eq. (47) and
Eq. (40), respectively. In these expressions the full dependence
on the dimensionality (d) is explicit, and the crossover to a
linear response as a function of the sparsity (s) is transparent.
Note that in the degenerate random site model the sparsity is
merely a geometrical feature, while in the nondegenerate Mott
model the sparsity depends on the temperature as implied by
Eq. (16).

We would like to reemphasize that the original motivation
for this work was the study of energy absorption by driven
mesoscopic systems. In this context the implication of the
semilinear crossover is the breakdown of linear response
theory. The latter issue has been extensively discussed in past
publications [27].
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APPENDIX A: LATTICE MODEL WITH N.N. HOPPING

For s � 1 the d = 1 random site model is essentially
equivalent to a lattice model with equally spaced sites, near-
neighbor transitions, and random ε. From the identification
ε = r/ξ it follows that the distribution of the “activation
energy” is

f (ε) = s exp(−sε), s ≡ ξ/r0. (A1)

This implies that the the distribution of the rates is

f̃ (w)dw = s ws−1dw

ws
0

[w < w0]. (A2)

The density of sites to which a transition can occur is

ρ(r,ε) = cLδ(r − r0) f (ε), (A3)

where cL = 2 is the coordination number. This corresponds to
the d = 1 case of Eq. (12).

The d = 2 version of the lattice model has no strict relation
to the d = 2 random site model. A popular choice is to assume
a box distribution for the activation energy within some interval
0 < ε < σ . The density of sites to which a transition can occur
is 2πrf (ε) for large r , as implied by Eq. (12). But for small r
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the effective density is given by Eq. (A3) with the coordination
number cL = 4.

APPENDIX B: QUASI-ONE-DIMENSIONAL
BANDED MATRIX MODEL

On equal footing we consider the quasi-one-dimensional
banded lattice model. This model is motivated by studies of
energy absorption [27]. In this context the transition rates are
determined by the Fermi golden rule (FGR). Hence we write

wnm = w0 e−εnm B(En − Em). (B1)

Here n and m are unperturbed energy levels of the system, but
we shall keep calling them “sites” in order to avoid duplicate
terminology. The density of sites relative to some initial site is
characterized by the same joint distribution function as for the
d = 1 network,

ρ(r,ε) = 2f (ε). (B2)

Here r = |En − Em| is the distance between the energy levels,
which is formally analogous to r = |xn − xm| in the random
site hopping model. We use here units such that the mean
level spacing is unity. In the later numerical analysis we
assume equally spaced levels such that the distance is simply
r = |n − m|.

In the physical context the band profile B(r) is determined
by the semiclassical limit, while the distribution of the ε values
is implied by the intensity statistics of the matrix elements. This
intensity statistics is known as Porter-Thomas in the strongly
chaotic case, corresponding to the Gaussian ensembles, but it
becomes log-wide for systems with “weak quantum chaos”
[19], reflecting the sparsity that shows up in the limiting case
of integrable system [32].

In the numerical analysis we have considered simple banded
matrices for which B(r) = 1 for r � b, and zero otherwise.
Accordingly 1 + 2b is the bandwidth. The elements within the
band are log-box distributed: this means that ε is distributed
uniformly over a range [0,σ ]. Note that log-box distribution
is typical of glassy systems, where the tunneling rate depends
exponentially on the distance between the sites.

APPENDIX C: NUMERICAL EXTRACTION OF D

In a diffusive system the coarse-grained spreading is
described by the standard diffusion equation, with an evolving
Gaussian distribution

ρ(x; t) =
d∏

i=1

1√
2πSx(t)

exp

[
− x2

i

2Sx(t)

]
, (C1)

where Sx(t) = 2Dt . It follows from this expression that

S(t) = 〈r2(t)〉 = (2d)Dt. (C2)

Starting with all the probability concentrated in one unit cell
we get for the survival probability

P(t) ∼ rd
0

(4πDt)d/2
. (C3)

The eigenvalues of the diffusion equation are

λk = Dq2
k , k = index, (C4)

where the possible values of the momentum are determined by
the periodic boundary conditions as q = (2π/L)�k. It follows
that the cumulative number of eigenstates per site is

N (λ) =
(

r0

2π

)d
�d

d

[
λ

D

]d/2

. (C5)

It is well known that the survival probability is related to the
eigenvalues of w through the relation

P(t) = 1

N

∑
λ

e−λt ≡
∫ ∞

0
g(λ)dλ e−λt . (C6)

For a diffusive system one can verify that the expressions above
for g(λ) and P(t) are indeed related by a Laplace transform.
More generally, it follows that D can be deduced from the
asymptotic behavior of g(λ) in the λ → 0 limit where the
diffusive description is valid. In contrast to that for large λ, we
expect g(λ) to coincide with the distribution of the decay rates
γn = ∑

m wmn, reflecting localized modes.

APPENDIX D: RELATION TO DEBYE MODEL

Consider a system of unit masses that are connected by
springs. Once can describe the system by a matrix w whose
off-diagonal elements wnm are the spring constants. The eigen-
frequencies are determined accordingly, namely, ωk = √

λk .
Assuming that the low lying modes are like acoustic phonons
with dispersion ω = c|q|, where c is the so-called speed of
sound, one deduces that

ωk = c|qk|, k = index, (D1)

Consequently the associated counting function is as in the
Debye model:

N (ω) =
(

r0

2πc

)d
�d

d
ωd. (D2)

Comparing the above expressions with Eqs. (C4) and (C5) it
follows that the calculation of c2 is formally the same as the
calculation of D.

APPENDIX E: RESISTOR NETWORK CALCULATION

The diffusion coefficient D is formally like the calculation
of the conductivity of the network. Therefore it can be
determined via a numerical solution of a circuit equation. It
is convenient to use the language of electrical engineering to
explain how the resistor network calculation is carried out in
practice. Accordingly we use in this appendix the notation G
instead of w for the matrix that describes the resistor network,
and σ instead of D for its conductivity. We define a vector
V = {Vn}, where Vn is the voltage at node n, analogous to
pn. We also define a vector I = {In} of injected currents. The
Kirchhoff equation [Eq. (1)] for a steady state can be written
as GV = 0.

If the nodes were connected to external “reservoirs” the
Kirchhoff equation would take the form GV = I . The matrix
G has an eigenvalue zero which is associated with a uniform
voltage eigenvector. Therefore, it has a pseudo-inverse rather
than an inverse, and consequently the Kirchhoff equation has
a solution if and only if the net current is

∑
n In = 0.
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For the purpose of calculating the conductivity we add a
source I1 = −1 and a drain I2 = 1. We select the location of
the source (site 1) and the drain (site 2) away from the end-
points. From the solution of the Kirchhoff equation we deduce

σ [d = 1] = [(V2 − V1)/L]−1, (E1)

where L is the distance between the contacts.
With regard to the quasi-one-dimensional model, we take

the distance between the contacts to be L′ = N/2 and
look at the voltage drop along an inner segment of length
L = L′ − 2b, to avoid the transients at the contact points.

To find the conductivity in the d = 2 case we select contacts
points that have distance L ∼ (N/2)1/2, and use the formula

σ [d = 2] = [(V2 − V1)/ ln(L/
)]−1, (E2)

where 
 ∼ 1 is the shift of the measurement point from the con-
tact point. Here the voltage drop is divided by ln(L/
) instead
of L, reflecting the two-dimensional geometry of the flow.

APPENDIX F: CALCULATION OF THE ERH INTEGRAL

The calculation of the ERH integral for the random site
model involved the incomplete � function [33]

�(
+1,x) =
∫ x

0
r
e−rdr = 
! EXP
(x) e−x. (F1)

We first consider the degenerate Mott model. We substitute in
Eq. (30), the w(r,ε) of Eq. (4), and the ρ(r,ε) of Eq. (12) with
Eq. (14). Thanks to the δ(ε) we are left just with a dr integration
that is split into the domains 0 < r < rc and r > rc. Namely,

DERH = w0�d

2d

∫ rc

0
e−rc/ξ

rd+1

rd
0

dr

+ w0�d

2d

∫ ∞

rc

e−r/ξ rd+1

rd
0

dr

= w0�d

2d
e−rc/ξ

rd+2
c

d + 2

1

rd
0

+ w0�d

2d

ξd+2

rd
0

�

(
d + 2,

rc

ξ

)

= w0�dξ
d+2

2d(d + 2)rd
0

�

(
d + 3,

rc

ξ

)
. (F2)

This leads directly to Eq. (40) with Eq. (39).
Turning to the nondegenerate Mott model we have to deal

with a two-dimensional integral dr dε that has, as in the
previous case, two domains w > wc and 0 < w < rc. The
two domains are separated by the line ε + (r/ξ ) = εc. It is
therefore natural to change variables:

x = ε + (r/ξ ), (F3)

y = 1
2 [−ε + (r/ξ )], (F4)

hence

DERH = w0�d

2drd
0

∫ εc

0
ξdx

∫ x/2

−x/2
dy e−εc

(
ξy + ξ

x

2

)d+1

+ w0�d

2drd
0

∫ ∞

εc

ξdx

∫ x/2

−x/2
dy e−x

(
ξy + ξ

x

2

)d+1

= w0�d

2drd
0

ξd+2e−εc
εd+3
c

(d + 2)(d + 3)

+ w0�d

2drd
0 (d + 2)

ξd+2 �(d + 3,εc)

= w0�dξ
d+2

2d(d + 2)(d + 3)rd
0

�(d + 4,εc). (F5)

This leads directly to Eq. (47) with Eq. (39).
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