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Statistical model for self-assembly of trimesic acid molecules into homologous series of flower phases
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The statistical three-state model is proposed to describe the ordering of triangular TMA molecules into flower
phases. The model is solved on a rescaled triangular lattice, assuming following intermolecular interactions:
exclusion of any molecules on nearest neighbor sites, triangular trio H-bonding interactions for molecules of the
same orientation on next-nearest neighbor sites, and dimeric H-bonding interactions for molecules of different
(“tip-to-tip”) orientations on third-nearest neighbor sites. The model allows us to obtain the analytical solution
for the ground state phase diagram with all homologous series of flower phases included, starting with the
honeycomb phase (n = 1) and ending with the superflower structure (n = ∞). Monte Carlo simulations are
used to obtain the thermodynamical properties of this model. It is found that phase transitions from disordered
to any of the flower phases (except n = 1) undergo via intermediate correlated triangular domains structure.
The transition from the disordered phase to the intermediate phase is, most likely, of the first order, while the
transition from the intermediate to the flower phase is definitely first order phase transition. The phase diagrams
including low-temperature flower phases are obtained. The origin of the intermediate phase, phase separation,
and metastable structures are discussed.
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I. INTRODUCTION

Self-assembly of molecular structures on surfaces is usually
caused by weak noncovalent (van der Waals, capillary, π -π ,
or H bond) intermolecular interactions. Precise and controlled
application of intermolecular forces makes possible to obtain
ordered supramolecular architectures on very small length
scales. The ability to tune the pattern of such two-dimensional
structures by external experimental parameters, such as tem-
perature, molecular concentration, and even size and shape of
a molecule, is the ultimate goal [1] of all ongoing experimental
and theoretical studies.

Apart from purely scientific interest, self-assembled mono-
layers are successfully applied in different fields of molecular
electronics and nanobiomedicine. Thus, individual molecular
layers have been proposed as active elements of molecular
electronic logic and memory devices [2,3] and used for infor-
mation [4] and high-density data storage [5]. Self-assembled
monolayers are applied in molecular photodevices [6] and for
efficient photocurrent generation [7] and construction of gas
sensors [8]. They can increase power density of the methanol
fuel cells [9] and be used as lubricants and for protective
coating [10]. Certain forms of alkanethiols self-assembled
on gold and silver might be used to study the interaction of
synthetic materials with biologically relevant systems [11,12].
Molecular arrays of organic molecules of trimesic acid (TMA),
as well as some other similar (TPA, TMLA and TDA)
molecules, represent templates for handling and organization
of functional species, particularly C60 [13,14].

The properties of cooperativity, selectivity, and direction-
ality make the H bonds extremely useful assembling element
of supramolecular structures. One of the most popular motifs
found in supramolecular assembly of H-bonded molecular ar-
rays is a two-dimensional honeycomb pattern, which might be
obtained by combining triangular [15–17], elongated [18,19],
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or mixed triangular and elongated [20] molecular building
blocks. Very interesting two-dimensional molecular networks
are composed of organic TMA molecules [14,21–28]. TMA
is a simple molecule of a strict triangular form composed
of three carboxyl acid groups ordered in a planar triangular
arrangement around the central phenyl ring. The carboxylic
acid groups at the vertices of the triangle allow the molecule to
act as a hydrogen-bonding unit and create porous honeycomb
and other ordered molecular networks.

The homologous series of flower phases (Fig. 1), of which
the honeycomb phase is the first member in a row, is the
most fascinating sequence of self-assemblies built by TMA
molecules. All this sequence might be defined by the index n.
Increase of n corresponds to increase of a distance between
the centers of neighboring hexagons (or unit cell of the
structure). For the last member of this series, the superflower
phase (n = ∞), this distance would be infinity, and the unit
cell of this phase is a rhombus connecting centers of four
neighboring molecules. The flower structures have threefold
symmetry, and all carboxylic acid vertices are engaged in
dimeric and/or trimeric H bonding. Honeycomb phase (n = 1)
is characterized by a dimeric (“tip-to-tip”) H-bonding only.
With further increase of n the number of dimeric bonds
decreases and trimeric increases. The flower phases with n > 1
have both dimeric and trimeric motives, except for n = ∞,
which is characterized by trimeric H bonding only.

The flower phases of TMA molecules are obtained either
at ultra-high vacuum (UHV) conditions [honeycomb phase on
Cu(100) [26], Au(111) [27] and the series up to n = 8 and
n = ∞ on Au(111) [28]] or on solid-liquid interface by tuning
an appropriate concentration of solvent fat acids on highly
ordered pyrolytic graphite (honeycomb and flower n = 2 phase
[21–23] and fragments of superflower phase with alcohols
[14]). The most interesting STM experiment demonstrating the
almost all homologous sequence of such phases was performed
by Ye et al. [28].

Statistical models, which make possible to determine
the stability limits of ordered structures, are successfully
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FIG. 1. (Color online) Schematic view of homologous series of flower phases formed by triangular TMA molecules: (a) honeycomb phase
(n = 1) with dimeric interactions only; (b) flower (n = 2) and (c) second-generation flower phase (n = 3) with both dimeric and trimeric
interactions; (d) superflower phase (n = ∞) with trimeric interactions only. Unit cell in (a)–(c) is shown by a gray (red in electronic version)
rhombus connecting the centers of hexagons.

employed for adatoms on surfaces. They are less popular
for simulation of ordering of molecular structures as due
to large sizes of molecules as well as complicated and
sometimes even exotic conformations, which makes it diffi-
cult to unambiguously choose the appropriate intermolecular
interactions. Nevertheless, the models used for liquid crystals
[29], polymers [30], proteins [31], or colloid particles [32,33]
are now applied for description of self-assembling molecular
systems [16,20,34,35]. These models are more advanced forms
of the two-state Ising or lattice-gas models and frequently their
extensions to larger number of states, since ordering molecular
species tends to demonstrate multiorientational behavior. The
molecules are reduced to rather simple geometrical shapes
and orientations on a lattice, and the dynamics of molecular
ordering is governed by defined interaction rules. The simula-
tion of these models allows one to predict the phase diagrams
and growth dynamics of different self-assembled molecular
structures.

In this paper the statistical model for ordering of triangular
TMA molecules into homologous series of flower phases is
presented. Our model is based on experimental observation
[21–23,28] that the self-assembly of TMA molecules into
flower phases is caused by two types of H-bond intermolecular
interactions: the dimeric interactions of two molecules of
different orientations and the trimeric interactions of three
molecules of the same orientation. To simplify the model,
we assume the dimeric interactions act between a pair of
molecules separated by third-nearest neighbor (3NN) dis-
tances of triangular lattice and trimeric interactions among
a trio of molecules separated by next-nearest neighbor (2NN)
distances. The proposed model is the three-state model: The
two states differ in 60-degree rotation around the center of the
molecule, and the third state is the vacancy state. The model
makes possible to obtain a rich phase diagram of flower phases
and captures the essential properties of a larger-scale (exper-
imental) behavior. By using this model, we obtain analytical
expressions for ground state energies of homologous series of
flower phases and determine thermodynamical properties of
these phases by Monte Carlo (MC) simulations.

II. MODEL

A statistical model for description of homologous series
of flower phases might be defined on an original Au(111)

lattice (with lattice constant aAu), since a matrix transformation
between the lattice vectors of the honeycomb TMA structure
(n = 1) and Au(111) is known [27]. In this case the distance
between the centers of two adjacent TMA molecules would
correspond to 2

√
3aAu, which is the sixth nearest neighbor

(6NN) distance of the original triangular Au(111) lattice.
The flower phases with n > 1 were not identified in

experiment [27], but the packing density of the honeycomb
phase in this experiment (0.8 mol/nm2) was just 6% smaller
than that obtained in experiment [28], where other flower
phases were found. Thus, it is quite reasonable to assume
that the trio H-bond interaction (vital for formation of flower
phases with n > 1) might be important when three molecules
form an equilateral triangle with the sides equal to 3aAu. This
distance corresponds to a 5NN distance of initial Au(111)
lattice.

Still, for statistical models, with particles moving over the
sites of the lattice, such long (5NN and 6NN) distances are
rather inconvenient. Therefore we propose the scaling of the
underlying lattice as shown in Fig. 2. The number of sites for
molecule movement decreases under such transformation, but

FIG. 2. (Color online) Scaling of the underlying lattice for TMA
molecules. The TMA system in a honeycomb phase on Au(111) is
transformed to the same system on a new underlying lattice with
distance between the TMA molecules 2a = 2aAu

√
3. This distance

is 6NN distance of a triangular lattice on Au(111) and corresponds to
3NN distance of a new lattice.
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FIG. 3. (Color online) Unit cells of (a) honeycomb (n = 1),
(b) flower (n = 2), (c) second-generation flower (n = 3), and (d)
third generation flower phases in a 2NN-3NN model on a new
underlying triangular lattice. Molecule arrangements in (a) might be
an illustration of two states of the molecule (top molecule, si = 1, and
bottom molecule, si = −1). Bond vectors (α = ±1) are also shown
in (a) by black arrows.

the distance between the centers of two TMA molecules in a
honeycomb phase is just 2a, which is the 3NN distance of a
new lattice. The distance between the molecules of a triangle
forming trimeric H bonds corresponds just to 2NN distance of
a new lattice, a

√
3.

Thus, we propose the three-state model on triangular lattice
with lattice constant a = √

3aAu. Two states of the molecule,
corresponding to variable si = ±1, are shown in Fig. 3(a). The
variable is defined on a lattice site i, where the center of the
molecule resides. These states differ in 60-degree rotation of
the molecule and correspond to two orientations encountered
in a honeycomb phase (and all other flower phases) of TMA
molecules. The third state, si = 0, is the vacancy state. Such
choice of nonzero states defines the dimeric H bond of two
molecules at 3NN distances, if the orientations (states) of these
molecules are different. In contrast to two-state models, in
this model there might be two different “antiferromagnetic”
(+1 · · · −1) orientations of triangular molecules [32,35]. One
corresponds to dimeric H-bond “tip-to-tip” intermolecular
orientation, shown in Fig. 3(a), and we denote its interac-
tion energy as ε1. The other corresponds to “side-to-side”
orientation, and we assume its interaction energy to be zero.
Strictly, the pair energy v3NN(si,sj ; α) depends on the direction
of the connecting lattice (bond) vectors α = ±1 shown in
Fig. 3(a). The only nonzero pair energies in our model are
v3NN(1, −1; 1) = ε1 for directions corresponding to α = 1 and
v3NN(−1,1; −1) = ε1 for directions corresponding to α = −1.

In our model the trio interaction εt might be created if three
molecules of the same nonzero state (either s = 1 or s = −1)
form a common triangle and the carboxylic acid vertex of each
of the molecule is directed to the center of this triangle. This is
the way TMA molecules residing on 2NN distances in between
form the trimeric H bond [see Figs. 3(b)–3(d)]. However, the
pair energy of two molecules separated by 2NN distance is
assumed to be zero as well as pair energies of molecules
at distances exceeding 3NN distance. The location of two
molecules at the nearest neighbor (1NN) sites is forbidden
due to the large size of the molecules (infinite repulsion,
i.e., exclusion). Thus, the model is defined by dimeric and
trimeric H-bond interactions for intermolecular distances
corresponding to 3NN and 2NN distances of a triangular
lattice, respectively. In general, our “diluted” Hamiltonian

might be written in a form

H = −1

2

∑
α

∑
{i,j}α

v3NN(si,sj ; α)

−1

3
εt

∑
i,j,k

δ2NN(si,sj ,sk) + μ
∑

i

s2
i . (1)

Here the first sum is defined on 3NN distances and all
v3NN(si,sj ; α) = 0, except v3NN(1, −1; 1) = v(−1,1; −1) =
ε1. The second sum is defined on 2NN distances, and
δ2NN(si,sj ,sk) is equal to 1 when si = sj = sk = 1 or si =
sj = sk = −1 and carboxylic vertices are directed to the center
of a common triangle, and zero otherwise, including the case
δ2NN(0,0,0) = 0. Namely, the neglect of the term with all zero
states distinguishes the second term from the usual three-state
ferromagnetic Potts model and δ2NN(si,sj ,sk) from the three-
state Kroeneker delta-type function δ(si,sj ,sk). The vacancy
states exist, but have no effect to intermolecular energies. Only
at μ → −∞, when the model (1) reaches the, so-called, Ising
limit (two-state model, no vacancy state), δ2NN(si,sj ,sk) =
δ(si,sj ,sk). The third term introduces different molecular
concentration, and μ denotes the chemical potential.

III. GROUND STATE ENERGIES

In our 2NN-3NN model the ground state energies of the
three main phases (honeycomb n = 1, flower n = 2, and
superflower n = ∞) are

E1 = −c1
(

3
2ε1 − μ

)
,

E2 = −c2
(
ε1 + 1

3εt − μ
)
, (2)

E∞ = −c∞(εt − μ),

where as a measure of phase concentration we choose the
coverage of lattice sites occupied by the center of TMA
molecule. Therefore we can write c1 = chon = 1/6, c2 = cfl =
2/9, and c∞ = csfl = 1/3. In a similar way we can write
the ground state energies of other flower phases with n > 2.
Actually, for a 2NN-3NN model it is possible to find the
analytical expression for these energies as a function of n

in a form

En = −cn

(
3

n + 1
ε1 + n − 1

n + 1
εt − μ

)
, (3)

where cn = n
3(n+1) . The phase diagram represents an infinite

set of E(n) = E(n − 1) lines in εt/ε1 and μ/ε1 coordinates
(see Fig. 4). With increase of n each line intercepts a smaller
interval of μ/ε1, and the range of values at which the n-th
phase exists decreases. At large n the region of n-th phase
existence becomes infinitesimally small. The lines coincide at
the εt/ε1 = μ/ε1 = 3/2 point, and this is the largest value of
chemical potential when the molecules still exist on a lattice.
The most important lines are those which separate honeycomb
(n = 1) and flower (n = 2) phases, μ/ε1 = − 1

2 + 4
3εt/ε1, and

flower and second generation flower (n = 3) phases, μ/ε1 =
− 5

4 + 11
6 εt/ε1. The general form of the E(n) = E(n − 1) line

is μ/ε1 = −A(n) + B(n)εt/ε1, where A(n) = 3(n2−n−1)
n(n+1) and

B(n) = 3n2−n−2
n(n+1) . Thus, the superflower phase would exist

when n → ∞ and μ/ε1 < −3 + 3εt/ε1.
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FIG. 4. Ground state phase diagram of flower phases.

There is one phase in this model which has lower energy
than the flower phases at low values of εt/ε1. This is the phase
frustrated on 3NN distances. The ε1 is just one of (+1 · · · − 1)-
type of interactions bonding inequivalent nonzero orientations.
It corresponds to “tip-to-tip” H bonding in chemical terms
or antiferromagnetic interaction in magnetic terms. Two other
bonding types of triangular molecules with interacting vertices
are also conceivable on 3NN sites [25,35]. They correspond to
“tip-to-side” (ferromagnetic) interaction of two molecules of
the same nonzero orientation and side-to-side (antiferromag-
netic) interaction of two molecules of different nonzero orien-
tation. We neglect them in our model. Still, at negative values
of chemical potential μ, when concentration increases, many
more molecules start to appear at the centers of hexagons,
i.e., at 3NN distance from the nearest molecules forming the
honeycomb ring. Frustration on 3NN distances is observed at
the Ising limit of the three-state model when it transforms into
the two-state model (no zero state), when all hexagon centers
are occupied. Actually, at that concentration we have the
situation equivalent to the nearest-neighbor antiferromagnetic
Ising model on a triangular lattice, which has the frustrated
phase as the ground state. The only difference here is that at
εt/ε1 = 0 we have the frustrated phase on 3NN distances. The
ground state energy of this phase can be easily expressed as

Efr = −cfr(ε1 − μ), (4)

and the concentration, cfr = 1/4, comes from filling of the
third (zero) sublattice of the honeycomb phase (2). Equating
this expression to the energy of each of flower phases (3)
we obtain the set of lines separating frustrated and flower
phases. They are μ/ε1 = n−1

(3−n)(n+1) [3(n − 1) − 4n εt

ε1
], except

for n = 3 when the line is εt/ε1 = 0.5. The frustrated phase
is shaded gray in Fig. 4.

IV. SIMULATION RESULTS

The thermodynamics of this model was simulated by the
MC method. We used the Metropolis algorithm and the,
so-called, Glauber dynamics. The calculation procedure was
the following: (1) the sites of triangular lattice were occupied
with molecules in states +1, −1, and 0, i.e., the lattice
was filled with molecular concentration c (defined as the
coverage of sites occupied by the center of TMA molecule)

corresponding to some fixed chemical potential μ; (2) the
molecule was chosen randomly and its initial energy E1 was
calculated; (3) the initial state of that molecule was changed
(with equal probability) to one of two remaining states, and the
final energy E2 was calculated; (4) the new state was accepted,
if the energy difference �E = E2 − E1 < 0, or accepted with
the probability ∼exp(−�E/kT ), if �E > 0. Using this type
of dynamics the molecular concentration was changed at fixed
chemical potential. Using the, so-called, Kawasaki dynamics
the concentration is fixed, and the molecule chosen randomly
makes jumps from one site to another with the probability
∼exp(−�E/kT ). Glauber dynamics is very convenient for
description of statical properties of ordering systems and less
time consuming than the Kawasaki dynamics.

For calculations we used the triangular lattices of sizes
L = N × N with N from 48

√
3 up to 96

√
3 with periodic

boundary conditions. Most calculations for small n = 1–3
were performed on a former lattice. We have chosen this
lattice as the optimal, i.e., further increase of the lattice size
over the optimal one does not essentially change the phase
transition temperature.

To choose the optimal work regime and accuracy of simula-
tion, we varied the limiting number of MC steps per site (MCS)
up to 107. Except a very narrow range of temperatures related to
a first-order phase transition point from intermediate-to-flower
phase, Tc2, for all other ranges of temperature the MCS
limit, 5 × 105–106, was quite sufficient to stabilize the energy
minimum (at that particular temperature). For the particular
range around Tc2 we could use two simulation scenarios:
either take around 107 MCS (a bit better accuracy, but longer
computations) or take around 2 × 106 MCS (obtained as a
reasonable estimate), perform several independent runs, and
average over these runs. We have chosen the latter way and took
five independent runs for averaging, which, for small n < 4,
were performed on a N = 48

√
3 lattice. Thus, the accuracy in

our calculation of this transition point is determined by a spread
of results used for averaging, and error bars do not exceed
±0.01 for kBTc2/ε1. The accuracy of results for the phase
transition point from disordered to n = 1 phase (kBTc/ε1)
and from disordered to intermediate phase (kBTc1/ε1) was
determined by the temperature step of our calculations (mostly
±0.002).

For main calculations we have chosen the ratio of interac-
tion constants εt/ε1 = 1.2. This value is related to calculated
H-bond interactions for dimers and trimers of benzoic acid and
TMA molecules. According to gas-phase density functional
theory calculations [23], the H-bonding enthalpy in cyclic
dimer and cyclic trimer of benzoic acid is −20.4 and
−26.2 kcal/mol, respectively; i.e., H bonds in the dimer are
1.5 kcal/mol stronger than in the trimer. It should be noted
that similar values are obtained using gas-phase semiempirical
MOPAC calculations [36]: The values of H-bonding enthalpies
for dimer and trimer are, respectively, equal to −20.867 and
−24.45 kcal/mol for benzoic acid and −20.3 and −25.2
kcal/mol for TMA molecules [37]. Though the magnitudes
of interactions in all gas-phase calculations might be overesti-
mated, the ratio of εt/ε1 is quite reasonable.

The ground state calculations give the following lim-
its for flower phases at εt/ε1 = 1.2: μ/ε1 > 1.1 (n = 1),
0.95 < μ/ε1 < 1.1 (n = 2), 0.87 < μ/ε1 < 0.95 (n = 3),
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(a) (b)

(c) (d)

FIG. 5. (Color online) Temperature dependencies of (a) average energy, (b) specific heat, (c) concentration, and (d) order parameter for
flower phases n = 1 (μ/ε1 = 1.15), 2 (μ/ε1 = 1), 3 (μ/ε1 = 0.9), 4 (μ/ε1 = 0.84), 5 (μ/ε1 = 0.8), 6 (μ/ε1 = 0.77), 7 (μ/ε1 = 0.75), and
superflower phase n = ∞ (μ/ε1 = 0.6) obtained for L = [(48 − 50)

√
3]2 lattices. Dashed curves in (a), (c), and (d) mark the phase transition

temperature points. The peaks in (b) indicate the Tc1 point.

0.82 < μ/ε1 < 0.87 (n = 4), 0.786 < μ/ε1 < 0.82 (n = 5),
etc. The transition to the superflower phase n → ∞ is at
μ/ε1 � 0.6. Further, by using the term “n = · · · phase region”
we refer to the ranges of μ, where according to the ground
state calculation that particular phase n has to occur at low
temperature.

We calculated the temperature dependencies of some
important functions characterizing the phase transition points
at different values of chemical potential. These functions
are average energy, E = 〈H〉/L, dimensionless specific
heat, Cv/kB = (〈H2〉 − 〈H〉2)/L(kBT )2, concentration, c =∑

i s
2
i /L, and phase order parameter. The last is defined as

the average number of certain molecules surrounding each
molecule and was obtained from the formula

ηn = 1
3N3NN − 1

6N2NN, (5)

where N3NN is the average number of tip-to-tip (antiferro-
magnetic) neighbors at 3NN distance and N2NN is the average
number of second nearest neighbors of the same (ferromag-
netic) orientation satisfying the trimeric bond condition. The
coefficients are chosen in such a way that for ideal honeycomb
and superflower phases η1 = 1 and η∞ = −1, respectively.
Correspondingly, for ideal flower phases, η2 = 1/3, η3 = 0,
η4 = −1/5, η5 = −1/3, etc., or generally ηn = 3−n

n+1 .
Temperature dependencies of main functions, characteriz-

ing phase transition points obtained for different flower phases
by MC calculations, are presented in Fig. 5. The curves were
obtained by increasing temperature starting from an ideal
phase (which in accordance with the ground state results has
to occur at that particular value of chemical potential μ) and at
each new temperature step taking the configuration obtained
at a previous step.

We found that the transition from the n = 1 to disordered
phase at Tc is the direct transition. For other flower phases

the transition from flower to disordered phase is mediated by
a correlated triangular domains structure which we further
call the intermediate (I) phase. This phase exists between
the phase transition points Tc1 (disordered−I phase) and Tc2

(I-phase−flower phase). In comparison to disordered phase,
this phase has strong correlations corresponding to ε1 and εt

bonding, but no regular flower structure. The I-phase structure
is characterized by triangular domains of trimerically bonded
molecules of one orientation separated (usually by dimeric
bonds) from triangular domains of molecules of another
orientation. Contrary to ordering in ideal flower phases, the
I-phase pattern does not show well-defined long-range order,
except for some temperature regions above the n = 2 phase
which are close to n = 1 region. An essential feature of the
flower phases is the nicely ordered set of honeycomb hexagons
which are found at the angles of a unit cell of Fig. 3. Thus, the
I phase usually has a very small number of regular tip-to-tip
hexagons, except for the mentioned region above the n = 2
phase, where small honeycomb domains might be seen.

The specific heat Cv at Tc and Tc1 has very nice peak
[Fig. 5(b)]. The Cv at Tc2 has a small “hump” discernible
for transitions into phases with small index n(<4), but hardly
visible for those with higher n.

Here we describe the transitions to some of flower phases
in more detail.

A. n = 1 − 2 phase region

The n = 1 and n = 2 phases are most popular flower struc-
tures of the series. They both were experimentally obtained
at UHV conditions on Au(111) [28] and graphite [14,21,22].
The honeycomb phase was also found in other experiment on
Au(111) [27] and in a slightly distorted form on Cu(100) [26].
These two phases are characterized by the simplest symmetry
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(a)

(b)

FIG. 6. (Color online) Temperature dependencies of (a) average
energy and (b) concentration in n = 1 and 2 phase regions obtained
using runs with increasing (T -up) and decreasing (T -down) temper-
ature. The energy curves of n = 1 region are shifted up by 0.01 for
clarity.

in comparison to other flower phases and therefore are most
easily accessible in both simulations with increasing as well
as decreasing temperature (i.e., in simulation starting from
high-temperature random structure). In Fig. 6 we demonstrate
temperature dependences of energy and concentration for both
types of simulation.

In the n = 1 phase region the energy has a jump at transition
point Tc = Tc1 = Tc2 that implies first order phase transition.
It is interesting to note that this jump is observed even for
small lattices. This makes this transition a bit different from
such typical first-order phase transitions, as the 10-state Potts
model [38,39] or modified XY model [40], which demonstrate
the steepening of E(T ) dependence at Tc with increase of
lattice size L = N2. Possibly this difference is a manifestation
of a very strong first order phase transition in our model,
caused by proximity of the honeycomb-gas phase separation
experienced by the system at low concentration of molecules.
However, temperature hysteresis in our calculations of Tc to
n = 1 phase is almost negligible. The transition temperature

Tc demonstrates linear behavior, Tc(N ) − Tc(∞) ∼ N−2, as
observed for the first order phase transitions [38,40].

We obtain two phase transitions in the n = 2 phase region.
The high-temperature phase transition at Tc1 from disordered
to I phase is characterized by a continuous E(T ) dependence
and a peak of specific heat. The low-temperature phase
transition from I phase to n = 2 phase is characterized by
energy and concentration jumps and small hysteresis at Tc2.

The transition at Tc2 is rather similar to the disordered-to-
n = 1 phase transition at Tc, because of similar (yet smaller)
jump in energy. Moreover, the transition temperature Tc2(N )
demonstrates linear behavior with N−2, which allows one to
attribute the transition to the first order phase transitions.
However, there are some differences between Tc and Tc2.
First, the hysteresis is observed at Tc2, which is not seen at
Tc. Second, the peak of specific heat which exists at Tc is
substituted by a small hump at Tc2, and, instead, the Cv peak
occurs at Tc1. Thus, it looks like with decrease of μ (increase
of c) for further members of homologous series the transition
at Tc splits into two transitions at Tc1 and Tc2, and the I phase
is needed as a prerequisite to obtain the flower structure for
phases with n > 1.

The nature of the phase transition at Tc1 is, most likely, also
of the first order. Though around Tc1 there is no hysteresis and
the E(T ) dependence is continuous and steepens rather weakly
with N , the Tc1(N ) is linear with respect of 1/N2, and the
Binder cumulant, V4 = 1 − 〈E4〉/3〈E2〉2, demonstrates a deep
minimum in between the value 0.67 (above and below Tc1).
Certainly more accurate calculations have to be performed in
order to unambiguously determine the nature of these phase
transitions.

The snapshots in Fig. 7 reveal gradual reconstruction
process occurring with decrease of temperature: Below Tc1

the I phase is obtained [Fig. 7(b)] with some domains of the
n = 1 structure; with further decrease of temperature a few
n = 2 domains are created, and such a situation [Fig. 7(c)] is
conserved almost up to the transition point at Tc2, where the
n = 2 phase is abruptly established. A similar tendency is seen
in concentration dependencies. When temperature-decreasing
simulation is used, the system at Tc2 moves from the I phase
straight to an ideal n = 2 structure (c = 2/9 = 0.222).

One more interesting feature of the n = 1 − 2 phase region
is the possibility to obtain the phase transition from the n = 1
to 2 phase with temperature. In our model this transition occurs
at higher temperature inside the n = 2 phase region, but close
to the n = 1 − 2 phase boundary (obtained in ground state
calculation at T = 0). This calculation demonstrates that the
phase boundary is at μ/ε1 = 1.1. But actually down to as low

(a) (b) (c) (d)

FIG. 7. (Color online) Snapshots at different temperature at μ = 1 (n = 2 phase region). Here (a) kBT /ε1 = 0.52 (disordered phase),
(b) 0.43 (I-phase, T < Tc1), (c) 0.39 (I-phase, but T very close to Tc2), and (d) 0.30 (n = 2 phase, T < Tc2). Two states of the molecule are
represented by dark and light triangles (blue and orange in electronic version).
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FIG. 8. (Color online) Temperature dependencies of energy and
concentration (inset) for n = 3 (μ/ε1 = 0.9), n = 4 (μ/ε1 = 0.85),
and n = 5 (μ/ε1 = 0.8) phase regions obtained with increasing (T -
up) and decreasing (T -down) temperature. For clarity the energy
curves of n = 4 and 5 regions are shifted down by 0.01 and 0.02,
respectively.

as μ/ε1 = 1 the n = 1 phase is still obtained in simulations
with decreasing temperature. In simulations with increasing
temperature at 1 < μ/ε1 < 1.1 the transition from the n = 2 to
the n = 1, and only with further increase of T to the I phase, is
obtained. The c(T ) dependence in this interval of chemical po-
tential is illustrated in Fig. 6(b) by the curve for μ/ε1 = 1.04.

B. n = 3 − 5 phase region

These and some further phases were experimentally found
only at UHV conditions on Au(111) [28].

Our results in regions corresponding to those three phases
are shown in Fig. 8, and they are qualitatively similar to
those obtained in the n = 2 phase region. However, with
increase of n the size of temperature hysteresis increases,
and the ideal structure is no longer so easily accessible for
runs with decreasing temperature. In the n = 3 phase region
the majority of runs successfully reach the ideal structure.
In Fig. 8 we demonstrate the successful run into the n = 4
structure, but only about half of such runs reach the n = 4
structure; the other half freezes in some local minima of the I
phase with the structure corresponding to mixture of domains
of several phases. Usually they are formed of several large
triangles (corresponding to much larger n) surrounded by one
or two domains of phases with n smaller than expected in ideal
case. Only such a type of domains is obtained for runs with
decreasing temperature in the n = 5 region; i.e., we do not
obtain the ideal n = 5 phase at low temperature.

The successful c(T ) dependence obtained during runs with
decreasing temperature shows that transition from the I phase
to the flower phase occurs by abrupt decrease of concentration
at Tc2 almost down to the ground state phase concentration.
The “freezing” in domain structure usually occurs without
visible change of concentration at Tc2. This is illustrated in the
inset to Fig. 8 by a run in the n = 5 region.

In Figs. 9(a)–9(d) we present the snapshots just above and
below the Tc2 point for successful transitions into the n = 3 and
4 phases obtained in simulations with decreasing temperature.
The snapshots for transition into the n = 3 phase are taken at

(a) (b)

(c) (d) (e)

8

5
6

8
7

FIG. 9. (Color online) Snapshots just above and below Tc2

for runs with T -down. The n = 3 phase region (μ/ε1 = 0.9):
(a) kBT /ε1 = 0.36 and (b) 0.34; the n = 4 phase region (μ/ε1 =
0.85): (c) kBT /ε1 = 0.308 and (d) 0.300. The run to n = 5 is
represented by a low-temperature (kBT /ε1 = 0.216) snapshot (e) of
a frozen I phase obtained for 180

√
3 × 180

√
3 lattice at μ/ε1 = 0.8.

Some larger domains of different structures in (e) are indicated by
circles.

two close temperature points, but the difference in structures
of I (a) and n = 3 (b) phases is still visible. The process of
transition to the n = 4 phase is already started at kBT /ε1

= 0.308 (c) and manifests itself by domains of both I and
n = 4 phases. The transition is finished with a very small
decrease of temperature down to kBT /ε1=0.300 when an ideal
n = 4 structure is abruptly established (d). Though, we did
not obtain the graduation to the ideal n = 5 phase for runs
with decreasing temperature, we used to obtain such domains
in different frozen I-phase structures. We do not exclude the
possibility that successful runs could be possible for very large
lattices. The largest one we used in the n = 5 phase region
(μ/ε1 = 0.8) had the size 180

√
3 × 180

√
3, and the I phase

frozen at low temperature had the domains of the n = 5–8
phases [see Fig. 9(e)].

C. n = ∞
We do not obtain the Tc2 point and ideal flower structure

for phases with n > 5 (μ/ε1 < 0.84) in simulations with
decreasing temperature, but the transition to the I phase at Tc1

is clearly seen, and Tc1 increases with increase of n. Neither
energy nor concentration experiences any abrupt changes
related to formation of the flower phases. But the domains
of the I phase are formed, and the system gradually freezes in
one of multiple local minima of the I phase.

In the superflower region (as well as for any very large
n) the difference between the results of temperature up and
down simulations vanishes, and the former does not show any
hint of anomaly at Tc2. In our calculations the superflower
phase, which exists below μ/ε1 = 0.6, at low temperature
always chooses the configuration characterized by several huge
domains as shown in Fig. 10. The phase transition temperature
kBTc1/ε1 = 0.58 at μ/ε1 = 0.6, and this temperature increases
with further decrease of μ.

D. Phase diagrams

The phase (μ,T ) diagrams obtained in simulations with
decreasing and increasing temperature are presented in Fig. 11.
The transition temperature Tc1 from disordered to n = 1 and
I phases increases with increase of phase index n, while Tc2

decreases. Thus, in our model we obtain that the stability of
a whole ordered region associated to some n (I phase and n
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(a) (b) (c)

(d)

FIG. 10. (Color online) Temperature dependencies of energy and
concentration [(d) inset] for n = ∞ (μ/ε1 = 0.6) phase region ob-
tained with increasing (T -up) and decreasing (T -down) temperature.
Snapshots in insets are (a) kBT /ε1 = 0.6, (b) 0.5, and (c) 0.2.

phase) increases, but the stability of the ideal flower phase
itself decreases with increase of n.

There are two interesting features of the diagram obtained
in simulations with decreasing temperature [Fig. 11(a)]. The
first is related to the mentioned fact that we cannot obtain the
Tc2 point for n > 4. The second might be seen comparing
the ranges of chemical potential corresponding to some
flower phase obtained in ground state and finite temperature
calculations. The phases with smaller index n = 1 and 2
“misappropriate” part of the μ range corresponding to the
neighboring n + 1 phase as known from the ground state
calculations; e.g., in MC calculations the n = 1 phase exists

(a) (b)

FIG. 11. (Color online) Phase diagram in (μ,T ) coordinates
obtained with (a) decreasing and (b) increasing temperature. Dots
are simulation results. In the electronic version the color of dots mark
transitions to or from different phases: black (I phase), gray (n = 1),
red (n = 2), brown (n = 3), blue (n = 4), purple (n = 5), and orange
(n = 6). Dashed vertical lines and numeration of flower phases at
lower temperature indicate the ground state limits of flower phases.
Dashed vertical lines, downward arrows, and numeration of phases
close to the Tc2 point in (a) are given to demonstrate the difference
between the finite temperature and ground state results. The accuracy
of Tc2 points is not shown here for convenience, but the error bars do
not exceed kBT /ε1 = ±0.01.

FIG. 12. Phase diagram in (c,T ) coordinates. Dashed lines
without dots close to n = 2 and 3 phase regions are our conjectures.
The two-phase 1 + 2 area (shown in gray) is obtained from c(μ)
calculations between kBT /ε1 = 0.4 and 0.37. The accuracy of Tc2

points is not shown here for convenience, but the error bars do not
exceed kBT /ε1 = ±0.01.

down to μ/ε1 = 1.0 instead of 1.1 and the n = 2 phase down
to μ/ε1 = 0.90 instead of 0.95.

In Fig. 11(b) the bell-shaped tops of n = 1, 2, and partly
3 phase might be distinguished in simulations with increasing
temperature. The results for transitions to other phases also
imply some kind of plateau inside the ranges of μ associated
to that particular phase. For simulations with increasing
temperature we also managed to find the sequence of phase
transitions at finite temperature, 2 → 1 → I → disordered
and 3 → 2 → I → disordered, at the borders of n = 1 − 2
and n = 2 − 3 phases, respectively.

Using the results of temperature dependencies of molecular
concentration with decreasing temperature we obtained the
phase (c,T ) diagram including the interval of concentrations
of the first three flower phases (Fig. 12). It is seen that the
flower phases in their pure form might be obtained at concen-
trations corresponding to (or rather close to) stoichiometric
concentrations of the phases n = 1, 2, and 3. The top of the
n = 1 phase is a bit shifted towards higher concentration due
to the tendency of this phase at finite temperature to exist at
such values of μ, which (according to the ground state results)
have to belong to the n = 2 phase.

The model allows for large two-phase regions between
neighboring phases. We found the two-phase regions, 1 + I,
2 + I, and 3 + I, which separate pure flower phases from the
I phase. In c(T ) calculations we did not find the two-phase
region 1 + 2, but the data from c(μ) calculations clearly imply
that it should exist at temperature values a bit lower than that
of the 1 + I region. Therefore we added this region (shadowed
gray) into the (c,T ) diagram of Fig. 12.

E. Metastable structures

The (μ,T ) phase diagram might be also obtained from c(μ)
dependencies at different values of temperature. These calcu-
lations allow to find the structure existing at concentrations
in between the stoichiometric concentrations of two phases,
e.g., n = 1 and 2. The jump in concentration c2(T ) − c1(T )
at some value of μc indicates the existence of a two-phase
(phase separation) region; i.e., two phases coexist in between
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FIG. 13. Phase diagram in (μ,T ) coordinates showing stable
transitions between 1, 2, and I phases (a) and some metastable
transitions between the phases 1 and 3, 2 and 5, 3 and 7 [(b), (c)]. See
the text for explanation. Here the areas shaded gray and the denotation
A/B indicate c(μ) hysteresis regions between phases A and B, like
those shown in Fig. 14. The accuracy of Tc2 points is not shown here
for convenience, but the error bars do not exceed kBT /ε1 = ±0.01.

c1(T ) and c2(T ) at some particular temperature T (note that
this μc is not necessarily the one obtained from ground state
calculations). Also, the hysteresis is sometimes found [16,35]
in c(μ) dependencies. It defines the stability limits of two
phases and usually broadens with decrease of temperature.
The “real” μc for concentration jump is expected between the
range of μ values limited by the hysteresis.

It should be noted that the c(μ) curves might be a bit
misleading in MC calculations at low temperature, since
for complicated structures with many local energy minima
they tend to demonstrate spurious transitions to metastable
structures. On the other hand, it is quite possible that such
metastable transitions occur in real experiments.

We performed the c(μ) calculations with increasing and
decreasing chemical potential μ just below Tc2. The results
entirely based on these calculations are shown in (T ,μ)
diagrams of Fig. 13. We did not find any metastabilities in
n = 1 and 2 phase regions at kBTc2/ε1 � 0.37. This statement
is based on a feedback of our results: The transition between
two neighboring phases is reversible and does not depend on
choice of initial phase for hysteresis calculations. The c(μ)
behavior in this temperature range is shown in Fig. 14, and the
results are generalized in (μ,T ) diagram in Fig. 13(a), where
the hysteresis regions are shaded gray. In between kBTc2/ε1 =
0.37 and 0.4 there exist pure structures n = 1 and 2 and
hysteresis regions between phases n = 1 and 2, as well as
n = 2 and I phase. The diagram basically corresponds to that
obtained in Fig. 11. It should be noted that the initial phase
for c(μ) simulation is always chosen in accordance with the μ

limits defined by the ground state calculations.
The c(μ) dependencies at lower values of temperature,

kBTc2/ε1 < 0.37, are more complicated, and, we believe, the
metastable structures start to appear. The phases participating

FIG. 14. (Color online) Hysteresis in c(μ) dependencies between
n = 1, 2, and I phases corresponding to diagram in Fig. 13(a)
and obtained at temperature values below Tc2 with increasing and
decreasing chemical potential. Inset: Illustration of 2 → 1 → 3
transition shown in Figs. 13(b) and 13(c).

in hysteresis depend on which phase was used as the initial
one for simulation. The hysteresis is seen not only between
neighboring phases n = 1 and 2, but between n = 1 and 3
or n = 2 and 5 or even n = 3 and 7. At kBTc2/ε1 < 0.37 we
obtain two scenarios which are demonstrated in Figs. 13(b)
and 13(c), respectively. In Fig. 13(b) we show the situation,
when the initial phase for c(μ) calculations is the n = 2
structure in its ground state limits. With decrease of μ, the
transition (hysteresis) between n = 2 and 5 phases is obtained
followed by the hysteresis between n = 5 and I phases. With
increase of μ, the n = 2 phase transits into the n = 1 phase
and further to the disordered phase. But the reverse transition
at that temperature from the n = 1 phase proceeds according
to the scenario shown in Fig. 13(c). With decreasing μ, the
c(μ) dependence demonstrates the jump from concentration
characteristic to n = 1 phase to that of n = 3 phase, avoiding
the “step” of the n = 2 phase (see inset in Fig. 14). The
transition into the n = 3 phase is further followed by the
transition either to I or n = 7 phase.

On one hand, we can attribute such type of behavior to
a well-known inability of the MC method to deal with the
first-order phase transitions and phase separation at lower
temperature when the dynamics of diffusion is hindered.
This is probably the only point, where approximate methods,
the cluster variation method (CVM) [41–43] in particular,
still have a certain advantage [44,45] over MC simulations.
Unfortunately the chosen clusters even for the smallest flower
phases should be quite large in order to obtain reliable results
using CVM for this model.

On the other hand, the metastabilities and transitions
between non-neighboring phases might be caused by
geometrical-structural reasons and therefore might manifest
themselves in experiments. In snapshots of our temperature
dependencies we have noticed that the flower phase with
small index n can successfully form nicely packed domains
with structurally related phases ni according to formula ni =
(n + 1)i − 1. It means that n = 1 phase readily packs with
itself and phases n = 3, 5, etc.; n = 2 with itself and n = 5,
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8, etc., and n = 3 with itself and n = 7, 11, etc. [see e.g. the
coexistence of domains of n = 3 and 7 phases in Fig. 9(b)].

V. DISCUSSION

As a statistical model for studies of self-assembly of
TMA molecules, the 2NN-3NN model captures main ordering
properties of TMA molecular system and correctly describes
the occurrence of flower phases. However, while constructing
the model, we deliberately used two important assumptions
which allowed to make the model rather simple and solvable.
First, the number of possible states of a molecule was restricted
to those found in ideal flower structures. Naturally, there
are more possible states of the molecule, but they usually
play a more important role at higher temperature. Second, by
rescaling of the initial lattice, we decreased the number of
sites for hopping of the molecule, thus restraining the model
and decreasing its number of degrees of freedom. Though
these assumptions should not affect low-temperature results,
the question might arise how reliable are the results obtained
for higher temperature and what is the accuracy of evaluation
of phase transition points. In particular, is the abruptness of
phase transition at Tc2 a natural feature or just some artifact of
the model? The occurrence of the intermediate phase might be
questioned as well.

In principle, the existence of the intermediate phase might
be supported by the following argument: As ordering systems
the flower phases have very complicated symmetry; therefore
some intermediate phase is needed as a prerequisite for flower
phase formation. The restriction of the system occurring due
to lack of sites for hopping can deform this phase. Therefore
it is quite possible that instead of some identifiable long-range
ordered intermediate phase we obtain the system of correlated
domains lacking long-range order.

Moreover, in such complex systems the two-phase (phase
separated) structures with the energy comparable to that
of the ideal flower phase might exist at finite temperature.
They might be stable and metastable (formed by domains
of similar geometry) as shown above. We assume that such
mixed phases might have some advantage in energy over the
pure phase at finite temperature and be the basic building
block for intermediate phase formation. Due to entropy effects
and limited lattice sizes this phase has sometimes rather
“deformed” structure but still retains some relation to a low-
temperature flower phase. Some support for this assumption
might be gained from simulations with decreasing temperature
when an intermediate phase gradually “freezes” in some local
minimum corresponding to deformed form of the mixture of
phases [see Fig. 9(e)].

Considering the important issue of reduction of possible
sites for molecules diffusion in our model, we must say that
in general, this effect decreases the entropy of the system,
especially for disordered phases, strengthens ordered phases
and, as a result, increases Tc. It is also known [46] that
the phase transition temperature slightly increases with the
decrease of number of possible states in both ferromagnetic
and antiferromagnetic Potts models. The same tendency is seen
for a square-lattice Potts model with mixed ferromagnetic and
antiferromagnetic interactions [47], which is rather close to
the model considered here. Thus, we expect that the phase

transition temperature in a model with more states and sites
for hopping should be lower than that obtained in our work.

Trying to clarify the finite temperature behavior of the
system including the existence of intermediate phase itself,
we performed some simulations with a simplified version of
more general model. We kept the same number of states, but
allowed for a more realistic number of sites for hopping.

As mentioned, in an unscaled model for flower phases on
Au(111) two molecules in “tip-to-tip” (dimeric) orientation
have their centers 2

√
3aAu [or equivalently 6NN of Au(111)

lattice] apart [27]. It should be expected then, for three
molecules of the same orientation forming trimeric trio
interaction, to have their centers 3aAu (5NN) apart. Taking
into account the values of aAu = 0.288 nm and the radius
of TMA molecule (∼0.5 nm), we can easily eliminate 1NN
and 2NN intermolecular distances due to exclusion. It is more
complicated to evaluate a mutual layout of the molecules at
3NN and 4NN distances. The formation of molecules with
3NN distance in between is clearly excluded for molecules
of different orientations and, most likely, for molecules of
the same orientation as well. The formation of molecules
of the same orientation with 4NN distance in between is
quite conceivable, and most such dimers could probably even
organize the H bonds. The layout of two molecules of different
orientations with 4NN distance in between is also possible for
8 out of 12 neighbors. Some mutual orientations on 4NN even
remind one of those of a double row TMA network on Cu(110)
[25]. Thus, the general model is too complicated, but we
increase the number sites and make it tractable in a following
way. Irrespective of orientation, the mutual exclusion of
molecules is assumed at 1NN, 2NN, and 3NN distances, and
the sites for hopping are provided for molecules 4NN apart
assuming though that there is no interaction at this particular
distance. The only interactions are dimeric “tip-to-tip” and
trimeric trio (for three molecules of the same orientation with
carboxylic vertices directed to the center of a common triangle)
at 6NN and 5NN distances, respectively. Thus, we use some
version of a Lennard-Jones potential with exclusion at 1NN,
2NN, and 3NN, zero interaction at 4NN, and attractions at
5NN and 6NN. All further interactions are neglected.

Preliminary comparison of results for two models revealed
some quantitative, rather than qualitative differences. Thus,
using the 5NN-6NN model the phase transition temperature
from disordered to the honeycomb phase, Tc, indeed decreases
by 15%. The intermediate phase for flower phases with n > 1
still exists, but the temperature interval of its existence is
considerably reduced, mostly due to decrease of Tc1. The
energy jump at Tc2 remains abrupt as in the 2NN-3NN
model, but the transition at Tc1 also becomes rather steep. In
intermediate phase, existing at temperature which is above the
phase transition temperature Tc2 to flower phases with small
n(< 4), the inserts of the honeycomb structure are observed.

In experiments the ordered molecular structures are usually
characterized by molecular packing density. Here we use the
concentration defined as the coverage of sites occupied by
the center of the molecule, the definition usually employed
for adatoms on surfaces. Recalculation is possible. It shows
that the packing density ρ is a bit higher in our model than in
experiment [28], but only for phases with large index n. Taking
aAu = 0.2885 nm, the packing density in our model might be
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roughly calculated as 0.77, 1.03, and 1.54 molecules/nm2 for
the honeycomb (n = 1), flower (n = 2), and superflower (n =
∞) phases, respectively. The experimental data on Au(111)
give ρ = 0.8 [27] and 0.85 [28] for the honeycomb, 1.04 [28]
for the flower (n = 2), and 1.34 [28] for the superflower phase.
The corresponding numbers on graphite are ρ = 0.8 for the
honeycomb and 1.11 molecules/nm2 for the flower phase [22].
We find this agreement quite satisfactory. The discrepancy of
15% for the superflower phase comes from the fact that in
experiment the ratio of distances between two molecules in
dimeric and trimeric state is, most likely, closer to 1, while
in our model it is 2/

√
3.

In conclusion, we proposed and solved the three-state
model for ordering of triangular molecules into homologous
series of flower phases. Such structures are experimentally
observed in self-assembled networks of TMA molecules.
The model has two types of interactions which mimic the
H-bond interactions of TMA molecules: the dimeric “tip-
to-tip” interaction and the trimeric trio interaction of three
molecules. The former is defined for two molecules of different
states separated by the third neighbor distance of triangular
lattice. The latter is defined for three molecules of the same
state forming an equilateral triangle to the center of which
the carboxylic “leg” of each molecule is directed. The side
of the triangle corresponds to second neighbor distance of
the lattice. We analytically obtained the ground state phase

diagram of the model. Simulation of thermodynamics by
the Monte Carlo method revealed that phase transition into
the flower phase is mediated by the intermediate phase.
This structure with triangular domains of different sizes has
no long-range order, but still retains some relation to the
neighboring flower phases. Possibly this phase is required
as a preparatory stage to formation of the flower structure.
At stoichiometric concentrations the ideal flower phases are
obtained. As a rule, the less dense the flower structure, the more
easily it is accessible in simulations. Denser structures often
“freeze” in some local energy minimum with the structure
corresponding to mixture of domains of several phases. This
could explain why only the first members of homologous
series are rather successfully found in experiments. The
results also imply that between stoichiometric concentrations
of two flower phases, the phase separation of these phases
might exist, including the possibility of metastable ordered
formations.
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