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Geodesics in information geometry: Classical and quantum phase transitions
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We study geodesics on the parameter manifold for systems exhibiting second order classical and quantum
phase transitions. The coupled nonlinear geodesic equations are solved numerically for a variety of models which
show such phase transitions in the thermodynamic limit. It is established that both in the classical as well as in
the quantum cases, geodesics are confined to a single phase and exhibit turning behavior near critical points. Our
results are indicative of a geometric universality in widely different physical systems.
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I. INTRODUCTION

Information theoretic studies of phase transitions are, by
now, well established. The underlying idea here is geometric
in nature and rests on the definition of a Riemannian metric
tensor on the space of parameters (called parameter manifold)
of a system. Depending on whether the interactions of the
system are classical or quantum in nature, this metric might
be induced from the equilibrium thermodynamic state space
[1] (for a review, see [2]) or from the natural Hilbert space
structure of quantum states [3]. For the former, the parameter
manifold consists of thermodynamic control parameters such
as the pressure, volume, and temperature, while for the latter,
this might be thought of as the manifold of coupling constants
appearing in the Hamiltonian.

Given such a metric tensor, the parameter manifold can
have very different properties depending on whether the
system undergoes a second order classical or a quantum phase
transition (CPT or QPT). Whereas the hallmark of a CPT is
that the scalar curvature arising out of the metric diverges at a
second order phase transition (and everywhere on the spinodal
curve), this is not the case for second order QPTs where the
curvature can remain regular [4]. It is also known that whereas
some components of the metric tensor vanish at a second
order CPT, as these are related to inverses of thermodynamic
response coefficients [2], for QPTs, the situation is reversed,
and some of the components of the metric tensor diverge
at such a transition, as follows from first order perturbation
theory [4] (although this may not be true in some special
cases, see [5]).

Although a lot of attention has been paid to the behavior
of the metric tensor and its associated scalar curvature in
the context of phase transitions, much less is known about
geodesics, i.e., paths that minimize the distance between two
points on the parameter manifold. In any geometric setup,
the behavior of geodesics is an important object to study.
Some studies on geodesics have appeared in the context
of CPTs [6] and QPTs (specifically, for adiabatic quantum
computation) [7,8] in special cases. The purpose of this paper
is to complement and generalize these results, and to obtain and
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analyze general solutions to the geodesic equations for some
model systems that exhibit second order phase transitions.

Here, we study four models in the thermodynamic limit:
the van der Waals (vdW) model for fluids, the Curie-Weiss
(CW) mean-field model of ferromagnetism, the infinite Ising
ferromagnetic chain (all of which exhibit CPTs at finite
temperature), and the transverse field XY model that exhibits
a QPT at zero temperature. For all these models, the full set
of coupled nonlinear geodesic equations in the information
geometric context are set up and solved numerically, with
appropriate initial conditions. To the best of our knowledge,
such an analysis has not been performed before. Our treatment
is completely general in nature, and differs significantly from
the methods used in [6,8] where the focus was on obtaining
specific geodesics between two given points in the parameter
manifold. Interestingly, we find that in all the examples that we
consider, geodesics exhibit a turning point close to criticality.
Further, they are “confined” to a single phase, i.e., for CPTs,
geodesics that begin from one of the coexisting phases do not
cross over to the other phase, while for QPTs, geodesics do not
cross the (second order) phase boundaries. This is indicative
of a geometric universality in apparently unrelated physical
phenomena.

This paper is organized as follows. In the next section, we
first briefly recall some basic facts about information geometry
and geodesics. We then proceed to analyze the vdW, the CW,
and the infinite Ising ferromagnet as illustrations of CPTs. In
Sec. III, we analyze the geodesic structure of QPTs via the
transverse field XY spin chain. We end in Sec. IV with our
discussions and possible directions for future study.

II. INFORMATION GEOMETRY, GEODESICS,
AND CLASSICAL PHASE TRANSITIONS

In the context of equilibrium thermodynamics of classical
systems, the formulation of information geometry is mainly
due to the work of Ruppeiner [2]. The main idea here is to
consider the positive definite Riemannian metric arising out
of the Hessian of the entropy density s, and given by a line

element
1 3%s )
kg \0x*dxv )’

Here, x* (i = 1,2) denotes the internal energy and the particle
number per unit volume and are coordinates on the parameter
manifold in the “entropy representation.” kg is the Boltzmann’s

dt? = guvdx"dx"g,, =
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constant, which we will set to unity in what follows. The line
element of Eq. (1) introduces the concept of a distance in
the space of equilibrium thermodynamic states via fluctuation
theory, i.e., the larger this distance is between two given
states, the smaller the probability that these are related by
a thermal fluctuation. Various representations (related to each
other by Legendre transforms) can be used for this geometric
construction (a full list can be found in [2]), and a particularly
useful diagonal form of the metric for single component fluids
and magnetic systems is

1 /9 1 (9
== (Z) arr+ = (2£) a2, )
r\o7), 7\ ),

where T is the temperature, p the number density, and u =
(%)T, f being the Helmholtz free energy per unit volume.
For magnetic systems, we need to consider thermodynamic
quantities per unit spin, with the magnetization per unit spin
m replacing p.

On the other hand, information geometry in quantum
mechanical systems, first studied by Provost and Vallee [3],
is defined by taking two infinitesimally separated quantum
states and constructing the quantity

Y& +dX) — YD) = (0,910, ¢)dx"dx" = a,dx"dx”,
3)

where x* [collectively denoted as X in the left-hand side of
Eq. (3)] denotes the parameters on which the wave function v
depends, and 9,, is a derivative with respect to x**. From the «;,,,
(which are not gauge invariant), a meaningful gauge-invariant
metric tensor can be defined as [3]

Bu = —i(y Dy (). @)

Here, g,,, is the metric induced from the natural structure of the
Hilbert space of quantum states. The metrics in Eqs. (2) and (4)
can be used to predict second order phase transitions in both
CPTs [2] and QPTs [4]. We also record here the expression
for the scalar curvature arising out of the metric in the special
case when the metric is diagonal (with g = detg,,,):

R:LP«L@Q+1&QQH.@
Vg Lax!t \ /g ox! ax2 \ /g 0x?

Given the information geometry of classical or quantum
systems, we wish to study geodesics in the same. Let us briefly
recall a few elementary facts about geodesics. For a manifold
endowed with a metric with components g,,,, a geodesic is a
path that extremizes the proper distance (or line element, the
infinitesimal form of which is given by dt? = g,,dx"dx").
This can be cast as a variational problem to determine the
extrema of the integral f 12‘ /8wX*xVdA, where the dot denotes
a derivative with respect to A, which is an affine parameter,
parametrizing the curve joining two points denoted 1 and 2.
Calculus of variations can then be applied with the result that
geodesic curves are solutions to the differential equations

uv = Qyy — ﬂ//..Bv;

B Th X =0
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The above equation can also be obtained by writing a
“Lagrangian”

L= 1(gui"s") (7

and using the (derivatives of the) Euler-Lagrange equations
that follow. This method often provides valuable insights into
the symmetries of the system. We will be interested in studying
the solutions of Eq. (6) in the context of CPTs and QPTs. It is
well known that a natural affine parameter for geodesic curves
is A = t, and thus it is useful to consider the normalized vector
x* = dx"/dt such that ¥*x, = g, X"x" = 1.

Equation (6), in general, gives rise to a set of coupled
nonlinear differential equations, which might be difficult to
solve analytically. We will mostly concentrate on numerical
solutions with appropriate boundary conditions. Note that in
terms of the normalized vector %", we need to specify three
boundary conditions in order to solve Eq. (6), with the fourth
one being fixed by the normalization condition. Namely, we
choose a “starting point,”i.e., an initial value of x*, and any one
component of x*. The second component of the derivative is
then determined from the fact that x* is normalized. The reader
will note that there is an infinite number of such boundary
conditions possible, given any starting point. In most of our
analysis, we will choose the derivatives appropriately, so that
the geodesics are projected towards the critical point (or the
critical line, for the case of QPTs). These will be useful for us
to determine the behavior of the geodesics close to criticality.
With the given boundary conditions, we wish to determine the
most general solutions to Eq. (6) and study geodesics near
criticality. This is done by solving for x* in terms of the affine
parameter 7, and tracing out the geodesic near the critical
point, by parametrically plotting the resulting solution, under
variation of 7.! Let us now illustrate the above discussion with
the example of the van der Waals fluid and the Curie-Weiss
ferromagnet.

A. van der Waals and Curie-Weiss models

Information geometry of the van der Waals fluid is well
established (see, e.g., [9]). We start from the Helmholtz free
energy per unit volume [10]

fvaw = —pT In <%) + pc, T In (%)

—pT In(1 — bp) — ap?, ®)

where c, is the specific heat at constant volume, p and T are
the number density per molecule of fluid and the temperature,
a, b are the coefficients arising in the vdW equation of state,
and e is the exponential function. It is convenient to work
with the reduced vdW equation of state, and we can substitute
a=9T./8p., b = 1/3p., where p. and T, denote the critical
values of the density and the temperature, respectively. Further,
the reduced density and temperature are defined by p, = p/poc,
T, =T/T,. We will set p. = T, = 1 to simplify the algebraic

"We will also keep in mind that geodesic paths are not unique: an
elementary example is that of a 2-sphere, where there are an infinite
number of geodesics, i.e., great circles, between two antipodal points.
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details, and also choose ¢, = 3/2, the ideal gas value. The
information metric (in terms of the coordinates 7, and p,) is
then given, from Eq. (2), by

3p

2P 9[4Tr - pr(pr - 3)2]
272

4pr Tr(pr - 3)2

Since we are interested in geodesics close to criticality
(for a recent related discussion, see [11]), we now expand the
metric up to first order about the critical point (7, p,) = (1,1)
[remember we have set (7;,p.) = (1,1)]. The metric compo-
nents are then given by the simple expressions

gr=30G-T). g&,=5T 1), (10)

where the superscript ¢ in Eq. (10) signifies that these expres-
sions are valid close to criticality. The geodesic equations of
Eq. (6) turn out to be

8rr = 8op = (9)

. T2 T, 0, 3p?
y P A}
2T) -3 Pr 4pr(2Tr - 3) (1 1)
.. pr Tr Trz(ZTr - 3)
or + =
T, —1 (T, — 1)
We now numerically solve Eq. (11) with three

boundary conditions: (7;,p,,0,) = (1.001,1.007, —0.92),
(1.001,1.009, —1.2), and (1.0007,1.011, —2.2).> For all
the three cases, we solve Eq. (11) for values of the affine
parameter between 0 and 0.0025. The solutions for 7, and
pr are then parametrically plotted by varying the affine

2The value of 7, is fixed from the normalization condition as alluded
to before.
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FIG. 1. (Color online) Numerical solution for geodesics of
the vdW equation of state close to criticality in the (p,,7})
plane. The dotted red, dashed blue, and solid green curves corre-
spond to the boundary conditions (7, p,, o) = (1.001,1.007, —0.92),
(1.001,1.009, —1.2), and (1.0007,1.011, —2.2), respectively. The
geodesics turn back from the critical point (p,,7,) = (1,1).
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parameter. The result is shown in Fig. 1 in the (p,,7},) plane,
where the dotted red, dashed blue, and solid green curves
correspond to the three boundary conditions described above,
respectively. We see that the geodesic curves “turn back” from
the critical point. As we will see, this is a generic feature for
all second order phase transitions studied in this paper.

For the sake of completeness, we mention here that the
analysis of geodesics using the full vdW metric of Eq. (9) is
similar, although the geodesic equations are more complicated
and we omit them for brevity. After extensive numerical
analysis, our conclusion here is that, as alluded to in the
Introduction, a geodesic starting in the liquid (p, > 1,7, < 1)
or gas (p, < 1,7, < 1) phase does not reach the other phase.
They either terminate at the spinodal line or continue to
the supercritical region. This implies that on the parameter
manifold, points that lie in different phases are not geodesically
connected, and these may be thought of as separated by phase
transitions. Such an interpretation also appeared in [6] in
the context of the vdW model. Also, close to the critical
point, geodesics show the turnaround behavior as depicted
in Fig. 1. This is not unexpected since the spinodal curve,
being the locus of divergences of the scalar curvature on the
parameter manifold, tends to incline the geodesics [6]. We
also find that geodesics do not show any special behavior
at the binodal lines, i.e., at the location of the first order
phase transitions, which is expected because the metric and
the scalar curvature are both regular here. These results are
summarized in Fig. 2, where we have shown several numerical
solutions to the geodesic equations for the vdW equation of
state. The dotted green curve is the spinodal curve. The dashed
blue curves on the left and the dotted-dashed black curves
on the right are geodesics that start from the gas and liquid
phases, respectively, and continue into the supercritical region.
The solid red curves are geodesics in the supercritical region
(T, > 1), and show turning behavior similar to that depicted
in Fig. 1.

L L L L L p
0.0 0.5 1.0 1.5 2.0 25

FIG. 2. (Color online) Various numerical solutions for geodesics
of the vdW equation of state in the (p,,7,) plane. The dashed blue,
dotted-dashed black, and solid red lines are geodesics that begin from
the gas, liquid, and supercritical phases, respectively. The spinodal
curve is shown in dotted green.
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We now move on to study geodesics in the classical mean-
field Curie-Weiss ferromagnetic model in the thermodynamic
limit. Information geometry of this model has been studied
extensively in [12], and we simply state the result that in the
(T,m) representation, the line element of Eq. (2) is given by

1 [T.(1 —m?) —T]

= Fde + 7—dm2'
Here, T is the temperature, 7, its critical value, m is the
magnetization per unit spin, and Cr(T) is a “lattice specific
heat” introduced in [13] that corresponds to the mechanical
energy of the lattice. As was shown in [13], information
geometry in the CW model can not be defined without
introducing this term ad hoc in the theory. In [12], it was shown
that the line element in Eq. (12) correctly reproduces all the
known features of the CW model, including the first order
phase transitions. We will study the model close to criticality,
and approximate the metric close to m = 0 as®

Ci (T T,
grr = LT(Z 3 Som =1 = - (13)
where again the superscript ¢ denotes that we are close to
criticality. To analyze the geodesic equations here, we note
that a crucial simplification is possible since none of the metric
components in Eq. (13) depend on the magnetization. This
implies that the Lagrangian of Eq. (7) is independent of m,
and hence the Euler-Lagrange equation that follows from it
implies thatrn = K /g;,,, where K is a constant. Then, from the
normalization condition g5, 7% + g¢,,m* = 1, it follows that

P L<1 RS > _rrd -k -1
 ghr gn)  Cu()T —T.

It is enough for us to consider the region T > T, for which
Eq. (14) implies that positivity of the right-hand side imposes
the restriction 7 > T./(1 — K?), with K? < 1. This means
that a geodesic in the region 7 > T, always remains in
that region and can not cross over into the region T < T,.
A pathology arises for the case K = 0, for which Eq. (14)
implies that such a restriction is not implied since 72 is always
a positive number for K =0 or m = constant. We have
checked this by explicitly solving the geodesic equations,
which in this case are given by

TXTC, —2Cy)  Ton*>
2TCy 2TC,

dr? (12)

m? —1

(14)

.. Tl
"Traor -1y
(15)

T+ 0,

Numerical analyses [after choosing an appropriate regular
functional form for Cy(T), such as a power series] reveal that
geodesics with m = constant lines [these are indeed geodesics
as they satisfy the second equation in Eq. (15)] cross over
inside the spinodal region. This is probably a mathematical
artifact and we do not have a physical explanation for this.
Apart from these constant m lines, the behavior of geodesics
close to the critical point is, as expected, qualitatively similar to

3This is simpler than expanding the metric aboutm = 0and T = T,
which gives results equivalent to what we present here.
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that of the vdW fluid and, graphically, they resemble the ones
shown in Fig. 1. We also find that the behavior of geodesics
with the full CW metric (away from criticality) is qualitatively
similar to those of the vdW model. Specifically, geodesics in
the phase m > 0 do not reach the phase m < 0, and vice versa.

B. Infinite Ising ferromagnet

We now study geodesics in the infinite-range ferromagnetic
Ising model with a transverse magnetic field. This model (the
Lipkin-Meshkov-Glick model) was studied recently in [14],
where it was shown that in the thermodynamic limit, it can be
described by the classical dynamics of a single large spin. The
information geometric aspects of this model have not been
studied so far, and we begin with a discussion on this. The
Hamiltonian for this model is given by [14,15] (see [16] for a
finite temperature analysis of this model from an entanglement
point of view)

J . J
Hyp = N ZS,ZS} —h ZSZX = _W(Sfm)z —hS,,
i<j i

(16)

where the second equality follows from defining the total spin
Sty =287, S8, =Y. S* (and neglecting a constant term).
We will set J/ = 1 in what follows. In a mean-field approach,
where the average magnetization m = ) ,(S7)/N, the Hamil-
tonian for a single spin reduces to Hjjp = —mS%, — hSZ,. This
is an effective two-state model, the partition function of which

can be shown to be given by

A7)

V)
Z = 200sh(u>.

2T

To understand the geometric aspects of this model, we write
the Gibbs free energy for the single spin G = —7 InZ and
effect a Legendre transform to obtain the Helmholtz free
energy F = G +m?/2, where m should be thought of as
the applied magnetic field, i.e., an intensive thermodynamic
variable. The factor of 1/2 in the Legendre transform might
look strange, but note that this enforces the magnetization
0F/0om =0 (via the relation m = —9G/dm), i.e., defines
the boundary between the ferromagnetic and paramagnetic
regions. In (7,m) coordinates, using the expression for the
Helmholtz free energy, the metric components are given from
Eq. (2) by

1

grr =1 (h* 4+ m*)sech’a, "
1 5 [m*v/h? + m? + h*T sinh(Qa)]

8mm = — — ——sech“« s
T 4T2 (h? + m?2)3/2

where a = +/h? + m2/2T. The scalar curvature of Eq. (5) for
the metric of Eq. (18), in the limit m — O (which is our region
of interest), is given by R = A/3, where

A= h[—ZT(4h2 +4T + l)sinh<;)

h h
+4(h® 4+ 2T)tanh( — ) + 3h sech?( —
2T 2T
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FIG. 3. (Color online) Numerical solution for geodesics of the
infinite-range Ising ferromagnet at & = 0.2, near the critical point
(T =0.236,m = 0). All geodesics are chosen to pass through the
point (T',m) = (0.3,0.004). The dashed blue (small dashes), dotted-
dashed green, dotted red, and solid pink curves correspond to the
boundary condition iz = —0.03, 0.03, —0.25, and 0.12, respectively.
The dashed black line on the extreme left (long dashes) is the spinodal
curve, on which the scalar curvature diverges.

—2T?% 4 2h*[4T(T —2) — 1]
h
2 —
+2T[4h~(T + 1) + T]cosh(T),

2
B =2n? [tanh (i) - 2/1} ) (19)
2T

The scalar curvature diverges at tanh% = 2h, defining the
phase boundary, a result that matches with that obtained in [14].
To understand the behavior of geodesics in this model, we set
h = 0.2, which implies the critical temperature 7 = 0.236.
Numerical solutions of this geodesic equation close to the
critical point are plotted in Fig. 3. Here, we have taken all
the geodesics to start from (7,m) = (0.3,0.004). The dashed
blue (small dashes), dotted-dashed green, dotted red, and solid
pink curves correspond to riz = —0.03, 0.03, —0.25, and 0.12,
respectively. Also shown in dashed black (long dashes) is the
spinodal curve on the extreme left, i.e., the locus of divergence
of the scalar curvature arising out of the metric of Eq. (18).
We find that the geodesics shows the same turning behavior
as in the other mean-field models discussed in the previous
section. We also note that in the limit of 7 — 0, g,,,, diverges
and grr — 0. Numerical solutions seem to become somewhat
unreliable in this limit, and we will not discuss them.

Having elucidated the nature of geodesics in classical sys-
tems exhibiting phase transitions at nonzero temperatures, we
finally move to quantum phase transitions at zero temperatures.

III. GEODESICS IN QPTs: THE TRANSVERSE
XY SPIN CHAIN

Information geometry of QPTs has been well studied of
late, starting from the work of [4]. There are, however, very
few systems to which this can be meaningfully applied since

PHYSICAL REVIEW E 86, 051117 (2012)

the definition of the geometry [from Eq. (4)] requires complete
knowledge of the many body ground state, which may be
difficult to obtain excepting for a few exactly solvable systems,
such as the transverse field XY spin chain. Even when such
ground states are obtainable, as in the Dicke model of quantum
optics, explicit calculations might be prohibitively difficult due
to algebraic complications. We will base our calculations on
the transverse XY model, for which the information metric
was obtained in [4].

To recall, for the transverse X Y spin chain, the Hamiltonian
with (2N + 1) spins is

(20)

where the ¢/, i = x,y,z, are Pauli matrices, y is an anisotropy
parameter, /& is the magnetic field, and the Planck’s constant
has been set to unity. The information metric for this model
has been calculated in [4] and in the thermodynamic limit, the
line element in the region || < 1, y > 0 (the ferromagnetic
phase) is given by

B dh? N dy?
C16y(1—h2) 16y (1 4+ )2

QPTs occur on the lines y =0, k| < 1 (the anisotropic
transition line), and |#| = 1 (the Ising transition lines), where
the spectrum of the theory becomes gapless. Information
geometry is, however, very different for these two transi-
tions. Whereas the scalar curvature [calculated from Egs. (5)
and (21)] diverges on the line y = 0, it is regular on the lines
|h| = £1. For this model, the geodesic equations are

hi?  hy Y2A+3y) R 4y)

1—hr2 y 7 2y(+y) | 2p(1—h?)

ds?

2n

h+ =0,
(22)

where, as before, the overdot represents a derivative with
respect to the affine parameter t. Also, the normalization
condition implies that
72 72
N T 2
l6y(1 —h%) 16y (1+y)

= 1. (23)

Before attempting to solve the coupled nonlinear equations
of Eq. (22), let us look at a special case. The first of Eq. (22)
is satisfied by & = constant and, hence, constant / lines are
geodesics. To find y as a function of the affine parameter
in this case, we substitute # = 0 in the second of Egs. (22)
and (23). Then, it is seen that y = tan? [2 (t — 10)], where
79 is a reference value for the affine parameter. Thus, for the
constant /1 geodesics, y is always positive, i.e., these geodesics
do not cross the phase boundary at y = 0. Rather, they turn
back on touching that line. This should be contrasted with the
m = constant geodesics of the CW model, which, as we have
said, is not fully understood.

To solve the equations in Eq. (22) in general, we adopt a
numerical procedure analogous to what we have done before.
As an illustration, we solve for these equations with the initial
conditions (h,y,h) =(0.96,0.1, —0.0857). The solution,
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FIG. 4. (Color online) Numerical solution for a geodesic curve
with (h,y) = (0.96,0.1) and (i,y) = (—0.0857,1.35) on the h-y
plane. The geodesic (solid blue line) is confined to a single phase
region between h = £1, shown by the dashed black vertical lines.

plotted on the A-y plane parametrically, with the affine param-
eter 7, is shown in Fig. 4. Clearly, the geodesic is confined to
a single phase and does not cross the phase boundaries, as in
CPTs. It is not difficult to check this analytically by expanding
the metric near the lines y = 0 and # = £1. As mentioned,
in contrast to CPTs, the phase boundaries at # = +1 do not
represent singularities in the scalar curvature of the parameter
manifold, which is finite at (but discontinuous across) these
lines [4]. The turning behavior of the geodesics here can be
traced to the fact that some of the metric components diverge
ath = +£1.

IV. CONCLUSIONS AND DISCUSSIONS

In this paper, we have studied four model systems that
exhibit phase transitions in the thermodynamic limit. The

PHYSICAL REVIEW E 86, 051117 (2012)

van der Waals model, the Curie-Weiss mean-field model of
ferromagnetism, and the infinite Ising ferromagnet exhibit
CPTs at finite temperature. The transverse XY spin chain
shows a QPT at zero temperature. For all these models, we per-
formed the most general analysis of geodesics in the parameter
manifold. Such an analysis has not appeared in the literature
before. In the process, we have established the information
geometry of the infinite Ising ferromagnet. We have solved the
geodesic equations for all these models in full generality by
choosing a starting point (i.e., coordinates) in the manifold,
and imposing initial conditions on its derivatives with respect
to the affine parameter. In this way, we are able to trace out the
geodesics and study their behavior near second order critical
points. This complements and extends the results of [6,7] in a
nontrivial way.

Our main conclusion here is that purely from a geometric
perspective, geodesics near critical points show universal
behavior, although the physical nature of the phase transitions
is widely different. We have also established that geodesics are
confined to a single phase: for example, in the classical van der
Waals model, a geodesic beginning from one of the coexisting
phases does not cross over to the other phase. Similarly, for
QPTs, geodesics do not cross the phase boundaries. We believe
that these results are model independent, and should be true
for any model of CPTs or QPTs.

It might be interesting to study geodesics in the context of
scaled equations of state for classical fluid systems, and also
for some other models that exhibit QPTs (see, e.g. [17]). In
particular, in the context of CPTs, it is an interesting question
to ask if geodesics show any special behavior at or near the
Widom line, which is a continuation of the coexistence curve,
along which the correlation length maximizes. We leave such
a study for the future.
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