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Frustrated Ising model on the Cairo pentagonal lattice
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Through the direct decoration transformation approach, we obtain a general solution for the pentagonal Ising
model, showing its equivalence to the isotropic free-fermion eight-vertex model. We study the ground-state phase
diagram, in which one ferromagnetic (FM) state, one ferrimagnetic (FIM) state, and one frustrated state are
found. Using the exact solution of the pentagonal Ising model, we discuss the finite-temperature phase diagrams
and find a phase transition between the FIM state and the disordered state as well as a phase transition between
the disordered state and the FM state. We also discuss some additional remarkable properties of the model, such
as the magnetization, entropy, and specific heat, at finite temperature and at its low-temperature asymptotic limit.
Because of the influence of the second-order phase transition between the frustrated and ferromagnetic phases,
we obtain surprisingly low values of the entropy and the specific heat until the critical temperature is reached.
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I. INTRODUCTION

Over the past six decades, much effort has been devoted
to determining the critical behavior of statistical properties
of lattice models, which would allow a deeper understanding
of order-disorder phenomena in magnetic solids. Following
Onsager’s pioneering exact solution for the square lattice
Ising model [1], exact solutions were also obtained for other
regular two-dimensional lattice structures [2]. In particular,
exact results have been attained for the triangular, honeycomb,
kagome, and bathroom-tile lattices [3–5], as well as for
two-dimensional models, such as the Union Jack (centered
square) [6] and the square kagome [7] lattices.

Geometrical frustration is mainly based on the triangle and
tetrahedron structures, but it was also found in the Ising model
on a pentagonal Penrose lattice proposed by Waldor et al. [8]
and solved exactly using the transfer matrix approach. More
recently Urumov [9] considered the Ising model on the Cairo
pentagonal lattice using the decoration transformation [10].
This model has been mapped onto the Union Jack lattice [6]
and its critical temperature and spontaneous magnetization
properties have been discussed. This model is interesting
from a mathematical point of view. A few years ago, real
materials with a Cairo pentagonal lattice structure were found;
for example, the Fe3+ lattice in Bi2Fe4O9 (described as a
pentagonal Heisenberg model) was discussed by Ressourche
et al. [11]. This material shows magnetic frustration. Also,
theoretical calculations of the phonon structure of antiferro-
magnetic Bi2Fe4O9 (space group Pbnm No. 55, T ≈ 240 K)
were studied using lattice dynamics and these results were
confirmed experimentally by polarized Raman spectroscopy
from 10 to 300 K [12]. More recently, some additional
experimental studies were performed [13,14]. Ralko [15] also
discussed the hard-core extended boson Hubbard model on
the Cairo pentagonal lattice, using the numerical quantum
Monte Carlo study of stochastic series expansion and cluster
mean-field theory.

The purpose of this paper is to present a general exact
solution of the pentagonal Ising model and as a special case
we obtain the Urumov solution using a standard decora-
tion transformation approach [10]. Furthermore, we present
a more simplified solution through the direct decoration

transformation [16] instead of the standard one [10]. The
generalized version of the latter [17,18] is widely used to
solve some two-dimensional decorated Ising [19] and Ising-
Heisenberg [20–22] models.

This paper is organized as follows. In Sec. II we con-
sider the detailed description of the Ising model on the
Cairo pentagonal lattice. In Sec. III we discuss its phase
diagram at zero temperature. Section IV is devoted to the
pentagonal Ising model mapping, using the direct decoration
transformation [16] for the isotropic free-fermion vertex model
[23], presenting the most relevant results and discussion.
In Sec. V we obtain the finite-temperature phase diagrams,
critical temperature, magnetization, entropy, and specific heat.
Section VI summarizes our discussion.

II. ISING MODEL ON THE CAIRO
PENTAGONAL LATTICE

The highly anisotropic Heisenberg model on the Cairo
pentagonal lattice considered by Ressourche et al. [11] could
be reduced to the Ising model on a Cairo pentagonal lattice.
Therefore, let us consider the Ising model on a planar lattice
where the tiling is achieved with nonregular pentagons; the
lattice may be viewed as an assembly of checkerboard ordering
with the elementary cell (see Fig. 5) rotated by π/2 in the
neighboring square plaquettes, as shown in Fig. 1 (for more
details see Ref. [9]).

The Hamiltonian of the Cairo pentagonal Ising model
(represented schematically in Fig. 1), discussed previously by
Urumov [9], is expressed by

H = −J1

∑
〈i,j〉

sisj − J
∑
〈k,l〉

skτl, (1)

where the first summation is the contribution of the interaction
between the nearest neighbor with spin si (si interacting with
coordination number 3) and J1 corresponds to the interaction
between si and sj . While the second summation is the con-
tribution of the nearest-neighbor interaction J between spin
sk and spin τl (τl’s interacting with coordination number 4),
conveniently we assume si = ±1 and τl = ±1.
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FIG. 1. Schematic representation of the Cairo pentagonal lattice.

III. PHASE DIAGRAM AT ZERO TEMPERATURE

In this section we discuss the phase diagram at zero
temperature of the Hamiltonian given in Eq. (1). In order
to discuss the phase diagram at zero temperature, we define
the magnetization M for the pentagonal lattice that is used
throughout the paper, given by

M = M0 + 2M1

3
, (2)

with M0 = 〈τ1〉 and M1 = 〈s1〉.
The energy per plaquette of three ground states that appear

for the pentagonal lattice Ising model is expressed in terms of
an elementary cell (see Fig. 5). It is worth highlighting that
the elementary cell should not be confused with the unit cell
of the pentagonal lattice.

(i) The ferromagnetic (FM) state or saturated state has a total
magnetization M = 1 and ground-state energy per plaquette
E = −J1 − 4J . Thus the FM state can be represented as

|FM〉 = ∣∣ +++
+++

〉
. (3)

This state is limited by J > 0 for J1 > 0 and J1 > −J for
J1 < 0, as displayed in Fig. 2.

(ii) The ferrimagnetic state (FIM) has a total magnetization
M = 1/3 and ground-state energy per plaquette E = −J1 +
4J , which corresponds to the configuration displayed in Fig. 2.
Analogous to the previous case, we describe the state by

|FIM〉 = ∣∣ +−+
+−+

〉
. (4)

This state is limited by J < 0 for J1 > 0 and J1 > J for
J1 < 0, as illustrated in Fig. 2.

A
1

A
2

A
3

B1

FIG. 2. Phase diagram at zero temperature of the pentagonal Ising
model.

(iii) The frustrated state (FRU) is given as a combination

of states | σσ σ

σ
−σ

σ
〉 with its rotated elementary cell and spin

inversion on the elementary cell with ground-state energy per
plaquette E = J1 − 2|J |, which can be expressed by

|FRU〉 = combinations of
{∣∣ +++

+−−
〉
,
∣∣ −−−

−++
〉}

. (5)

This state is limited by J1 � −|J | (see Fig. 2).
We define m as the magnetization for each frustrated-state

configuration in the range between m = −1/6 and 1/6 (we
denote by M the average of total magnetization). Combining
the state of the elementary cell displayed in Eq. (5) and
its rotation in π/2 of the elementary cell, it is possible to
generate the geometrically frustrated state. In particular, when

we combine half states | +++
+−− 〉 and the remaining states with

| −−−
−++ 〉, we obtain an antiferromagnetic state, with null total

magnetization. Other intermediate states with magnetization
0 � m � 1/6 also could be obtained by combining the
elementary cell state with different relative amounts of the state
given by Eq. (5). More specifically, the unit cell magnetization
could be classified as displayed in Fig. 3, i.e., Ai (i = 1,2,3)
and B1, with magnetization m = 1/6 and −1/6, respectively.
Certainly, this is not the only way to classify the unit cell
by its magnetization; any other classifications of the unit cell
lead us to the same kind of lattice configuration. In Fig. 4 we
show two particular situations of such a lattice configuration,
formed by the unit cells of type Ai and B. In the bulk limit
we have a lattice with total magnetization 1/6. In Fig. 4(b)
the lattice is composed of unit cells A2 and B1with a different
concentration, generating a different total magnetization of
the lattice. Thus we obtain the total magnetization of each

(a) (b)

FIG. 3. Unit cells Ai (i = 1,2,3) with magnetization M = 1/6
and unit cell B1 with M = −1/6.
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FIG. 4. (a) In the top (left) panel, we illustrate schematically an
arbitrary lattice configuration, which is included in a frustrated state;
the dashed square is shown explicitly in the panel below. (b) In the
top (right) panel, we assemble a lattice with two different unit cells
A(m = 1/6) and B(m = −1/6). In the panel below, the sublattice
(the dashed square) is explicitly shown; the contributions of unit cells
A and B are in different concentrations.

particular configuration. However, the average magnetization
of all these configurations with equal energy will be null
M = 0 of the frustrated state in the interval −1/6 < m < 1/6.

IV. PENTAGONAL ISING MODEL MAPPING

Through the direct decoration transformation [16], it is
shown that the pentagonal Ising model is equivalent to a Union
Jack lattice, which is in turn mapped onto the isotropic free-
fermion eight-vertex model [24,25]. From this equivalence we
can obtain the thermodynamics of the pentagonal Ising model.
In order to study the spin-1/2 Ising model on a pentagonal
lattice, we introduce the notation for each elementary square
plaquette depicted in Fig. 5 (this should not be confused with
the unit cell). In this case we assume {τ1,τ2,τ3,τ4} = ±1,
{s1,s2} = ±1, and σ = ±1.

The Hamiltonian for an elementary plaquette as displayed
in Fig. 5 is given by

−βHe = J ′
1s1s2 + J ′[s1(τ1 + τ2) + s2(τ3 + τ4)], (6)

FIG. 5. Schematic representation of the elementary plaquette and
its mapping to the Union Jack lattice.

where we are assuming J
′
1 = βJ1 and J

′ = βJ and β is
defined by β = 1/kBT , with kB the Boltzmann constant and
T the absolute temperature. Instead of applying the standard
decoration transformation [10,17] as applied by Urumov [9],
we apply the direct decoration transformation [16] to transform
the plaquette into the Union Jack lattice [6]. In this case the
Hamiltonian associated with the Union Jack lattice can be
expressed by

−βH̃e = K ′
0 + K ′

1σ (τ1 + τ2 + τ3 + τ4) + K ′
2(τ1τ2 + τ3τ4).

(7)

The Boltzmann weights of the Hamiltonian (6) may be written

w({τ }) =
∑

s1,s2=±1

eJ ′
1s1s2+J ′[s1(τ1+τ2)+s2(τ3+τ4)], (8)

where {τ } denotes the set of variables {τ1,τ2,τ3,τ4}, whereas
the Boltzmann weights for the transformed plaquette is given
by the relation

w̃({τ }) =
∑

σ=±1

eK ′
0+K ′

1σ (τ1+τ2+τ3+τ4)+K ′
2(τ1τ2+τ3τ4). (9)

Similar to the previous notation, here we consider K ′
0 = βK0,

K ′
1 = βK1, and K ′

2 = βK2, where K ′
0 is taken as a constant

shift energy, K ′
1 is the interaction parameter between the

internal spin σ and each spin τ , and K ′
2 is the coupling term

between spins τ .
Using the direct decoration transformation proposed in

Ref. [16], we need to impose the condition w({τ }) = w̃({τ })
between Eqs. (8) and (9) for arbitrary τ . Therefore, we obtain
only four nonequivalent configurations {τ1,τ2,τ3,τ4} = {+,

+,+,+}, {+,+,+,−}, {+,+,−,−}, and {+,−,+,−};
any other permutation or spin inversion falls onto one of
these configurations. Thus the Boltzmann weight for each
configuration is given by

ξ1 = w(+, + , + ,+) = 2eK ′
0+2K ′

2 cosh(4K ′
1), (10)

ξ2 = w(+, − , + ,−) = 2eK ′
0−2K ′

2 , (11)

ξ3 = w(+, + , − ,−) = 2eK ′
0+2K ′

2 , (12)

ξ5 = w(+, + , + ,−) = 2eK ′
0 cosh(2K ′

1), (13)

where ξ2 = ξ4 and ξ5 = ξ6 = ξ7 = ξ8.
The above equations satisfy the isotropic free-fermion

condition [23] w1w2 + w3w4 = w5w6 + w7w8, following the
eight-vertex model with Boltzmann weights ω1, . . . ,ω8 (ω
should not be confused with w) displayed in Fig. 6. Hence
the free-fermion condition may be rewritten in terms of ξ as

2ξ 2
5 = (ξ1 + ξ3)ξ2. (14)

Therefore, the Boltzmann factor of an effective Union Jack
lattice can be expressed in terms of the pentagonal Ising model

FIG. 6. (Color online) Eight-vertex model diagrams.
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coupling parameters

ξ1 = ru−4 + 2r−1 + ru4, (15)

ξ2 = 2(r + r−1), (16)

ξ3 = 2r + r−1u−4 + r−1u4, (17)

ξ5 = (r + r−1)(u2 + u−2). (18)

For simplicity we used the notation r = eJ ′
1 and u = eJ ′

.
Due to the step by step decoration transformation performed

by Urumov [9] (see Fig. 2), J1 was restricted only to J1 > 0 or
r > 1 (ferromagnetic); otherwise, if we consider J1 < 0, we
get a imaginary parameter in the intermediate transformation
proposed by Urumov. However, using the direct decoration
transformation, we do not have such a restriction (Fig. 5), but
only r > 0, which means that J1 exchange coupling could be
ferromagnetic or antiferromagnetic.

Hence the pentagonal Ising model is completely equivalent
to the Ising model on the Union Jack lattice [6] with the
isotropic nearest-neighbor interactions defined by K1 and
noncrossing diagonal interactions between the second nearest
neighbor given by K2. In contrast, the Union Jack lattice
was mapped onto the isotropic free-fermion eight-vertex
model [23] by Choy and Baxter [24]. Therefore, we relate the
Boltzmann factor given by Eqs. (10)–(13) and the Boltzmann
factor of the Union Jack lattice given by Eq. (4) of Ref. [24].
These relations are given by

ω1 = 2ξ1√
ξ2ξ3

, ω2 = 2ξ2√
ξ2ξ3

, ω3 = 2, ω5 = 2ξ5√
ξ2ξ3

.

(19)

The schematic representation of the eight-vertex model is
given in Fig. 6. These Boltzmann weights will be used in the
following section to study the critical temperature and sponta-
neous magnetization of the Cairo pentagonal Ising model.

V. THERMODYNAMICS OF THE PENTAGONAL LATTICE

In this section we discuss thermodynamical properties, such
as the entropy, specific heat, and magnetization, as a function
of temperature, as well as the critical temperature behavior.
The thermodynamics of the pentagonal Ising model can be
expressed following the results given by Fan and Wu [23]. The
exact result for the free energy of the pentagonal Ising model
is then given by

βf = − 1

4π

∫ 2π

0
ln[A(φ) +

√
Q(φ)]dφ, (20)

where

A(φ) = 1
2

(
ξ 2

1 + ξ 2
2 + 2ξ2ξ3

) + (ξ1 − ξ2)
√

ξ2ξ3 cos(φ), (21)

Q(φ) = [
(ξ1 − ξ2)

√
ξ2ξ3 cos(φ) + 1

2 (ξ1 + ξ2)2
]2

+ ξ1ξ2[4ξ2ξ3 − (ξ1 + ξ2)2]. (22)

Once the free energy is known, we can obtain straightforwardly
the critical temperature, magnetization, entropy, and specific
heat.

A. Critical temperature

In order to study the spontaneous magnetization, following
the result obtained by Choy and Baxter [24] and using Eq. (19),

the magnetization M0 = 〈τ1〉 for spins with coordination
number 4 is described by

M0 = 8
√

1 − k2, (23)

where

k = 2ξ2(ξ1 + ξ3)

ξ 2
1 + ξ 2

2 − 2ξ2ξ3
. (24)

Equation (24) is expressed in terms of the pentagonal Ising
model Boltzmann factor. It is important to note that this relation
is valid for arbitrary spins s1 and s2, as shown in Fig. 5. Using
the results obtained in Ref. [24], the critical point of the Union
Jack lattice is obtained from the condition w1 − w2 = 2w3

for w1 > w2 or w2 − w1 = 2w3 for w2 > w1; in terms of k,
this means that the critical points occur at k = 1. Equivalently,
using the pentagonal Ising model Boltzmann factor ξ , we have

(ξ1 − ξ2)2 = 4ξ2ξ3. (25)

This condition must satisfy the critical point. Rewriting
Eq. (25) in terms of r and u, the critical points must satisfy the
relation

rc =
√

2uc

√√√√2u6
c + 2u2

c + (
1 − u4

c

)2√
2

u12
c − 5u8

c − 5u4
c + 1

, (26)

where rc and uc denote r and u evaluated at the critical
temperature Tc. The same expression could be obtained from
Eq. (8) of Ref. [9]; however, due to the standard decoration
transformation [10,17] used by Urumov [9] for this model,
we have to eliminate the intermediate parameter Q. Once
the intermediate parameter Q is eliminated from Eq. (8) of
Ref. [9], it becomes identical to our Eq. (26) for the case
of J1 > 0 (ferromagnetic coupling), which was previously
studied by Urumov [9].

In Eq. (26) we provide a closed expression for the critical
point of the pentagonal Ising model. The curves where the
critical points occur are illustrated in Fig. 7.

The finite-temperature properties of the system are inves-
tigated by considering the effect of the parameters J and

FIG. 7. Critical points curve for the pentagonal Ising model as a
function of the parameters J/Tc and J1/Tc.
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(a)

(b)

FIG. 8. Phase diagrams as a function of temperature Tc and the
parameter |J | for two different values of J1. In (b) the dashed lines
show the limiting values of J → 0 and Tc → 0.

J1 on the critical behavior. In Fig. 7 we display the critical
point regions in units of critical temperature, where the phase
transitions of the FIM region to a disordered phase (DP) and
a DP to a FM phase are illustrated. It is important to highlight
that Fig. 7 becomes similar to Fig. 2 when Tc → 0.

An alternative phase diagram is depicted in Fig. 8, where the
phase diagrams are illustrated in the (Tc,|J |) plane (since Tc is
invariant under the J → −J exchange) for fixed parameter J1.
In Fig. 8(a) the second-order phase transition line is shown in
the (Tc,|J |) plane when the parameter J1 is fixed at J1 = −1.0;
in this case there is a DP. Concretely, for J < 0 we show two
regions: the FIM phase and the DP; for J > 0 we have a DP
and a FM phase.

In Fig. 8(b) we show the behavior of the critical temperature
when J1 = 1.0, displayed as a solid line. For low values of T ≈
0, the left-hand side of Eq. (26) goes to infinity; this implies that
the denominator on the right-hand side must satisfy the con-
dition u12

c − 5u8
c − 5u4

c + 1 = 0. Thus we obtain the solution
Tc = ±2.2691J (dashed lines), which is valid within the limit
J → 0 and Tc → 0. This result is in agreement with the phase
diagram at zero temperature see, for instance, Fig. 2); more
specifically, for J1 = 1, the phase transition occurs at J = 0.

FIG. 9. Phase diagram in the (Tc/J,J1/J ) plane for the
pentagonal Ising model.

We now comment on the finite-temperature phase diagrams
displayed in Fig. 9, in which the critical temperature Tc/J is
shown as a function of the parameter J1/J . Using the equation
of the critical points (26), we obtain the plot illustrated in
Fig. 9. From that we can analyze three limiting cases.

(i) For J1
J

→ 0 we obtain Tc/J = 1.3084 (Tc/J =
−1.3084) and the pentagonal lattice is reduced to a ferro-
magnetic (ferrimagnetic, with total magnetization M = 1/3)
decorated square lattice, respectively.

(ii) For J1
J

→ ∞, from our calculation, for J > 0 and
J1 > 0, we find the solution Tc/J = 2.2691; in this case
the pentagonal lattice is reduced to the ferromagnetic square
lattice. In the case J < 0 and J1 < 0, in the limit under
consideration ( J1

J
→ ∞), the pentagonal lattice falls into the

bottom right-hand corner, which is a DP state (see Fig. 9).
(iii) For J1

J
→ −∞ we obtain Tc/J = −2.2691 for J < 0

and J1 > 0 and the pentagonal lattice is reduced to a
ferrimagnetic (with total magnetization M = 1/3) square
lattice. Meanwhile, for J1

J
→ −∞ for J > 0 and J1 < 0

the pentagonal lattice falls into a disordered state, which
corresponds to the top left corner of Fig. 9.

When K2 = 0, according to a pentagonal lattice mapping
onto an effective square lattice (see Fig. 5), within the limit
J1
J

→ ∞, the effective lattice is reduced to a ferromagnetic
square lattice. In the limit J1

J
→ −∞ the pentagonal Ising

model reduces to an antiferromagnetic square lattice.

B. Internal energy

The internal energy of the pentagonal lattice Ising model
defined by U = T 2 ∂(f/T )

∂T
can be obtained straightforwardly

from Eq. (20). In Fig. 10 we display the internal energy as
a function of coupling parameter J in the low-temperature
limit in order to observe the low-lying energy contribution
close to the critical temperature assuming J1 = −1.0. The
dashed line corresponds to the DP internal energy at T = 0
(the ground-state energy), given by U = −1 − 2J , while the
dash-dotted line indicates the internal energy U = 1 − 4J
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FIG. 10. (Color online) Internal energy U as a function of J for a
fixed value J1 = −1.0. The dashed line corresponds to the DP ground
energy and the dash-dotted line corresponds to the FM ground energy.

from which the phase transition at zero temperature occurs
at J = 1. In the case Tc → 0 and assuming J = 1 + δ with
δ � 0, we have uc → ∞ and then it is possible to write
uc = r−1−δ

c . Further, by substituting into Eq. (26), after some
algebraic manipulations we obtain r2δ

c ≈ 1
2
√

2
, where rc =

e−1/Tc was defined previously. Thus a second-order phase
transition occurs at Tc ≈ 2(|J |−1)

ln(2
√

2)
. It is worth highlighting that

the lowest critical temperature occurs at Tc = 0. Therefore,
the contribution of the low-lying energy is absorbed by the
second-order phase transition. Certainly there is no second-
order phase transition for J < 1 and J1 = −1. The solid blue
(thick) line and the dark-blue (thin) curve represent the internal
energy in the disordered phase, while by the red (thick) line
and the orange (thin) line curve represent the ferromagnetic
region for two critical temperatures Tc = 0.192 and 0.385.

In Fig. 11 we plot the internal energy as a function of
temperature for several values of J around the second=order
phase transition, assuming a fixed value for J1 = −1.0. The
black dotted line represents the internal energy U (Tc) evaluated
at the critical temperature Tc given by Eq. (37) at low temper-
ature. Below the critical temperature, the internal energy is
almost constant (ferromagnetic phase), which means that it
is mainly given by the zero-temperature ground-state energy.
Although at a critical temperature there is a sudden change
of curvature, this change becomes dramatic for lower critical
temperature; for higher critical temperature this change of
curvature becomes smoother. The lowest critical temperature
occurs at Tc = 0 for J = 1; therefore, for lower values of the
coupling parameter J there is no second-order phase transition.
For a sufficiently high temperature the internal energy leads
to an asymptotic limit, whereas the internal energy increases
almost proportionally to the temperature.

C. Spontaneous magnetization

The total magnetization M is given by Eq. (2) for the
pentagonal Ising model, which will be discussed in order to

FIG. 11. (Color online) Internal energy U as a function of T and
a fixed value J1 = −1.0. The dotted curve corresponds to U (Tc).

show the spontaneous magnetization. It ought to be pointed
out that the calculation of the magnetization of internal spin
si , i = 1,2, may be obtained following the results obtained by
Choy and Baxter [24], which could be expressed by the relation

M1 = 〈s1〉 = c1〈τ 〉 + c2〈τ1τ2τ3〉, (27)

where after some algebraic manipulations the coefficients
become

c1 = 1

4

(
�1

ξ1
+ 2

�5

ξ5

)
, (28)

c2 = 1

4

(
�1

ξ1
− 2

�5

ξ5

)
. (29)

Defining �1 and �5 in analogy to the Boltzmann factors ξ , we
have

�1 = −2r

u4
+ 2ru4, (30)

�5 = −2r

u2
+ 2ru2. (31)

In order to obtain the three-spin correlation function
〈τ1τ2τ3〉 we use a checkerboard Ising model equivalent to
that used by Choy and Baxter [24]. Here we use the relation
obtained in Ref. [24], but in our case we rewrite this relation in
terms of the pentagonal Ising model Boltzmann factor. Hence,
using some algebraic manipulations we have

〈τ1τ2τ3〉 = R(r,u)〈τ1〉, (32)

where

R(r,u) = 2ξ1

ξ1 − ξ3
+ ξ1 + ξ3

ξ1 − ξ3

⎛
⎝1 −

2ξ1

√
ξ 2

1 + ξ 2
2 − 2ξ2ξ3

ξ 2
1 − ξ2ξ3

⎞
⎠ .

(33)
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(a)

(b)

FIG. 12. Total magnetization of the pentagonal Ising model for
three different values of T as a function of the parameter J and fixed
parameter J1. (a) J1 = −1.0 and (b) J1 = 1.0.

Therefore, the magnetization M1 can be expressed as a
function of magnetization M0, which is given by

M1 = 1

4

[(
�1

ξ1
+ 2

�5

ξ5

)
+

(
�1

ξ1
− 2

�5

ξ5

)
R(r,u)

]
M0. (34)

It is important to highlight that Eq. (34) is expressed in terms
of the original parameters of the pentagonal Ising model
instead of parameters of the effective Hamiltonian such as
those obtained by Urumov [9]. Using Eq. (34), we are able to
manipulate the parameters of the pentagonal Ising model in
order to discuss the spontaneous magnetization. At the critical
point we need to substitute the expression r = r

Tc/T
c , where rc

is defined in Eq. (26). From Eqs. (23) and (34) we can obtain a
closed expression for the total magnetization of the Ising model
on a pentagonal lattice, using the relation given by Eq. (2).

We now discuss the behavior of the total magnetization of
the pentagonal Ising model as a function of the parameter J for
the low-temperature limit. In Fig. 12 we plot the magnetization
at low temperature as a function of J , where we display two
types of plateaus for the FIM state and the FM state. This is in

FIG. 13. Temperature dependence of the total magnetization of
the pentagonal Ising model for two different values of J/Tc and a
fixed value J1 = −1.0.

agreement with the phase diagram displayed in Figs. 2 and 7,
whereas the intermediate state corresponds to the FRU phase
and the DP, respectively.

Hence, in Fig. 12(a), for J1 = −1.0, when T = 0 there are
three well defined regions: the FM phase with M = 1, the FIM
phase with M = 1/3, and the intermediate FRU phase; also, by
increasing the temperature (for example, from T = 0.1 to 1.0)
the disordered phase increases (the |J | increases). Meanwhile,
in Fig. 12(b), for J1 = 1.0 and at zero temperature, we have
a direct phase transition between the FM state and the FIM
state. However, for a nearly zero temperature T = 0.1, a small
intermediate region arises that corresponds to the disordered
phase region. For higher temperature such as T = 1.0, the DP
region is even larger.

Another way to analyze the total magnetization is by
exploring the temperature dependence T/Tc of the total
magnetization. In Fig. 13 we plot the magnetization as a
function of temperature for two values of J/Tc = ±1 and
J1 = −1.0, where the magnetization of the saturated FM state
and the FIM state is illustrated. For the case of J/Tc = 1 we
have the FM region with M = 1 the total magnetization at
zero temperature. The total magnetization vanishes at T = Tc

as temperature increases; therefore, a second-order phase
transition occurs at the critical temperature.

For J/Tc = −1, the total magnetization corresponds to the
FIM region, with M = 1/3 at zero temperature, and it vanishes
at T = Tc as displayed in Fig. 13. Thus a second-order phase
transition occurs again at the critical temperature, which is in
agreement with the critical point curve displayed in Fig. 7.

D. Entropy

The entropy can be easily obtained as a negative tempera-
ture derivative from the free energy (20) S = − ∂f

∂T
, while the

specific heat can be written as a temperature derivative from
the entropy C = T ∂S

∂T
. In what follows we consider only the

case J > 0 since for J < 0 we have the same behavior.
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(a)

(b)

(c)

(d)

FIG. 14. (Color online) Entropy as a function of temperature for
J1 = −1.0 and (a) and (b) J � 1 and (c) and (d) J > 1.

In Fig. 14 we display the entropy as a function of
temperature for several values of J with J1 = −1.0 fixed.
Figure 14(a) shows the low-temperature behavior of entropy,
where the residual entropy appears at S0 = ln(2)/2 = 0.3465
for |J | < 1.0. This means that we are in a geometrically
frustrated region, which is in agreement with the illustration
of the phase diagram in Fig. 2. The residual entropy is
proportional to ln (2); this number comes from the two
configurations given in Eq. (5). For |J | = 1.0 the residual
entropy has a different nontrivial value as displayed in Fig.
14(b). To obtain the entropy explicitly, we return to Eqs. (21)
and (22) and set rc = 1

uc
= e−1/Tc . Thus we obtain

r6
c A(φ) = 5

2 + √
2 cos(φ) + O

(
r2
c

)
and

r12
c Q = 1

4 + √
2 cos(φ) + 2 cos2(φ) + O

(
r2
c

)
.

Finally, for Tc → 0 (rc → 0) and using Eq. (20), the residual
entropy becomes

S0 = 1

4π

∫ 2π

0
ln

[
5

2
+

∣∣∣∣
√

2 cos(φ) + 1

2

∣∣∣∣ +
√

2 cos(φ)

]
dφ

≈ 0.573 271 475 7. (35)

This is due to the degeneration of the phase boundary between
the FRU and FM (or FIM) regions at T = 0 (for details
see Fig. 2). This result was derived in a way similar to that
discussed by Wannier [26] for the case of a two-dimensional
triangular lattice. While in Fig. 14(c) there is no residual
entropy for |J | > 1, the standard temperature dependence of
entropy appears with a strong change of curvature located at
critical points where a second-order phase transition occurs.

It ought to be highlighted that in the low-temperature
limit (below the critical temperature) the entropy (in the FM
state) for J > 1 and with J1 = −1 can be obtained from
Eq. (20). More explicitly, by fixing J = 1 + δ, where δ > 0,
it is possible to write u = 1

rs
, with r = e−1/T and s = e−δ/T .

Substituting Eqs. (21) and (22) into Eq. (20), the integration

FIG. 15. (Color online) Entropy S as a function of the parameter
J for a fixed low temperature and J1 = −1.0.
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(a)

(b)

(c)

(d)

FIG. 16. (Color online) Specific heat as a function of temperature
for J1 = −1.0 and (a) and (b) J � 1 and (c) and (d) J > 1.

of Eq. (20) results in

f ≈ −3 − 2δ − T (−2 ln s + 2r2s4)

≈ 1 − 4J − 2T e−2(2|J |−1)/T .

Finally, the entropy S = − ∂f

∂T
can be written as

S ≈ 2�

T
e−�/T , (36)

where � ≡ 2(2|J | − 1) is the energy gap. In Figs. 14(c) and
14(d) the low-temperature limit is well fitted by the above
limiting expression.

An additional plot of entropy S against J in the low-
temperature limit is displayed in Fig. 15, where the residual
entropy is illustrated by the dashed black line at zero tempera-
ture. For J < 1 there is residual entropyS = ln(2)/2, while for
J = 1 the residual entropy becomes S = 0.573 271 475 7; for
higher values of J > 1 there is no residual entropy. Thereafter,
we observed the entropy in the low-temperature limit, where
we can show the effects of residual entropy. The low-lying
energy contribution for the entropy between the DP and the
FM phase is absorbed by the second-order phase transition
as a consequence of the entropy falling dramatically to zero
entropy for J > 1; for higher temperature the entropy change
curvature becomes softer.

E. Specific heat

Finally, we conclude our analysis of thermodynamics by
exploring the temperature dependence of the specific heat.
Some typical thermal variations of the specific heat of the
pentagonal Ising model are plotted in Fig. 16 for several
values of J and J1 = −1.0 fixed. In Figs. 16(a) and 16(b)
we present the temperature dependence of the specific heat in
the DP states and show that there is no phase transition at finite
temperature because we are observing the frustrated region. In
Figs. 16(c) and 16(d) the specific heats are logarithmically
divergent at the critical temperature, which is associated
with a continuous phase transition between the spontaneously
ordered and disordered phases. Clearly, this means that we are

FIG. 17. (Color online) Specific heat as a function of J in the
low-temperature limit and J1 = −1.0.
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FIG. 18. (Color online) Low-temperature limit specific heat
against temperature for the same values as in Fig. 16(c). The solid
line corresponds to the exact specific heat and the dashed line is the
low-temperature limit of the specific heat.

facing a FM region, which can be verified in the phase diagram
illustrated in Fig. 2.

Plotted in Fig. 16(c) when J � 1 and J1 = −1 is the specific
heat versus temperature; a surprisingly almost null specific
heat is displayed, until the critical temperature is achieved.
When the absolute value of the exchange interaction is only
slightly above 1, the critical temperature (an order-disorder
phase transition) can be obtained easily from Eq. (26); this
critical temperature is approximately given by the expression

Tc ≈ 2(|J | − 1)

ln(2
√

2)
(37)

in the low-temperature limit.
In Fig. 17 we display the specific heat as a function of

J in the low-temperature limit, where we show the specific
heat behavior around the second-order phase transition. As
discussed previously, the low-lying energy contribution is
absorbed by a second-order phase transition in the case of J >

1, while for J < 1 there is no second-order phase transition;
then we can observe the low-lying energy contribution as a
small anomalous broad peak.

Similarly, the low-temperature asymptotic limit for specific
heat can be derived from Eq. (20) so that

C ≈ 2�2

T 2
e−�/T . (38)

The energy gap is large enough even when J = 1.02 because
the order-disorder transition occurs for |J | ≈ 1 + Tc

2 ln(2
√

2).
In Fig. 18 we show the magnification of Fig. 16(c) in low-

temperature limit, which is well fitted by Eq. (38). The solid

line corresponds to the exact specific heat and the dashed
line represents the low-temperature asymptotic limit of the
specific heat. For J = 1.02 the corresponding low-temperature
approximation is valid for T < 0.0385, while for J = 1.1 and
J = 1.2 clearly the low-temperature curve accompanies quite
well the exact solution.

VI. CONCLUSION

Using the direct decoration transformation [16], we have
solved the pentagonal Ising model with a more general
coupling parameter and compared it with Urumov’s [9]
solutions. We have found a frustrated phase of the pentagonal
Ising model.

In addition, we have obtained a simplified solution for the
free energy, as well as a closed expression for the critical
temperature. Although this model has already been solved
by Urumov through the standard decoration transformation
[10,17] in the nonfrustrated region (J1 > 0), such a result
contains unnecessary intermediate parameters that can be
avoided so that a closed expression similar to Eq. (26) can
be obtained. We have studied the ground-state phase diagram,
which exhibits a ferromagnetic state, a ferrimagnetic state,
and a frustrated state at J1 < −|J |. Following the exact
solution for the pentagonal Ising model, we have discussed
the finite-temperature phase diagram, as shown in Figs. 8 and
9, identifying the phase transition between the FIM state and
the DP state and also between the DP state and the FM state.

The analysis of the limits in Fig. 9 allows one to find three
relevant phases. For J1 → 0 the pentagonal lattice reduces
to a ferromagnetic (ferrimagnetic) decorated square lattice.
For J1 → ∞ and J > 0 the pentagonal lattice reduces to the
ferromagnetic square lattice. Finally, for J1 → −∞ and J < 0
the pentagonal Ising model reduces to a ferrimagnetic square
lattice. The total magnetization as a function of the parameter J

and for a fixed value of J1 for the ferromagnetic state (M = 1)
and the ferrimagnetic state (M = 1/3) is shown in Fig. 12.

For a fixed value of J1 = −1 there is a residual entropy
S0 = 0.3465. For |J | < 1.0 and |J | = 1.0 a nontrivial residual
entropy S0 = 0.5732 is found, as shown in Fig. 14. Because of
the frustrated state, the entropy below the critical temperature
shows a strong change of curvature for J � 1. The specific heat
capacity was also investigated at fixed J1 = −1 and |J | < 1
[see Figs. 16(a) and 16(b)]. For J1 = −1 and |J | � 1 we have
unusual behavior due to frustration of the entropy and the heat
capacity at temperatures below the critical value, as shown in
Figs. 16(c) and 16(d).
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