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Phase diagram for a zero-temperature Glauber dynamics under partially synchronous updates
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We consider generalized zero-temperature Glauber dynamics under a partially synchronous updating mode
for a one-dimensional system. Using Monte Carlo simulations, we calculate the phase diagram and show that
the system exhibits phase transition between the ferromagnetic and active antiferromagnetic phases. Moreover,
we provide analytical calculations that allow us to understand the origin of the phase transition and confirm
simulation results obtained earlier for synchronous updates.
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I. INTRODUCTION

In the last decade renewed interest in Glauber dynamics
[1] has been observed, especially at zero temperature [2–14].
This is partially caused by recent experiments with so-called
single-chain magnets (for a recent review, see [15]) but is
also due to the development of the nonequilibrium statistical
physics. From this point of view one-dimensional systems at
zero temperature are especially interesting [9].

The dynamical rules of stochastic models, such as Glauber
dynamics, can be defined in terms of various update schemes,
the most important ones being parallel (synchronous) and
random-sequential (asynchronous) updates [16]. Although
Glauber dynamics was originally introduced as a sequential
updating process, interesting theoretical results can be ob-
tained also using a synchronous updating mode [4,8,10,12,
13,17]. Moreover, clear evidence of a relaxation mechanism
which involves the simultaneous reversal of spins has been
shown experimentally for magnetic chains at low temperatures
[18]. In computer simulations under the synchronous updating
mode all units of the system are updated at the same time.
However, in real systems one can expect that simultaneous
reversal of spins concerns only a part of the system. From
this point of view partially synchronous updates are the most
realistic.

We introduced such a partially synchronous updating
scheme in 2006 [12] to investigate the differences between
Glauber and Sznajd dynamics for a chain of L Ising spins.
Within such an update in each elementary time step we visit
all sites and select each of them with probability c as a
candidate to get flipped, i.e., on average, cL randomly chosen
spins are considered in a single time step [12]. Of course
c = 1 corresponds to the synchronous updating scheme and
c = 1/L corresponds to random sequential updates. Partially
synchronous updates were also used in 2007 by Radicchi
et al. [13] to investigate the Ising spin chain at zero temperature
for the Metropolis algorithm [19]. They observed, as a
function of c, a critical phase transition between two phases: a
ferromagnetic phase and the so-called active phase. A similar
phase transition had already been observed earlier for the
generalized zero-temperature Glauber dynamics by Menyhard
and Odor in the case of a synchronous updating scheme [4].

It should be noticed that the Metropolis algorithm at zero
temperature is a special case of a broader class of zero-
temperature Glauber dynamics. Within the Glauber dynamics
for Ising spins with a spin s = 1/2, in a broad sense, each

spin is flipped Si(t) → −Si(t + 1) with a rate W (δE) per unit
time, and this rate is assumed to depend only on the energy
difference implied in the flip. At zero temperature it can be
defined as [9]

W (δE) =

⎧⎪⎨
⎪⎩

1 if δE < 0,

W0 if δE = 0,

0 if δE > 0.

(1)

The zero-temperature limits of the original Glauber dynamics
[1] and Metropolis rates [19] (two of the most popular choices)
are respectively WG

0 = 1/2 and WM
0 = 1.

Very recently, generalized Glauber dynamics defined by
(1) under a synchronous updating mode have been studied
[17]. It has been shown that the system exhibits a phase
transition for W0 = Wc = 1/2 between ferromagnetic and
antiferromagnetic phases. As an order parameter, the density
ρ of active bonds has been used:

ρ = 1

2L

L∑
i=1

(1 − σiσi+1) , (2)

where L is the number of spins and σi = ±1 is the Ising
spin variable at the ith site on the one-dimensional chain
with the periodic boundary condition. Starting from a ran-
domly disordered initial state (high-temperature situation), the
system eventually approaches one of two steady states: fully
ferromagnetic, ρst = 0, or fully antiferromagnetic, ρst = 1. In
a previous paper [17] it has been suggested that for Wc = 1/2,
in the case of synchronous updating, the system undergoes
a discontinuous phase transition between two types of order.
However, very recently, it has been claimed that the observed
phase transition is rather continuous [20]. It has been shown
that the dependence between the mean value of ρst and the
control parameter W0 scales with the system size L with
scaling exponents β = 0 and ν = 1 [20]. Moreover, the mean
exit time needed to reach the stationary state also scales with
the system size with the dynamical scaling exponent z = 2.
According to [20], both scaling laws indicate continuous phase
transition, contrary to the suggestion made in [17]. However,
it should be noticed that trivial scaling exponents β = 0 and
ν = 1/d (where d denotes spatial dimension, i.e., d = 1 in our
case) are typical for the first order phase transitions, as shown
both analytically by Fisher and Berker [21] and using Monte
Carlo simulations by Binder and Landau [22]. We will come
back to this problem in Sec. III.
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In this paper we consider zero-temperature Glauber dy-
namics defined by (1) under a partially synchronous updating
mode. We show that both parameters W0 and c are responsible
for the phase transition between ferromagnetic and antiferro-
magnetic phases. We construct the phase diagram in (c,W0)
space based on the Monte Carlo simulations. Moreover, we
provide exact analytical calculations for a simple case with
only three active bonds. Such a simple approach allows us to
understand the origin of the phase transition and shows that,
indeed, for c = 1 the critical value W0 = 1/2, which confirms
the results obtained in [17,20].

II. THE MODEL

As mentioned above, we consider a one-dimensional chain
of L Ising spins σ = ±1 with the periodic boundary condition,
described by the Hamiltonian

H = −J

L∑
i=0

σiσi+1, (3)

where J > 0, which means that we are dealing with a
ferromagnetic system. We consider the system at temperature
T = 0, and therefore we use the generalized Glauber dynamics
defined by (1).

In our computer simulations we use partially synchronous
updates, parametrized by c ∈ [1/L,1], which allows us to tune
the algorithm from a sequential (c = 1/L) to synchronous
(c = 1) updating scheme. At time t we visit all sites of the chain
and select each of them with probability c as a candidate to get
flipped. Each of the selected sites is then updated according to
the zero-temperature Glauber dynamics defined by (1). After
one step of the algorithm, the time increases as t → t + c. As
usual, one Monte Carlo step (MCS) passes when the average
number of update events equals the total number of sites L.
We investigate quench from T = ∞ to T = 0, i.e., an initial
state is disordered: at each site i there is a randomly chosen
value of spin σi = ±1, and both values σi = +1 and σi = −1
are equally probable.

III. MONTE CARLO RESULTS

In the Monte Carlo simulations, relaxation processes in
magnetic or reaction-diffusion systems are usually investigated
by measuring the time evolution of so-called active bonds
(domain walls) [16,23–25]. As already mentioned, under a
synchronous updating scheme (c = 1), the system described
by dynamical rule (1) eventually approaches one of two steady
states: fully ferromagnetic, ρst = 0, or fully antiferromagnetic,
ρst = 1. We start by clarifying the problem of the type of the
phase transition between ferromagnetic and antiferromagnetic
orders that occurs at W0 = 1/2. As written above, very
recently, it has been claimed that the observed phase transition
is continuous [20], contrary to what has been suggested in
[17]. It is true that discontinuous phase transitions are rare
in one-dimensional, even nonequilibrium systems, but there
are several lattice models that exhibit discontinuous absorbing
phase transition in one dimension [16]. There are several
phenomena attributed to discontinuous phase transitions, such
as phase coexistence, hysteresis cycles, and trivial critical

exponents, in particular, β = 0, which indicates a jump of
an order parameter. As has been shown for c = 1, there is a
phase coexistence at W0 = 1/2 [17]. Moreover, it has been
shown that critical exponents β = 0 and ν = 1 [20], which is
typical for the first order phase transitions [21,22].

To distinguish ultimately between continuous and dis-
continuous phase transitions, the hysteresis loop should be
observed. To measure the hysteresis we have decided to start
with two types of initial conditions: (1) for a disordered
ferromagnet, we disturb the ferromagnetic order by flipping
one spin: · · · ↑↑↑↑↑↓↑↑↑↑↑↑ · · ·. (2) For a disordered
antiferromagnet, we disturb the antiferromagnetic order by
flipping one spin: · · · ↑↓↑↓↑↑↑↓↑↓↑↓ · · ·.

In Fig. 1 the dependence between 〈ρst〉 and control
parameter W0 is shown for two values of c. It is clear that
the phase transition for c = 1 is qualitatively different from
the phase transition in the case of c < 1. In the latter case the
initial condition does not influence significantly the asymptotic
state, while in the case of synchronous updating a hysteresis
loop can be observed.

Now we are ready to discuss results for c < 1. As we
have already seen in Fig. 1, there is no hysteresis loop for
c < 1. This result suggests that in this case the continuous
phase transition probably occurs. In such a case we should
observe the continuous change of order parameter 〈ρst〉,
and therefore the antiferromagnetic state should not be an
absorbing state for c < 1. To check these predictions let us start
by presenting the time evolution of the average density of active
bonds 〈ρ(t)〉. From Fig. 2 we see that starting from disordered
initial conditions (〈ρ(0)〉 = 0.5), the number of active bonds
rapidly decreases to zero below some threshold value Wc, and
for W0 > Wc it increases to a certain stationary value 〈ρst〉 that
depends on both c and W0. This means that for c < 1 there
is a phase transition between the ferromagnetic order and the
so-called active phase [16]. To check if the phase transition is
indeed continuous even for c � 1 we have conducted detailed
simulations for c = 0.9,0.99,0.999,1.

In Figs. 3 and 4 results for c = 0.9 and c = 0.99 are
presented. The phase transition between ferromagnetically
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FIG. 1. The dependence between 〈ρst〉 and W0 ∈ [0,1] in the case
of synchronous updating (left) c = 1 and (right) c = 0.95 for the
lattice size L = 100 from two different initial states: open circles
denote the antiferromagnetic initial state disturbed by flipping one
spin, and stars denote the ferromagnetic initial state disturbed by
flipping one spin. It is seen that for synchronous updating (left) there
is a hysteresis loop: different steady states are reached for different
initial conditions. For c < 1 (right) there is no hysteresis loop: for
W0 < 0.6 the ferromagnetic steady state is reached independently of
the initial state, and for W0 > 0.6 there is an active steady state with
ρst > 0.
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FIG. 2. (Color online) The average density of active bonds 〈ρ〉 as
a function of time and W0 for c = 0.9. It is seen that starting from
disordered initial conditions (〈ρ(0)〉 = 0.5), the number of active
bonds rapidly decreases to zero below some threshold value of W0,
and above this threshold value it increases to a certain stationary value
〈ρst〉 that depends both on c and W0.

ordered and active phases is clearly visible, and the critical
value of W0 = W0(c), as well as the scaling exponents, can
be estimated from the finite size scaling (see Table I). For all
values of c the critical exponent ν = 1, whereas β = β(c) and
for c → 1 decreases with increasing c.

Finding precise values of critical exponents for all values
of c ∈ [0,1] is tedious but could be done. Here we were
more interested in answering whether c = 1 is the only point
at which the transition is discontinuous, and therefore we
investigated c → 1. According to our results, indeed, the
discontinuous phase transition is observed only for c = 1,
where generated clusters become compact (see Fig. 8). For
c < 1 the transition is continuous, and β increases with the
distance from the upper terminal point c = 1.

The exceptional behavior at the terminal point is due to
the symmetry between ferromagnetic and antiferromagnetic
states. Similar behavior is observed also in the Domany-Kinzel
(DK) model and is usually referred to as compact directed
percolation, which may be, in fact, misleading because
the dynamics at this special point is the same as in the
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FIG. 3. (left) The average density of active bonds in the stationary
state 〈ρst〉 as a function of W0 for c = 0.9 and several lattice sizes L.
The phase transition is clearly seen, and the critical value of W0 can be
found from the finite size scaling Wc ≈ 0.6. (right) Results from the
left panel are rescaled, showing clearly critical behavior with critical
exponents ν = 1 and β ≈ 0.4.
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FIG. 4. (left) The average density of active bonds in the stationary
state 〈ρst〉 as a function of W0 for c = 0.99 and several lattice sizes
L. The phase transition is clearly seen, and the critical value of W0

can be found from the finite size scaling Wc ≈ 0.53. (right) Results
from the left panel are rescaled, showing clearly critical behavior with
critical exponents ν = 1 and β ≈ 0.25.

(1 + 1)-dimensional Glauber-Ising model at zero temperature,
or, equivalently, the voter model [16]. It should be recalled
here that a DK model is a stochastic cellular automaton, and
therefore it evolves by parallel updates, which for our model
corresponds to c = 1, whereas the Glauber-Ising and voter
model evolves by random sequential updating (c = 1/L).
Therefore it is much easier to find direct correspondence
between DK and our model with c = 1 than between our model
and, e.g., the voter model. The DK model is characterized by
two parameters, p1 and p2; p1 is the probability that a site is
activated if only one of two neighboring sites is active, and p2

is the probability that the site is activated if both neighboring
sites are active. In our model p2 = 1 and p1 corresponds to
W0. In the DK model for p2 = 1 there is a discontinuous phase
transition at p1 = 1/2, which agrees exactly with the results
obtained for our model with c = 1.

As we have written, the average density of active bonds
in the stationary state 〈ρst〉 depends both on c and W0. Up to
now we have presented only the dependence between 〈ρst〉
and W0 for several values of c → 1. The average density
of active bonds in the stationary state 〈ρst〉 as a function
of W0 and c is presented in Fig. 5. The transition line be-
tween ferromagnetically ordered (〈ρst〉 = 0) and active phases
(〈ρst〉 > 0) is clearly visible. We have presented here results
for a relatively small lattice size L = 64, although simulations
were conducted also for larger systems, as presented in Figs. 3
and 4. Simulating smaller lattices allows us to measure the first
passage time to one of the fully ordered states, i.e., with ρ = 0
or ρ = 1. As indicated, these two states are absorbing only
for c = 1, and for c < 1 only ρ = 0 is an absorbing steady
state. However, the small system still has nonzero probability
to enter the antiferromagnetic state, although after it escapes
from this state. Therefore we have decided to measure the
mean time to enter one of the fully ordered states for the first

TABLE I. Approximate values of critical flipping probabilities
and critical exponent β for several values of c.

c Wc β ν

0.9 0.6 0.4 1.0
0.99 0.53 0.25 1.0
0.999 0.51 0.1 1.0
1 0.5 0 1.0
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FIG. 5. (Color online) The average density of active bonds in the
stationary state 〈ρst〉 as a function of W0 and c for lattice size L = 64.
Simulations were conducted for 5 × 105 MCS, and averaging was
done over 5 × 103 samples.

time 〈τ 〉 and see if any interesting behavior related to 〈τ 〉 will
be seen along the transition line.

The mean first passage time 〈τ 〉 to reach one of the two
types of fully ordered states (the so-called exit time [26]),
ferromagnetic (ρ = 0) or antiferromagnetic (ρ = 1), as a
function of W0 and c for the lattice size L = 64 is presented in
Fig. 6. It is seen that 〈τ 〉 dramatically increases approaching
the transition line, which is an expected behavior. However,
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FIG. 6. (Color online) The mean exit time 〈τ 〉 to reach one
of the two types of fully ordered states, ferromagnetic (ρ = 0) or
antiferromagnetic (ρ = 1), as a function of W0 and c for lattice
size L = 64. Simulations were conducted for 5 × 105 MCS, and
averaging was done over 5 × 103 samples. It is seen that below the
transition line the system reaches the ordered ferromagnetic state
quickly. Similarly, significantly above the transition line (large values
of c) the system quickly reaches the ordered antiferromagnetic state,
although for c < 1 this is not an absorbing state. The shape of a
triangle, in which 〈τ 〉 dramatically increases, is seen. The hole inside
the triangle indicates that none of the ordered states have been reached
in 106 Monte Carlo steps.
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FIG. 7. The average density of active bonds in the stationary state
〈ρst〉 (left) as a function of c for several values of W0 and (right) as
a function of W0 for several values of c. The difference between the
transitions with respect to c and W0 is visible.

what is even more interesting is that it increases also along
the transition line. For c → 1 the mean first passage time
〈τ 〉 is relatively short, and it increases with the distance
from the upper terminal point c = 1. Let us recall here
that the same behavior is related to a critical exponent β.
Colloquially speaking, the exit time increases with an increase
in the continuity (β) of the transition. Therefore, although the
antiferromagnetic state is not absorbing any longer for c < 1,
the mean exit time 〈τ 〉 is a useful characteristic of an observed
phase transition.

The last interesting feature connected to the phase transition
seen in Fig. 5 is a difference between the transition along axis
W0 and c. The differences between the transitions with respect
to c and W0 are visible also in Fig. 7. For c = 1 the average
density of active bonds in the stationary state 〈ρst〉 is 1 for any
W0 > 0.5, whereas for W0 = 1 the average density of active
bonds in the stationary state 〈ρst〉 depends on c. The transition
with respect to c is much more gentle than the transition with
respect to W0.

The difference between phase transitions with respect to c

and W0 can also be seen from the time evolution of active bonds
presented in Fig. 8. The phase transition for the Metropolis
algorithm, i.e., W0 = 1, which is induced by changing c,
reminds us of typical annihilation: a branching process (right
panel in Fig. 8). On the other hand, in the case of synchronous
updating the growth of the antiferromagnetic domain from
a single active bond can be observed (left panel in Fig. 8).
In this case a kind of phase coexistence can be observed:
ferromagnetic and antiferromagnetic clusters are present in
the system.

FIG. 8. Time evolution of active bonds near the phase transition
(left) in the case of synchronous updating c = 1 induced by W0 and
(right) in the case of the Metropolis algorithm W0 = 1 induced by c.
In the initial state only one bond was active.
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IV. THE ORIGIN OF THE PHASE TRANSITION

We have shown in the previous section that a one-
dimensional system of Ising spins with generalized Glauber
dynamics under partially synchronous updates exhibits well-
defined phase transition between a stable ferromagnetic phase
and an active phase. Moreover, it has been shown that for
the synchronous updating scheme (c = 1) the system exhibits
phase transition for W0 = 1/2 between two absorbing stable
states: ferromagnetically and antiferromagnetically ordered
[17,20]. Although some mean field calculation has been
provided [17], the origin of the investigated phase transition
has not yet been.

The model considered here belongs to a broad class
of so-called branching-annihilating random walks [16]; that
is, three processes are possible: diffusion, branching, and
annihilation of active bonds. It should also be mentioned that
these processes conserve the number of active bonds modulo
2, which is usually called parity conserving. However, it has
been shown that the conservation of the parity is not very
relevant [16,27].

Let us first consider the simplest case, a chain of length L

with a single active bond, i.e., · · · ↑↑↓↓ · · ·, at time t . Since
we deal with a zero-temperature situation, changes are possible
only on the domain wall (active bond). Therefore at time t + c

the single-bond system can evolve to

· · · ↑⇓⇑↓ · · · with probability c2W 2
0 PL−2,

· · · ↑↑⇑↓ · · · with probability [c(1 − c) + c2(1 − W0)]PL−2,

· · · ↑⇓↓↓ · · · with probability [c(1 − c) + c2(1 − W0)]PL−2,

· · · ↑↑↓↓ · · · with probability [(1 − c)2 + c2(1 − W0)2]PL−2,

where ⇑ and ⇓ denote spins that were flipped and

PL−2 =
L−2∑
k=0

(L − 2)!

k!(L − 2 − k)!
ck(1 − c)L−2−k (4)

denotes the sum of probabilities of all possible choices of
remaining L − 2 spins.

Clearly, only the first process, which occurs with the
probability Pb = c2W 2

0 PL−2, leads to the growth of antifer-
romagnetic domains. The remaining three situations do not
change the number of active bonds since the annihilation of
a single active bond is impossible. Therefore the single-bond
system can either remain unchanged or evolve to the system
that consists of three neighboring active bonds, · · · ↑↑↓↑↓↓
· · ·. Analyzing all possible transitions in such a system (see
Table II), we can calculate the probability of annihilation (Pa),
branching (Pb), and diffusion (Pd ):

Pa = c4W 2
0 − c2(1 + 2W0) + 2c, Pb = c4W 2

0 ,

Pd = −c4W0(2 + W0) − 2c3
(
W 2

0 − 2W0 − 1
)

+ c2
(
W 2

0 − 4
) + 2c. (5)

Of course there is also the possibility of no change in the
system:

Pno = 1 − (Pa + Pb + Pd ). (6)

TABLE II. All possible outcome configurations from initial state
↑↑↓↑↓↓. Here ⇑ and ⇓ denote spins that were flipped. The constant
factor PL−4, which multiplies the right sides of the Eqs. (5), has been
omitted to simplify notation. The initial state has three bonds.

After flip Bonds Probability

↑↑⇑↑↓↓ 1 c(1 − c)3 + c3(1 − W0)2(1 − c)
+2c2(1 − c)2(1 − W0)

↑↑↓⇓↓↓ 1 c(1 − c)3 + c3(1 − W0)2(1 − c)
+2c2(1 − c)2(1 − W0)

↑⇓↓↑↓↓ 3 cW0(1 − c)3 + c2W0(1 − c)2(1 − W0)
↑↑↓↑⇑↓ 3 cW0(1 − c)3 + c2W0(1 − c)2(1 − W0)
↑⇓⇑↑↓↓ 3 c2W0(1 − c)2 + c3W0(1 − c)(1 − W0)
↑↑↓⇓⇑↓ 3 c2W0(1 − c)2 + c3W0(1 − c)(1 − W0)
↑⇓↓⇓↓↓ 1 c2W0(1 − c)2 + c3W0(1 − c)(1 − W0)
↑↑⇑↑⇑↓ 1 c2W0(1 − c)2 + c3W0(1 − c)(1 − W0)
↑↑⇑⇓↓↓ 1 c2(1 − c)2 + c4(1 − W0)2

↑⇓↓↑⇑↓ 3 c2W 2
0 (1 − c)2

↑⇓⇑⇓↓↓ 3 c3W0(1 − c) + c4W0(1 − W0)
↑↑⇑⇓⇑↓ 3 c3W0(1 − c) + c4W0(1 − W0)
↑⇓↓⇓⇑↓ 3 c3W 2

0 (1 − c)
↑⇓⇑↑⇑↓ 3 c3W 2

0 (1 − c)
↑⇓⇑⇓⇑↓ 5 c4W 2

0

The constant factor

PL−4 =
L−4∑
k=0

(L − 4)!

k!(L − 4 − k)!
ck(1 − c)L−4−k, (7)

which multiplies the right sides of the above equations, has
been omitted to simplify the notation.

Now we can ask what the dependence is between parame-
ters c and W0 for which annihilation and branching are equally
probable:

Pa = Pb → −c2(1 + 2W0) + 2c = 0. (8)

This means that annihilation and branching are equally
probable for c = 0 or

c = 2

1 + 2W0
. (9)

From Eq. (9) we find that for synchronous updating, i.e., c = 1,
the critical value of W0 = 1/2, which confirms results obtained
recently in [17,20]. Moreover, for W0 = 1 we obtain the critical
value of c = 2/3, which is also very close to the value obtained
from Monte Carlo simulations (see Fig. 5). Therefore it seems
that the phase transition between the ferromagnetic phase and
antiferromagnetic active phase appears when annihilation and
branching are equally probable.

Let us now present the dependence between probabilities
(5) and parameter c for a given value of W0. We focus on the
Metropolis algorithm, i.e., W0 = 1 (the case considered also
in [13]). Results are presented in Fig. 9. Several interesting
features of our system are visible.

(1) The value of c for which annihilation and branching
are equally probable, i.e., Pa = Pb, agrees quite well with the
critical value of c obtained from Monte Carlo simulations.

(2) The probability of diffusion has a maximum for the
same value of c, for which Pa = Pb.
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FIG. 9. (Color online) Probabilities of annihilation (Pa), branch-
ing (Pb), diffusion (Pd ), and no change (Pno) as a function of updating
scheme c for W0 = 1.

(3) The probability of annihilation grows with c to a certain
value, c ∼ 0.4, and for c > 0.4 it decays. Simultaneously with
decreasing Pa , the probability of branching grows, although
it is still smaller then annihilation for c < 2/3. Therefore,
one expects that eventually the system will still reach a
ferromagnetic state, although branching of active bonds should
be visible during time evolution. It should be mentioned here
that in [13] the case of W0 = 1 has also been studied, and
the authors claimed that a system with partially synchronous
updates exhibits phase transition for c ∼ 0.4. However, our
results (both types of Monte Carlo simulations and the
simple analytical approach) suggest that the value of c ∼ 0.4
corresponds merely to the situation in which the probability of
annihilation starts to decay and branching appears.

V. SUMMARY

In this paper we have investigated one-dimensional systems
of Ising spins driven by the generalized zero-temperature
Glauber dynamics with a partially synchronous updating
mode (tuned from sequential to synchronous by parameter
c). It has been shown that for the synchronous updating
mode, which corresponds to c = 1, there is a discontinuous
phase transition between two ordered phases (ferromagnetic
and antiferromagnetic). Three signatures of a discontinuous
phase transition have been found in this case: (1) jump of
an order parameter (β = 0), (2) phase coexistence, and (3)
hysteresis cycles. Similar behavior has been observed in a
one-dimensional Glauber-Ising model at zero temperature in
a magnetic field, which is also known as compact directed
percolation [16]. On the other hand, finding the precise values
of critical exponents for c < 1 turned out to not be so easy a
task. Nevertheless, the results obtained in this paper suggest
that for any value of c < 1 there is a continuous order-disorder
transition (between the ferromagnetic and so-called active
phases). Using the finite scaling technique, we have shown
that the critical exponent β has no single value along the
transition line, i.e., β = β(c), and it increases with the distance

from the upper terminal point c = 1, at least for c → 1.
Finding the dependence between critical exponent β and c

along the whole line, i.e., for c ∈ [0,1], is quite tedious.
Moreover, we were more interested in answering the question
of whether c = 1 is the only point at which the transition is
discontinuous and what the type of transition is for c < 1.
Therefore we investigated c → 1. The numerical findings of
critical exponents are often difficult, and one should be careful
when drawing conclusions only from simulations. However, it
seems that the discontinuous phase transition for c = 1, similar
to the Domany-Kinzel model [16,28], is exceptional due to an
additional symmetry between active and inactive bonds.

Another interesting problem that could be investigated, but
was not the subject of this paper, is the phase transition with
respect to c for a given W0. We have presented the general
dependence between an order parameter 〈ρst〉 and parameters
W0 and c. We have also discussed briefly the differences
between transitions with respect to W0 and c. However, a
detailed analysis has not been provided. The only results
connected to this issue were obtained for W0 = 1 in [13].
In this paper it has been shown that the phase transition can
also be observed for any other value of W0 > 0.5. It would be
interesting to investigate this problem more precisely in the
future.

To understand the origin of the phase transition we have pro-
vided a simple analytical approach and showed that transition
occurs when branching and annihilation are equally probable,
which is fulfilled for W0 = (2 − c)/2c. Again, this confirms
results from [17,20] since for c = 1,W0 = 1/2, which was
obtained earlier by Monte Carlo simulations and a simple mean
field approach.

To conclude this work we would like to highlight one
important issue that justifies the subject of the paper. As
mentioned in the Introduction, clear evidence of a relaxation
mechanism which involves the simultaneous reversal of spins
has been shown experimentally for magnetic chains at low
temperatures [18]. However, in [18] it has been suggested
that the probability of simultaneous reversal of L spins scales
as qL (with certain parameter q < 1), which is not the same
kind of macroscopic reversal which is assumed in this paper.
Moreover, in [18] the simultaneous reversal of spins in a single
segment has been considered, which is also very different from
our approach. To be honest, we were not able to find any other
example of a physical experiment that shows an evidence of
simultaneous changes. One should also remember that Glauber
dynamics, which has been introduced as a sequential updating
process, satisfies the detailed balance condition and therefore
ensures the existence of an equilibrium. There is thus a natural
question of whether the model with partially simultaneous
updating is merely another mathematical toy. Let us stress
here that we strongly believe in toy models. They help to
explore new regions and develop new fields even without
meeting any reality. On the other hand, we understand the
skepticism of people who would like to have even the smallest
hope that the model would turn into something useful. We
are not sure if partially synchronous or fully synchronous
updating can describe a real physical experiment. On the other
hand, the problem of updating methods is widely discussed
in a recent work on cellular automata, Boolean networks,
neural networks, and the so-called agent-based modeling in
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ecology and sociology [29–32]. It has been shown that the
updating scheme can have an enormous influence on the
model output [30]. It is also suggested that “the updating
effects will be particularly marked in models with increasing
interaction complexity such as models of interaction between
many trophic levels.” In this paper we show that the effect of
the type of updating is clearly visible even within extremely
simple model, which might be instructive, taking into account
that many models of opinion dynamics are inspired by the Ising
model [33]. In a world of agent-based modeling, asynchronous
and synchronous updating are treated as two contrasting

methods [33], and we see no reason why either of these two
would be better than partially synchronous updating. As stated
in [13], “Probably neither a completely synchronous nor a
random asynchronous update is realistic for natural systems.”
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