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Geometrical defects in two-dimensional melting of many-particle Yukawa systems
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We present a theoretical polygon construction analysis of two-dimensional melting and freezing transitions
in many-particle Yukawa systems. Two-dimensional melting transitions can be characterized as proliferation of
geometrical defects—nontriangular polygons, obtained by removing unusually long bonds in the triangulation
of particle positions. A liquid state is characterized by the temperature-independent number of quadrilaterals
and linearly increasing number of pentagons. We analyze specific types of vertices, classified by the type and
distribution of polygons surrounding them, and determine temperature dependencies of their concentrations.
Solid-liquid phase transitions are followed by the peaks in the abundances of certain types of vertices.
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I. INTRODUCTION

For a few decades, melting and freezing transitions in two-
dimensional many-particle systems have been investigated in
a variety of experimental and computational studies, without
reaching a definite conclusion regarding its nature. According
to the most widely accepted Kosterlitz-Thouless-Halperin-
Nelson-Young (KTHNY) theory, melting of a single two-
dimensional (2D) crystal occurs via two continuous phase
transitions, first from a solid to hexatic phase and then from
the hexatic to an isotropic fluid [1,2]. The theory also predicts
proliferation of unbound topological defects—dislocations
and then free disclinations—which play a crucial role in
2D phase transitions and break positional and orientational
order. Some experiments and theoretical studies, however,
suggest a first-order grain-boundary-induced melting scenario
in polycrystalline systems [3,4].

Although in two dimensions a true crystalline order cannot
survive at finite temperatures kT > 0 [5,6], a quasi-long-range
translational order is observed at the conditions of strong
coupling, for example, in complex plasma layers [7] or charged
colloidal suspensions [8]. Over the years, a broad range
of empirical criteria was developed to accurately determine
melting and crystallization points [9]. Perhaps one of the most
famous examples is the Lindemann criterion, which has been
applied extensively in three-dimensional melting and freezing,
while its generalized version has been used in some studies of
two-dimensional transitions [10]. Other methods frequently
make use of topological defect fractions, bond orientational
order parameters, orientational and positional correlation func-
tions, as well as Einstein frequencies [11]. In a recent work,
a polygon construction method by Glaser and Clark [12–14]
was employed to characterize transitions in a rapidly heated
and cooled two-dimensional complex plasma experiment [15].

Systems of strongly correlated particles in complex plasmas
are of particularly high importance in the experimental studies
of phase transitions. Complex plasma usually consists of
polymer microparticles immersed in a weakly ionized gas,
where distinct dust grains are known to interact through the
Yukawa (Debye-Hückel) interaction [16]. Convenient time and
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length scales of these systems allow for the direct optical
observation of collective many-particle phenomena as well
as accurate measurements of individual particle positions by
the means of video microscopy [17–19].

In a recent experiment, the phenomenon of superheating
was observed in a solid state of two-dimensional complex
plasma [20]. It was demonstrated that, during a rapid heating
process, the concentration of defects can stay low and complex
plasma can retain the properties of a solid even at the
temperatures above a melting point. The same experimental
results were later analyzed by the method of geometrical
defects [15], originally developed by Glaser and Clark, which
we use in the current work.

Geometrical defects in a polygon construction method are
identified by removing unusually long bonds in the triangu-
lation map of particle positions, so that resulting polygons
have three or more sides. It was shown that this method
provides great sensitivity and unveils some interesting features,
undetectable by the conventional analysis of topological
defects [15]. As another measure of disorder, the abundance
of different kinds of vertices, grouped according to the type
and order of the adjacent polygons, was suggested in the same
work. Unexpected spikes in the time dependencies of vertex
fractions were reported; however, the nature of these peaks
remained unclear.

This paper reports on numerical studies of two-dimensional
melting and crystallization in strongly coupled Yukawa sys-
tems. Langevin dynamics simulations are performed to simu-
late gradual heating and cooling. Melting and crystallization
points are determined employing orientational order param-
eters and topological defect fractions. However, the main
motivation behind the current work is to present the method
of geometrical defects and vertex fractions in the polygon
construction as a sensitive tool to analyze the order-disorder
transitions and characterize the state of a two-dimensional
system. Furthermore, our findings resolve the issue of the
prominent peaks in the temperature-dependencies of certain
types of vertex concentrations [15], by showing that peaks
correspond to the initial and final stages of the order-disorder
phase transition.

In the following section, we briefly describe the model
system and simulation methods as well as essential tools
used in the analysis of phase transitions. Main results of the

051111-11539-3755/2012/86(5)/051111(8) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.86.051111
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simulations and numerical analysis are presented in Sec. III,
while Sec. IV summarizes the article.

II. SIMULATION

A. Model system

A widely used approximation to describe interactions
between particles in complex plasmas is the Yukawa inter-
particle potential energy [16]:

Vij = Q2(4πε0rij )−1 exp(−rij /λD). (1)

Here, Q is the charge of a particle, rij is the distance between
particles i and j , λD stands for the Debye length, which
accounts for the screening of the interaction by other plasma
species.

Strongly coupled many-particle systems with Yukawa
interactions are fully characterized by two dimensionless
parameters, namely the coupling strength � =
Q2/(4πε0bkBT ) and screening parameter κ = b/λD,
where b is the two-dimensional Wigner-Seitz radius [21].
In the simulations presented here we set the screening
strength to the constant value of κ = 2, which is close to the
values achievable in complex plasma experiments [20,22].
Nevertheless, the method of geometrical defects and vertex
fractions could be applied to the systems with different values
of screening strength, as well as other types of interparticle
potentials.

As a scale of length in our numerical simulations, it is con-
venient to choose the Wigner-Seitz radius b, which is directly
related to the areal number concentration of particles, n =
1/(πb2). Therefore, the corresponding scale of energy is ε =
Q2/(4πε0b) and time is scaled according to the value of an
inverse plasma frequency:

ω−1
0 =

(
Q2

4πε0mb3

)−1/2

. (2)

The model system consists of N = 2430 identical particles
in a rectangular simulation box of area 85.71 × 89.07, interact-
ing via the Yukawa potential. Periodic boundary conditions are
applied and, since the interparticle potential is short-ranged,
the cutoff distance is set to rc = 8. Only particle pairs
separated by less than rc are taken into account in the force
calculation.

We study order-disorder transitions in the model system by
performing Langevin dynamics simulations with slow changes
of temperature. Particle positions are updated according to the
dimensionless Langevin equation

r̈i = −∇iV (r1, . . . ,rN ) − μṙi + fi , (3)

where fi represents a randomly fluctuating Brownian force. In
a thermodynamic equilibrium 〈fi(t)〉 = 0, while the friction
coefficient μ is related to the Gaussian noise fi(t) by the
fluctuation-dissipation theorem [23]

〈fi(t)fj (t ′)〉 = 2μkTrefδij δ(t − t ′), (4)

where i, j ∈ {1, . . . ,N} and kTref is the desired target temper-
ature in the units of ε. In our simulations we use μ = 0.2.

The Langevin equation is integrated numerically employing
an impulse method of integration [24].

B. Analysis

A common way of analyzing the structure of a two-
dimensional many-particle system is calculation of a Delaunay
triangulation, which yields a network of bonds connecting each
particle with its nearest neighbors. A coordination number
can be assigned to each particle, which is a number of
the triangulation bonds between the particle and its closest
neighbors. The coordination number of a particle in a perfect
hexagonal lattice is always equal to six. Topological defects
are identified as particles with a different coordination number,
usually five or seven.

Two most common defect types are the disclination (a
single particle with a non-sixfold coordination) and the
dislocation (two connected particles with five and seven
closest neighbors) [25]. Quite frequently, defects organize
themselves in lengthy chains or grain boundaries, indicating
a polycrystalline structure of the system. As an alternative,
a Voronoi construction is sometimes used in the context of
dusty plasmas, where defects are identified as non-six-sided
polygons [3,26–28].

To quantify the abundance of topological defects, we use the
defect fraction (DF), which is defined as a number of vertices
with a coordination number other than six, normalized to the
total number of particles N [28].

The polygon construction is a different way of character-
izing defects in 2D systems [12,13,15] and helps to identify
empty volumes in two-dimensional liquids [29]. The authors
of Ref. [12] analyzed bond-angle and bond-length probability
distributions in dense 2D liquids. It was shown that disordered
regions of a liquid exhibit multiple peaks in a bond-angle
probability distribution, with extra peaks corresponding to
the square lattice. At the same time, triangularly oriented
clusters had a single peak and well-expressed triangular order.
The structure of a two-dimensional system, therefore, was
described as a square-triangular tiling containing numerous
tiling faults.

A triangle, which is the only kind of polygon in the
initial triangulation of particle positions, is considered as a
nondefective entity. To identify geometrical defects, certain
bonds are removed from the triangulation map, so that two
polygons sharing a common bond are merged into one. Two
possible approaches for the selection of bonds were suggested:
either use a bond-length threshold or identify a bond that
is opposite to the unusually large angle between a pair of
adjoining bonds. In our analysis we follow the authors of
Refs. [12,15] and use the critical bond angle of α = 75◦.

The construction of a polygon map is illustrated in Fig. 1.
Figure 1(a) shows the triangulation map of particle positions,
where most of the particles are connected with six closest
neighbors. Some vertices, however, have five or seven bonds
and are marked by small triangles and squares. These particles
are considered as topological defects and are all part of a
lengthy grain boundary. Triangulation bonds marked by bold
lines are facing bond angles larger than the critical value of
α = 75◦ and, therefore, are selected for removal. The resultant
polygon map is presented in Fig. 1(b). Geometrical defects
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FIG. 1. (Color online) Triangulation map of a polycrystalline
Yukawa solid, with topological defects marked as squares and
triangles (a). By removing the bonds facing unusually large angles
(marked by bold lines), the polygon construction (b) is obtained. In
general there is no one-to-one correspondence between topological
and geometrical defects.

are identified as nontriangular polygons, that is, quadrilaterals
and pentagons. Although the defects appear in a close vicinity
of the grain boundary, there is no one-to-one correspondence
between the polygons and topological defects.

The polygon construction contains geometrical information
about bond lengths and angles, as well as topological informa-
tion about the nearest-neighbor connections. The method has
also the advantage of providing a gradation in the severity
of geometrical defects. Quadrilaterals are the least severe,
while pentagons and hexagons are more severe and indicate
large excess volumes. Topological defects, on the other hand,
provide only a binary measure of local orientational disorder,
that is, at the specific location of a vertex, there either is a
defect or there is not.

The gradation of defects in the polygon method allows for a
greater sensitivity identifying and classifying disorder [15]. To
characterize the state of our model system and the abundance
of geometrical defects, we use four distinct order parameters
Pn = Nn/(2N ) (n = 3, 4, 5, 6), defined as the number of
polygons with n sides Nn, normalized to the doubled number
of particles 2N .

Figure 2 provides a classification scheme for vertices,
according to the configuration of polygons arranged around
them. The abundance of different vertex types serves as another
way to characterize disorder and identify the manner in which
polygons cluster together. In a perfect crystal, one would
observe only vertices of type A. In a regular square-triangular
tiling, only vertices of types A–D are allowed [12]. Types J and
K correspond to the topological disclinations, while a vertex L
features a severe pentagonal defect. To quantify the abundance
of different vertex types, we calculate fractions XY, defined as
the number of vertices of a certain type Y normalized to the
total number of particles in the polygon construction.

FIG. 2. (Color online) Twelve types of vertices, frequently
observed in the polygon construction of two-dimensional Yukawa
systems. Vertices are classified by the number and relative distribution
of polygons around a vertex.

Unexpected spikes in the time dependencies of parameters
XE and XF were detected in the analysis of the recent
super-heating experiment [15], suggesting that some of the
vertices might be metastable or exist only in a narrow range of
temperatures. One of the goals of our work is to resolve this
issue.

Phase transitions in two-dimensional systems are usually
identified by the sudden change in orientational or translational
order parameters. The local orientational order parameter for
a particle j is defined as [30]

ψ6j = 1

Nj

Nj∑
k=1

exp(6iθjk), (5)

where θjk is the angle between the bond connecting particles j

and k and some fixed direction. Nj is the coordination number
of the particle j . The magnitude |ψ6j | is close to unity for
a particle inside a hexagonal lattice but is small close to the
domain walls (grain boundaries) or in a liquid. On the other
hand, the value of a complex argument arg(ψ6j ) represents the
angular orientation of a neighborhood or entire domain.

The parameter ψ6 = |〈ψ6j 〉|, that is, a magnitude of the
averaged complex orientational order parameter, defines the
overall orientational order of the system. In polycrystalline
solids, however, complex numbers ψ6j corresponding to
the particles from different domains tend to cancel in the
averaging process. Therefore, ψ6 approaches very small values
in the limit of an infinite sample size. Another parameter
can be used in such cases, namely ψ|6| = 〈|ψ6j |〉, which
represents the average local orientational order of the whole
system [9].

III. RESULTS

We start our simulations with a defect-free lattice in a
strongly coupled state and the temperature of kT = 10−7. The
system is then heated over the period of time of 
t = 240 000,
until the temperature of kT = 0.005 is reached. The stage of
steady cooling then follows, restoring the temperature to its
initial value [see, for example, Fig. 8(e)]. The chosen rate of
heating is low enough to reach the equilibrium at each step
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FIG. 3. Averaged orientational order parameters ψ6 and ψ|6| of
a 2D Yukawa system during the heating and cooling simulation
cycle.

of the simulation outside the region of a fast order-disorder
transition. Therefore, lower rates of heating and cooling would
not substantially change the qualitative results of our numerical
experiments, except in the close vicinity of the transition,
which we discuss later.

The peak temperature is chosen to be well above the melting
point, as found by previous studies [11,31]. The actual kinetic
temperature of the system is calculated from observed particle
velocities, kT = 〈v2

i 〉/2, and is found to fluctuate around
the prescribed values of kTref , with the fluctuations being
proportional to the temperature. We keep track of the order
parameters and defect fractions throughout the whole cycle.
In this section, we first investigate the orientational order of
the 2D system and then turn to the defects and polygons.

Initial values of both orientational order parameters ψ6 and
ψ|6| are very close to unity, as Fig. 3 shows, and correspond
to the defect-free hexagonal lattice. The system exhibits a
sudden loss of orientational order in the temperature range of
kT = 0.0025–0.0027 (the corresponding coupling parameter
values are � = 370–400), which is the signature of a melting
phase transition. Our observations are in fair agreement with
Refs. [11,31], where phase transitions in two similar 2D
systems were observed near the values of � = 384 and
� = 415. At the end of the heating phase, ψ6 drops below
0.1 and ψ|6| drops to the value of approximately 0.5.

As the temperature is gradually lowered, a 2D Yukawa
liquid freezes back to the hexagonal lattice. However, the
evolution of the order parameters does not follow exactly the
same path as observed in the case of melting and hysteresis
(Fig. 3). ψ6 stays low until the temperature of kT = 0.0024
is reached, which is lower than the melting point. Changes in
ψ|6| also occur at somewhat lower temperatures and are not as
abrupt as in the case of melting. As we show later, the effect
of hysteresis is most likely a result of the finite rate of heating
and cooling.

The concentration of topological defects during the stage of
slow heating exhibits a similar trend, with a weak temperature
dependence before and after the transition; see Fig. 4. A
sudden proliferation of defects is observed in the range of
kT ≈ 0.0025–0.0027. Changes in the defect concentration
during the gradual cooling are not as abrupt and occur at
somewhat lower temperatures, kT ≈ 0.0024–0.0022.

FIG. 4. Topological DF as a function of the kinetic temperature kT .

Four typical snapshots of particle positions during the
transition are shown in Fig. 5. Here triangles correspond to the
particles with only five nearest neighbors, while squares mark
positions of vertices with seven triangulation bonds. In a solid
phase [(Fig. 5(a)], defects mostly appear as quartets, composed
of two disclinations with five bonds and two vertices with
seven neighbors. Alternatively, this four-defect complex can
be treated as a bound pair of two dislocations. Apparently, this
kind of topological fault does not significantly change either
positional or orientational order. Larger defect complexes,
consisting of more than four defective vertices, emerge before
the melting transition.

As is illustrated in Fig. 5(b), during the melting transition
(e.g., kT = 0.0026) defect complexes grow and spread. How-
ever, as can be seen in Fig. 5(b), large defect-free patches still
exist, suggesting that the transition from a defect-free lattice to

FIG. 5. (Color online) Typical arrangements of topological de-
fects during the melting transition of a 2D Yukawa system. Triangles
here represent particles with five closest neighbors, while squares
mark vertices with the coordination number equal to seven. The
corresponding temperatures are kT = 0.00245 (a), 0.0026 (b), 0.0027
(c), and 0.0045 (d).
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the disordered state is not homogeneous. Bound dislocations
are still found in the ordered patches, however, are seldom
seen. While some disclinations and dislocations are present,
they are clearly not the main cause of the loss of order; most
of these defects appear as parts of larger regions of condensed
defect groups and chains. This observation supports the theory
of grain-boundary-induced melting [3,4,34], or possibly the
coexistence of hexatic and liquid states, as described in
Ref. [35]. Further investigations of larger systems would be
needed to unambiguously determine the mechanism of the
melting transition.

Finally, at the end of the transition [Fig. 5(c)], topologi-
cal defects form large interconnected complexes, destroying
orientational order completely. Free dislocations and disclina-
tions can still be occasionally found in the larger groups of
defects. The distribution of defects becomes homogeneous in
a high-temperature liquid [Fig. 5(d)].

As the system is slowly cooled, defect complexes and
large defect-free regions can still be found at temperatures
as low as kT = 0.0022, together with some free dislocations.
At lower temperatures, however, these complexes tend to
shrink and rearrange, eventually leaving only bound and
free dislocations as well as interstitial particles. The final
configuration corresponds to the nearly perfect triangular
lattice with a few free dislocations, leading to the low defect
concentration and values of the orientational order parameter
close to unity.

Previous studies of similar systems [32] suggest that the
effect of hysteresis might be caused by the finite rate of
heating and cooling. We test this hypothesis by analyzing the
evolution of topological defect fraction at the fixed prescribed
temperature of kTref = 0.002 43, starting from either liquid or
solid initial state. According to Fig. 6, at this temperature the
system slowly switches between high and low values of the
order parameter, corresponding to the defect configurations
depicted in Figs. 5(a) and 5(c). Therefore, there is a range
of temperatures in which ordered and disordered states are
unstable and have approximately the same probabilities to be
observed, as reported in Refs. [32,33]. No hysteresis should
occur in the limit of infinite simulation time.

Let us now turn to the analysis of the polygon construction.
The initial defect-free lattice corresponds to a triangular tiling.
Therefore, the triangle is the only type of polygon present in the

FIG. 6. Time series for the topological DF at the prescribed
temperature of kTref = 0.002 43.

FIG. 7. (Color online) Typical arrangements of geometrical de-
fects during the gradual heating stage in a 2D Yukawa system: solid
phase at t = 45 002 (a), configurations during (b) and right after
(c), the solid-liquid transition and high-temperature liquid phase at
t = 120 000 (d). The corresponding temperatures are kT = 0.0018
(a), 0.0026 (b), 0.0027 (c), and 0.0045 (d).

original configuration. As the system is continuously heated,
quadrilaterals and occasional pentagons appear. As can be seen
in Fig. 7, quadrilateral defects tend to cluster together, forming
long chains or “ladders” in a solid phase [Fig. 7(a)] or larger
patches of a distorted square lattice in a liquid [Fig. 7(c)].
Defect-free zones are still present during the initial stage of
solid-liquid transition, e.g., at the temperature of kT = 0.0026,
as depicted in Fig. 7(b). Solitary hexagons appear much later
and are most abundant in the high-temperature Yukawa liquid
[Fig. 7(d)].

The quadrilateral is a first type of geometrical defect
to appear in a low-temperature solid, first seen near the
temperature of kT = 5 × 10−4. This is as expected, since the
quadrilateral is the least severe geometrical defect. Also, it
is the most abundant type of defect in both solid and liquid
states. The parameter P4, defined as a number of quadrilateral
defects normalized to 2N , increases steadily as the temperature
rises during early stages of heating. As is demonstrated in
Fig. 8(b), the proliferation rate gets significantly higher as
the temperature reaches the value of kT = 0.0025 and the
melting transition begins. The rapid transition ends at around
kT = 0.0027, where the order parameter fluctuates around the
value of P4 = 0.20.

The abundance of quadrilateral defects in the two-
dimensional Yukawa liquid does not change significantly as
the temperature is further increased. Therefore, we suggest that
a 2D liquid right after the phase transition can be characterized
by the temperature-independent value of the quadrilateral or-
der parameter close to P4 = 0.20 ± 0.01. These observations
are illustrated in Fig. 8 as time series for the order parameter
[Fig. 8(b)] and temperature kT [Fig. 8(e)].

051111-5
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FIG. 8. (Color online) Time series for order parameters P3 (a),
P4 (b), P5 (c), and P6 (d), characterizing the abundances of triangles,
quadrilaterals, pentagons, and hexagons in the polygon construction
of the 2D Yukawa system. Time series of the kinetic temperature kT

is presented in panel (e). Vertical lines mark the beginning and ending
points of the melting transition as well as corresponding points during
the crystallization.

Occasional pentagonal defects are first spotted at the
temperature of nearly kT = 0.001. The most significant
proliferation of these defects takes place in the range of
kT = 0.0025–0.0027, where the value of a pentagonal order
parameter changes from P5 = 0.01 to P5 = 0.03. After the
melting transition, P5 increases almost linearly with the
temperature, at a constant rate. We may conclude that in
the context of pentagonal defects, the liquid state can be
characterized by values of the order parameter P5 > 0.03 and
a steady growth in a number of pentagons.

In our simulations, we observe only a relatively small
number of hexagonal defects, with the highest value of an
order parameter close to P6 ≈ 0.012. Although the time and
temperature dependencies of P6 are rather noisy [see Fig. 8(d)],
some general observations can still be made. The most
noticeable spread of hexagons starts at about kT = 0.0025,
which roughly coincides with the start of the melting transition.
Afterwards, P6 seems to increase steadily.

Geometrical defects arrange themselves around the par-
ticles in a variety of ways. Some of the most frequent are
classified in Fig. 2 as vertex types A to L [12,15]. In a
perfect triangular lattice, one would observe only the type
A, where six triangles join forming a hexagon. In a liquid,
where quadrilaterals tend to form interconnected complexes
and “ladders” (Fig. 7), the number of vertices B, D, G, and H
is expected to increase.

As we can see, the arrangement of polygons with respect
to a certain vertex can be used as an indicator of disorder
throughout melting and freezing transitions. Therefore, we
further investigate the evolution of vertex fractions XY =
NY/N , defined as the ratio of a number of vertices for a certain
vertex type NY to the total number of particles N .

Vertices E and F are the first to appear when the defect-
free system is slowly heated. This observation suggests that
there is no tendency for the quadrilaterals to cluster together
during the initial stages of heating. Just as the quadrilateral
defects, these vertices are first observed at the temperature
of kT ≈ 5 × 10−4. Both vertex types E and F contain a
single quadrilateral—the least severe geometrical defect—and
four or five triangles and are created by removing an inner
(E) or outer (F) bond from a vertex type A. Therefore, the
abundances of vertices E and F have essentially identical time
and temperature dependencies (third panel of Fig. 9).

As the temperature rises, the order parameter XE grows
until the critical value of kT ≈ 0.0025 and the fraction of
XE ≈ 0.175 is reached. As a matter of fact, it is approximately
the same temperature that marks the start of the rapid melting
transition, i.e., the sudden loss of orientational order, the
rapid growth in a number of topological defects, squares, and
pentagons. As geometrical defects proliferate further at higher
temperatures, the number of vertices E and F monotonically
diminishes.

Vertex types B and C both contain two quadrilaterals and
three triangles but differ in the order they are arranged around a

FIG. 9. (Color online) Time series for vertex fractions and the
temperature kT . The time dependence of a vertex fraction XF is
virtually identical to the one for vertex E and therefore is not shown
here. Vertical lines mark the beginning and ending points of the
rapid order-disorder transition and similarly peak positions during
the crystallization.
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vertex. Two quadrilaterals of a vertex type B share a common
edge (Fig. 2), while in a vertex C they are separated by a
triangle or two. Vertex concentrations XB and XC depart from
zero significantly around kT = 0.001 and grow further with
the kinetic temperature. The order parameter XB reaches its
highest value of 0.14 at the temperature of kT ≈ 0.0027,
which coincides with the final transition to the liquid phase
(Fig. 9). Approximately the same is true for the vertex fraction
of the type C, which reaches its highest value XC ≈ 0.12
close to the temperature of kT ≈ 0.0027. As the 2D liquid
is heated further, the concentrations of vertices B and C
decreases.

Vertex fractions for types D, G, H, L, and I all share similar
time and temperature dependencies (see the fourth panel of
Fig. 9 for the fractions of types D, G, and L; time dependencies
of parameters XI and XH are nearly identical to the one for
the type L and are therefore not shown in the figure). They all
feature a steady growth before the temperature of kT = 0.0025
is reached, rapid change throughout the melting transition, and
a weak temperature dependence in a liquid state. Right after the
transition, that is temperatures above kT = 0.0027, the vertex
fraction D stays close to a value of XD = 0.017, while those
for other types fluctuate around XG = 0.060, XH = 0.035,
XI = 0.030, and XL = 0.039.

A few interesting results were obtained in Ref. [15], where
the evolution of geometrical defects and vertex fractions in a
laser-heated complex plasma was studied. It should be noted,
though, that the goal of the study was to investigate solid super-
heating and not temperature dependencies of order parameters.
The authors did not have a chance to vary the temperature of a
system gradually as the heating source was turned on and off
abruptly.

First, quadrilateral and pentagonal order parameters in a
liquid state of the experimental system were found to be P4 ≈
0.19 and P5 ≈ 0.05. These values fully agree with and support
the results of our simulations. Second, the authors of Ref. [15]
observed sudden spikes in the abundances of vertex types F
and E at the times when the heating source was abruptly turned
on and off. Whether it is a signature of vertex metastability or a
specific temperature dependence remained unclear. In the view
of our simulation results and, specifically Fig. 9, we conclude
that the reason behind the spikes is an intrinsic temperature
dependence of vertex fractions B, C, E, and F, with spikes
corresponding to the temperatures lower than the final kinetic
temperature of a liquid.

Just as in the case of the orientational parameters and
topological defect fractions, an evolution of order parameters
P and vertex fractions X during the gradual crystallization
does not exactly duplicate the behavior throughout the heating
phase. For example, a peak in the time dependence of the
vertex fraction type E corresponds to the temperature of
kT ≈ 0.0022, as opposed to the temperature of kT ≈ 0.0025
in the case of melting (Fig. 9). Critical values of XB and XC are
also slightly shifted to lower temperatures. As the temperature
is lowered further, the system crystallizes back to the nearly
perfect hexagonal lattice, with only a few quadrilateral
defects.

We have repeated our simulations starting with polycrys-
talline configurations, obtained from a rapidly cooled 2D
Yukawa liquid. The evolution of order parameters throughout

the initial heating phase turned out to be slightly configuration-
dependent. For example, in a few cases orientational order
parameters increased as the polycrystalline solid was heated,
while at the same time topological defects diminished. This
can be explained by the melting of grain boundaries and
simultaneous merging of crystalline domains. Nevertheless,
the point of a final transition to the liquid phase was found to
be the same as in the case of the hexagonal initial configuration,
that is, kT ≈ 0.0027. Therefore, most of the results presented
here would also hold for the melting of a polycrystalline
solid.

IV. SUMMARY

In this paper we reported the results of Langevin dynamics
simulations, performed to investigate two-dimensional melt-
ing and crystallization transitions in many particle Yukawa
systems, such as those found in complex plasma experiments.
To characterize the state of a system, we used the polygon
construction method, in which unusually long bonds are
deleted from the triangulation map of particle positions.
Geometrical defects were identified as nontriangular polygons,
while vertices were classified according to the type and
order of polygons surrounding them. We also made use of a
topological defect fraction and orientational order parameters
as conventional tools to analyze phase transitions.

In our simulations of the system with the constant value of
screening strength (κ = 2), the solid-to-liquid phase transition
takes place in the coupling parameter range of � ≈ 400–370,
where rapid changes in order parameters and defect fractions
were detected. The orientational and translational order is
destroyed by the nonhomogeneous growth of large defect
complexes and chains, contrary to the KTHNY theory of
two-dimensional melting, which predicts the emergence of
isolated dislocations and disclinations.

To quantify the disorder, we used polygonal order pa-
rameters P , that is, the normalized number of geometrical
defects of a certain kind. It turned out that a liquid phase
can be characterized by the temperature-independent value of
a quadrilateral order parameter of P4 ≈ 0.20. In the context
of pentagonal defects, the liquid state is characterized by the
value of P5 > 0.03. In our future work we plan to investigate
the dependence of these characteristic values on the type of
interaction potential.

Concentrations of vertices containing three or more quadri-
laterals (D, G, H, and I) showed only a weak dependence on
the temperature in the liquid state, showing the tendency for
quadrilaterals to cluster together. Temperature dependencies
of vertex fractions of the types B, C, E, and F all feature well
expressed peaks at the beginning (E, F) or final stages (B,
C) of the solid-liquid transition with a very similar behavior
during the recrystallization. We suggest polygon construction
method as a sensitive tool to characterize the state of a system
and analyze two-dimensional phase transitions.
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