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Nonequilibrium magnetic properties in a two-dimensional kinetic mixed Ising system within the
effective-field theory and Glauber-type stochastic dynamics approach
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Nonequilibrium magnetic properties in a two-dimensional kinetic mixed spin-2 and spin-5/2 Ising system in
the presence of a time-varying (sinusoidal) magnetic field are studied within the effective-field theory (EFT)
with correlations. The time evolution of the system is described by using Glauber-type stochastic dynamics. The
dynamic EFT equations are derived by employing the Glauber transition rates for two interpenetrating square
lattices. We investigate the time dependence of the magnetizations for different interaction parameter values in
order to find the phases in the system. We also study the thermal behavior of the dynamic magnetizations, the
hysteresis loop area, and dynamic correlation. The dynamic phase diagrams are presented in the reduced magnetic
field amplitude and reduced temperature plane and we observe that the system exhibits dynamic tricritical and
reentrant behaviors. Moreover, the system also displays a double critical end point (B), a zero-temperature critical
point (Z), a critical end point (E), and a triple point (T P ). We also performed a comparison with the mean-field
prediction in order to point out the effects of correlations and found that some of the dynamic first-order phase
lines, which are artifacts of the mean-field approach, disappeared.
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I. INTRODUCTION

At present, the equilibrium behavior of cooperative phys-
ical systems is rather well known within the framework
of equilibrium statistical physics [1]. On the other hand,
the dynamic properties of the systems are not yet well
known, either theoretically or experimentally, due to their
complexity. Some interesting problems in dynamic systems
are the dynamic phase transition (DPT) or the nonequilibrium
phase transition, in which the mechanism behind it has not
yet been explored rigorously and the basic phenomenology
is still undeveloped. Hence, further efforts to solve these
challenging time-dependent problems, especially calculating
the DPT points and constructing the phase diagram, should
be rewarding. The DPT in a nonequilibrium system in the
presence of an oscillating external magnetic field has attracted
much attention in recent years, theoretically (see [2–8] and
references therein). Experimental evidence for the DPT has
been found in highly anisotropic (Ising-like) and ultrathin
Co/Cu(001) ferromagnetic films [9], amorphous YBaCuO
films [10], in ferroic systems (ferromagnets, ferroelectrics, and
ferroelastics) with pinned domain walls [11], ultrathin mag-
netic [Co(0.4nm)/Pt(0.7nm)]3 multilayers [12], polyethylene
naphthalate (PEN) nanocomposites [13], and cuprates [14].

On the other hand, during the past few decades, both
experimental and theoretical efforts towards an understanding
of the magnetic properties of mixed spin Ising systems have
been made. One of the main reasons for the increasing interest
in these systems is related to their possible useful properties
for technological applications in thermomagnetic recording
[15]. Since mixed spin Ising systems have less translational
symmetry than their single spin counterparts, they also exhibit
many new phenomena which cannot be observed in single spin
Ising systems, and the study of these systems may be important
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for an understanding of bimetallic molecular-systems-based
magnetic materials that have properties such as low density,
electrical insulation, and low-temperature fabrication [16].
Moreover, these systems are well adapted to study a certain
type of ferrimagnetism and are of great interest because of their
interesting and possible useful properties for technological
applications as well as academic research. One of the well
known and most studied mixed spin Ising systems is the
mixed spin-2 and spin-5/2 Ising system. This system provides
good models to investigate ferrimagnetic materials that are
currently the subject of a great deal of interest due to their
possible useful properties for technological applications as
well as academic research. The mixed spin (2, 5/2) Ising
system is also the prototypical system that has been used for
studying the magnetic behaviors of molecular-based magnetic
materials such as AFeIIFeIII(C2O4)3 [A = N(n-CnH2n+1)4,
n = 3–5] [17–23]. The exact solution of the mixed spin (2,
5/2) Ising system was also studied on the Bethe lattice by
means of exact recursion relations [24].

While the equilibrium properties of the mixed spin-2 and
spin-5/2 Ising system have been investigated in detail, the
nonequilibrium properties of the system have not been as
thoroughly explored. An early attempt to study the magnetic
properties of a nonequilibrium mixed spin (2, 5/2) Ising
ferrimagnetic system on a hexagonal lattice was made by
Keskin and Ertaş [3]. They studied the existence of dynamic
compensation temperatures and also presented the dynamic
phase diagram within the mean-field approach and Glauber-
type stochastic dynamics. Bukharov et al. [25] analyzed a mag-
netic dynamic hysteresis of Co-based quasi-1D ferrimagnets
within the model of the mixed spin-2 and spin-5/2 Ising chain
by using Glauber-type stochastic dynamics. Recently, Ertaş
et al. [26] studied multicritical dynamic phase diagrams and
dynamic hysteresis loops, within a mean-field approach, in the
mixed spin-2 and spin-5/2 Ising ferrimagnetic system with re-
pulsive biquadratic coupling in the presence of a time-varying
(sinusoidal) magnetic field by employing Glauber-type
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stochastic dynamics. Moreover, Ertaş et al. [27] also inves-
tigated the dynamic magnetic properties, in particular, the
behavior of dynamic magnetic hysteresis, in the kinetic mixed
spin (2, 5/2) Ising model on a layered honeycomb lattice
that corresponds to the molecular-based magnetic materials
AFeIIFeIII(C2O4)3 [A = N(n-CnH2n+1)4, n = 3–5] in which
FeII (S = 5/2) and FeIII (σ = 2) occupy sites.

The purpose of the present paper is to study the dynamic
magnetic properties of a two-dimensional kinetic mixed spin-2
and spin-5/2 Ising system in the presence of a time-varying
(sinusoidal) magnetic field within the effective-field theory
(EFT) with correlations and using Glauber-type stochastic dy-
namics. The dynamic EFT equations are derived by employing
the Glauber transition rates for two interpenetrating square
lattices. In particular, we investigated the time dependence of
the magnetizations for different interaction parameter values
in order to find the phases in the system. Then, the thermal
behavior of the dynamic magnetizations, the hysteresis loop
area, and the dynamic correlation were investigated, and
the dynamic phase diagrams were presented in the reduced-
temperature and magnetic field amplitude plane. We also
performed a comparison with the mean-field prediction in
order to point out the effects of correlations and found that
some of the dynamic first-order phase lines, which are artifacts
of the mean-field approach, disappeared. We should also
mention that the EFT method can incorporate some effects
of spin-spin correlations, without introducing mathematical
complexity, by using the Van der Waerden identities and
can provide results that are quite superior to those obtained
by using the mean-field approximation (MFA). Therefore,
recently, the EFT was generalized to study the DPT in the
kinetic spin-1/2 [4–6] and spin-1 [7] Ising systems in the
presence of a sinusoidal oscillating external magnetic field. To
the best of our knowledge, this work is an early attempt to study
the DPT in the kinetic mixed Ising system in the presence of a
time-varying (sinusoidal) magnetic field within the framework
of the EFT with correlations and using Glauber-type stochastic
dynamics.

The outline of the remaining part of this paper is organized
as follows. In Sec. II, the model and its formulations, namely,
the derivation of the set of dynamic equations, are briefly
given. In Sec. III, the results of the time variations in average
magnetizations and the thermal behaviors of the dynamic
magnetizations, the hysteresis loop area, and the dynamic
correlation are presented. The dynamic phase diagrams are
also discussed and compared with the dynamic mean-field
results. Finally, the summary and conclusion are given in
Sec. IV.

II. MODEL AND FORMULATIONS

A. Model

The mixed spin-2 and spin-5/2 Ising model is described as
a two-sublattice system, with spin variables σi = ±2, ±1, 0
and Sj = ±5/2, ±3/2, ±1/2 on the sites of sublattices A and
B, respectively. In the underlying lattice the sites of sublattice
A are occupied by spins σi , while those of sublattice B are
occupied by spins Sj . The Hamiltonian of the system is given

by

H = −J
∑
〈ij〉

σiSj − D

⎡
⎣∑

i

σ 2
i +

∑
j

S2
j

⎤
⎦

−h(t)

⎡
⎣∑

i

σi +
∑

j

Sj

⎤
⎦ , (1)

where 〈ij 〉 indicates a summation over all pairs of nearest-
neighboring sites, J is the bilinear nearest-neighbor exchange
interaction, D is the crystal-field interaction or single-ion
anisotropy, and h(t) is a time-dependent external oscillating
magnetic field and is given by

h(t) = h0 sin(wt), (2)

where h0 and w = 2πν are the amplitude and the angular
frequency of the oscillating field, respectively. The system is
in contact with an isothermal heat bath at absolute temperature
TA.

B. Derivation of dynamic effective-field equations

We apply the Glauber-type stochastic dynamics [28], in
particular, we employ Glauber transition rates, to obtain the
set of dynamic effective-field equations. Thus, the system
evolves according to a Glauber-type stochastic process at a
rate of 1/τ transitions per unit time; hence the frequency of
spin flipping, f , is 1/τ . Leaving the S spins fixed, we define
P A(σ1,σ2, . . . ,σN ; t) as the probability that the system has
the σ -spin configurationσ1, σ2, . . . , σN ; t , at time t . Also, by
leaving the σ spins fixed, we define P B(S1,S2, . . . ,SN ; t) as
the probability that the system has the S-spin configuration,
S1,S2, . . . ,SN at time t . Then, we calculate WA

i (σi → σ ′
i ) and

WB
j (Sj → S ′

j ), the probabilities per unit time that the ith σ

spin changes from σi to σ ′
i (while the S spins are momentarily

fixed) and the j th S spin changes from Sj to S ′
j (while the σ

spins are momentarily fixed), respectively. Thus, if the S spins
on the layers B are momentarily fixed, the master equation for
the σ spins on layers A can be written as

d

dt
P A(σ1,σ2, . . . ,σN ; t) = −

∑
i

⎛
⎝ ∑

σi �=σ ′
i

WA
i (σi → σ ′

i )

⎞
⎠

×P A(σ1,σ2, . . . ,σi, . . . ,σN ; t)

+
∑

i

⎛
⎝∑

σiσ
′
i

WA
i (σ ′

i → σi)

⎞
⎠

×P A(σ1,σ2, . . . ,σ
′
i , . . . ,σN ; t),

(3)

where WA
i (σi → σ ′

i ) is the probability per unit time that the
ith spin changes from the value σi to σ ′

i . Since the system is
in contact with a heat bath at absolute temperature TA, each
spin can change from the value σi to σ ′

i , with the probability
per unit time

WA
i (σi → σ ′

i ) = 1

τ

exp[−β �EA(σi → σ ′
i )]∑

σ ′
i
exp[−β �EA(σi → σ ′

i )]
, (4)
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where β = 1/kBTA, kB is the Boltzmann factor,
∑

σ ′
i
is the

sum over the five possible values of σ ′
i = ±2, ±1, 0, and

�EA(σi → σ ′
i ) = −(σi → σ ′

i )

⎛
⎝J

∑
j

SB
j + h(t)

⎞
⎠

− [(σ ′
i )

2 − (σi)
2]D (5)

gives the change in the system’s energy when the σi spin
changes. The probabilities satisfy the detailed balance condi-

tion

WA
i (σi → σ ′

i )

WA
i (σ ′

i → σi)
= P A(σ1, σ2, . . . , σ

′
i , . . . , σN )

P A(σ1, σ2, . . . , σi, . . . , σN )
, (6)

and the probabilities WA
i (σi → σ ′

i ) are given in Appendix A.
From the master equation associated with the stochastic
process, it follows that the average 〈σA

i 〉 satisfies the following
equation:

τ
d

dt

〈
σA

i

〉 = −〈
σA

i

〉 +
〈

2 exp(4βD) sinh(2β[Ei + h(t)]) + exp(βD) sinh(β[Ei + h(t)])

exp(4βD) cosh(2β[Ei + h(t)]) + exp(βD) cosh(β[Ei + h(t)]) + 1/2

〉
, (7)

where 〈. . .〉denotes the canonical thermal average and Ei = J
∑

j S
B
j . Now, assuming that the σ spins on layers A are momentarily

fixed and that the S spins on layers B change, we can obtain the second dynamic equation for the S spins on layers B by using
similar calculations as

τ
d

dt

〈
SB

j

〉 = −〈
SB

j

〉 +
〈

5sinh
( 5β

2 [Ej + h(t)]
)+3exp(−4 βD) sinh

( 3β

2 [Ej + h(t)]
)+exp(−6 βD)sinh

(
β

2 [Ej + h(t)]
)

2 cosh
( 5β

2 [Ej + h(t)]
)+2exp(−4 βD)cosh

( 3β

2 [Ej + h(t)]
)+2exp(−6 βD) cosh

(
β

2 [Ej + h(t)]
)
〉
, (8)

where Ej = J
∑

i σ
A
i .

We now use the EFT with correlations to obtain the set of dynamic effective-field equations. This method was first introduced
by Honmura and Kaneyoshi [29] and Kaneyoshi et al. [30], where a more advanced method is used in dealing with Ising systems
than the mean field theory (MFT), because it considers more correlations. The main problem is to evaluate the thermal average
of the last terms in Eqs. (7) and (8). The starting point to determine the statistics of the present spin system is the exact relation
due to Callen [31]. The EFT with correlations is also convenient to introduce the differential operator technique into expressions
of the last terms in Eqs. (7) and (8),〈

2 exp(4βD) sinh(2β[Ei + h(t)]) + exp(βD) sinh(β[Ei + h(t)])

exp(4βD) cosh(2β[Ei + h(t)]) + exp(βD) cosh(β[Ei + h(t)]) + 1/2

〉

= 〈eEi∇〉
〈

2 exp(4βD) sinh(2β[x + h(t)]) + exp(βD) sinh(β[x + h(t)])

exp(4βD) cosh(2β[x + h(t)]) + exp(βD) cosh(β[x + h(t)]) + 1/2

〉∣∣∣∣
x=0

= 〈eEi∇〉f1[x + h(t)]|x=0 (9)

and
〈

5 sinh
( 5β

2 [Ej + h(t)]
) + 3 exp(−4 βD) sinh

( 3β

2 [Ej + h(t)]
) + exp(−6 βD) sinh

(
β

2 [Ej + h(t)]
)

2 cosh
( 5β

2 [Ej + h(t)]
) + 2 exp(−4 βD) cosh

( 3β

2 [Ej + h(t)]
) + 2 exp(−6 βD) cosh

(
β

2 [Ej + h(t)]
)
〉

= 〈eEj ∇〉
〈

5sinh
( 5β

2 [y + h(t)]
)+3exp(−4 βD) sinh

( 3β

2 [y + h(t)]
)+exp(−6 βD)sinh

(
β

2 [y + h(t)]
)

2 cosh
( 5β

2 [y + h(t)]
)+2exp(−4 βD)cosh

( 3β

2 [y + h(t)]
)+2exp(−6βD) cosh

(
β

2 [y + h(t)]
)
〉∣∣∣∣

y=0

= 〈eEj ∇〉g1[y + h(t)]|y=0, (10)

where ∇ = ∂/∂ x is a differential operator. Consequently, the expressions of Eqs. (9) and (10) on the magnetizations for a square
lattice per A and B sites are obtained as follows:〈

2 exp(4βD) sinh(2β[Ei + h(t)]) + exp(βD) sinh(β[Ei + h(t)])

exp(4βD) cosh(2β[Ei + h(t)]) + exp(βD) cosh(β[Ei + h(t)]) + 1/2

〉

= 〈σi〉 = mA = [
A(α) + B(α)〈Sj 〉 + C(α)

〈
S2

j

〉 + D(α)
〈
S3

j

〉 + E(α)
〈
S4

j

〉 + F (α)
〈
S5

j

〉]4
f1(x + h)|x=0 (11)

and
〈

5 sinh
( 5β

2 [Ej + h(t)]
) + 3 exp(−4 βD) sinh

( 3β

2 [Ej + h(t)]
) + exp(−6 βD) sinh

(
β

2 [Ej + h(t)]
)

2 cosh
( 5β

2 [Ej + h(t)]
) + 2 exp(−4 βD) cosh

( 3β

2 [Ej + h(t)]
) + 2 exp(−6 βD) cosh

(
β

2 [Ej + h(t)]
)
〉

= 〈Sj 〉 = mB = [
1 + K(α)〈σi〉 + L(α)

〈
σ 2

i

〉 + M(α)
〈
σ 3

i

〉 + N (α)
〈
σ 4

i

〉]4
g1(x + h)|x=0. (12)

The Van der Waerden coefficients A(α), B(α), C(α), D(α), E(α), and F (α) for the spin-5/2 in Eq. (11) and K(α),
L(α), M(α), and N (α) for the spin-2 in Eq. (12) are given Appendix B. The other order parameters are also given as
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follows: 〈
σ 2

i

〉 = qA = [
A(α) + B(α)〈Sj 〉 + C(α)

〈
S2

j

〉 + D(α)
〈
S3

j

〉 + E(α)
〈
S4

j

〉 + F (α)
〈
S5

j

〉]4
f2(x + h)|x=0, (13a)〈

σ 3
i

〉 = rA = [
A(α) + B(α)〈Sj 〉 + C(α)

〈
S2

j

〉 + D(α)
〈
S3

j

〉 + E(α)
〈
S4

j

〉 + F (α)
〈
S5

j

〉]4
f3(x + h)|x=0, (13b)〈

σ 4
i

〉 = νA = [
A(α) + B(α)〈Sj 〉 + C(α)

〈
S2

j

〉 + D(α)
〈
S3

j

〉 + E(α)
〈
S4

j

〉 + F (α)
〈
S5

j

〉]4
f4(x + h)|x=0, (13c)

and 〈
S2

j

〉 = qB = [
1 + K(α)〈σi〉 + L(α)

〈
σ 2

i

〉 + M(α)
〈
σ 3

i

〉 + N (α)
〈
σ 4

i

〉]4
g2(x + h)|x=0, (14a)〈

S3
j

〉 = rB = [
1 + K(α)〈σi〉 + L(α)

〈
σ 2

i

〉 + M(α)
〈
σ 3

i

〉 + N (α)
〈
σ 4

i

〉]4
g3(x + h)|x=0, (14b)〈

S4
j

〉 = νB = [
1 + K(α)〈σi〉 + L(α)

〈
σ 2

i

〉 + M(α)
〈
σ 3

i

〉 + N (α)
〈
σ 4

i

〉]4
g4(x + h)|x=0, (14c)〈

S5
j

〉 = wB = [
1 + K(α)〈σi〉 + L(α)

〈
σ 2

i

〉 + M(α)
〈
σ 3

i

〉 + N (α)
〈
σ 4

i

〉]4
g5(x + h)|x=0. (14d)

The other functions for spin-2, namely, fn(x + h) (n = 2, 3, 4), and for spin-5/2, namely, gk(x + h)(k = 2, 3, 4, 5), are defined
by

f2(x + h) = 1

2

8 cosh[2β(x + h)] + 2 cosh[β(x + h)] exp(−3β D)

cosh[2β(x + h)] + cosh[β(x + h)] exp(−3β D) + exp(−4β D)
, (15a)

f3(x + h) = 1

2

16 sinh[2β(x + h)] + 2 sinh[β(x + h)] exp(−3β D)

cosh[2β(x + h)] + cosh[β(x + h)] exp(−3β D) + exp(−4β D)
, (15b)

f4(x + h) = 1

2

32 cosh[2β(x + h)] + 2 cosh[β(x + h)] exp(−3β D)

cosh[2β(x + h)] + cosh[β(x + h)] exp(−3β D) + exp(−4β D)
, (15c)

and

g2(y + h) = 25 cosh
( 5β

2 (y + h)
) + 9 exp(−4 βD) cosh

( 3β

2 (y + h)
) + exp(−6 βD) cosh

(
β

2 (y + h)
)

4 cosh
( 5β

2 (y + h)
) + 4 exp(−4 βD) cosh

( 3β

2 (y + h)
) + 4 exp(−6 βD) cosh

(
β

2 (y + h)
) , (16a)

g3(y + h) = 125 sinh
( 5β

2 (y + h)
) + 27 exp(−4 βD) cosh

( 3β

2 (y + h)
) + exp(−6 βD) sinh

(
β

2 (y + h)
)

8 cosh
( 5β

2 (y + h)
) + 8 exp(−4 βD) cosh

( 3β

2 (y + h)
) + 8 exp(−6 βD) cosh

(
β

2 (y + h)
) , (16b)

g4(x + h) = 625 cosh
( 5β

2 (x + h)
) + 81 exp(−4 βD) cosh

( 3β

2 (x + h)
) + exp(−6 βD) cosh

(
β

2 (x + h)
)

16 cosh
( 5β

2 (x + h)
) + 16 exp(−4 βD) cosh

( 3β

2 (x + h)
) + 16 exp(−6 βD) cosh

(
β

2 (x + h)
) , (16c)

g5(y + h) = 3125 sinh
( 5β

2 (y + h)
) + 243 exp(−4 βD) cosh

( 3β

2 (y + h)
) + exp(−6 βD) cosh

(
β

2 (y + h)
)

32 cosh
( 5β

2 (y + h)
) + 32 exp(−4 βD) cosh

( 3β

2 (y + h)
) + 32 exp(−6 βD) cosh

(
β

2 (y + h)
) . (16d)

As one can see, in our treatment new order parameters such as
q,r , v, and w naturally appear, which one is able to evaluate.
This is not the case of the standard MFA, where all correlations
are neglected. This is one of the reasons why the present
framework provides better results than the standard MFA. We
should also mention that the behavior of m, r , and w, as well
as q and ν, are similar to each other [32]. Since the model did
not include the biquadratic exchange interaction parameter in
Eq. (1), we did not investigate the thermal behavior of q and
ν.

If we try to treat all the spin-spin correlations exactly for
that equation, the problem quickly becomes intractable. A first
obvious attempt to deal with it is to ignore the correlations;
the decoupling approximation can then be written as〈

σi σ
2
i ′ ... σ 4

in

〉 ∼= 〈σi〉
〈
σ 2

i ′
〉
...

〈
σ 4

in

〉
,

(17)〈
Sj S2

j ′ ... S5
jn

〉 ∼= 〈Sj 〉
〈
S2

j ′
〉
...

〈
S5

jn

〉
,

with i �= i ′ �= · · · �= in and j �= j ′ �= · · · �= jn being intro-
duced within the EFT with correlations [29,33,34]. In fact,

the approximation corresponds essentially to the Zernike
approximation [35] in the bulk problem and has been suc-
cessfully applied to a great number of magnetic systems
including surface problems [29,33], and [34]. On the other
hand, in the mean-field theory, all the correlations, including
self-correlations, are neglected.

By expanding the right-hand sides of Eqs. (11) and (12)
with Eqs. (13) and (14), and applying them to Eqs. (7)
and (8), one can obtain the following set of coupled dy-
namic effective-field equations of motion for the sublattice
magnetizations:

d

dt
mA = −mA + a0 + a1mB + a2m

2
B + a3m

3
B + a4m

4
B

+ a5m
5
B + a6m

6
B + a7m

7
B + a8m

8
B + a9m

9
B

+ a10m
10
B + a11m

11
B + a12m

12
B + a13m

13
B + a14m

14
B

+ a15m
15
B + a16m

16
B + a17m

17
B + a18m

18
B + a19m

19
B

+ a20m
20
B (18)
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and
d

dt
mB = −mB + b0 + b1mA + b2m

2
A + b3m

3
A + b4m

4
A

+ b5m
5
A + b6m

6
A + b7m

7
A + b8m

8
A + b9m

9
A

+ b10m
10
A + b11m

11
A + b12m

12
A + b13m

13
A + b14m

14
A

+ b15m
15
A + b16m

16
A . (19)

The coefficients ai (i = 0,1, . . ., 20) and bj (j = 0,1, . . ., 16)
can be easily calculated by employing a mathematical relation
exp(α ∇) f (x) = f (x + α). These coefficients are given in
Appendix C.

The dynamic order parameters or dynamic magnetizations
as the time-averaged magnetization over a period of the
oscillating magnetic field are given as

MA,B = w

2π

∮
mA,B(t) dt. (20)

On the other hand, the hysteresis loop area is

A = −
∮

mA,B(t) dh = −hw

∮
mA,B(t) cos(wt)dt, (21)

which corresponds to the energy loss due to the hysteresis. The
dynamic correlation is calculated as

C = w

2π

∮
mA,B(t)h(t)dt = wh

2π

∮
mA,B(t) sin(wt)dt.

(22)

We should also mention that the hysteresis loop area A

and the dynamic correlation C are also measured in units
zJ in the numerical calculations The time variations of the
average order parameters, the thermal behavior of the dynamic
magnetizations, the hysteresis loop area, and the dynamic
correlation will be given and discussed in Sec. III.

III. NUMERICAL RESULTS AND DISCUSSION

A. Time variations of average order parameters

In this section, we study the time variations of the average
magnetizations to find the phases in the system. In order
to investigate the time variation behaviors of the average
magnetizations, first we have to study the stationary solutions
of the dynamic effective-field equations, given in Eqs. (18) and
(19), when the parameters D/zJ , T /zJ , and h/zJ are varied.
The stationary solutions of these equations will be a periodic
function of wt with period 2π ; that is, mA(wt + 2π ) =
mA(wt) and mB(wt + 2π ) = mB(wt). Moreover, they can be
one of two types according to whether they have or do not
have the properties

mA(wt + π ) = −mA(wt) (23a)

and

mB(wt + π ) = −mB(wt). (23b)

The first type of solution which satisfies both Eqs. (23a)
and (23b) is called a symmetric solution and corresponds
to a paramagnetic (p) solution. In this solution, the sub-
magnetizations mA(wt) and mB(wt) are equal to each other
[mA(wt) = mB(wt)], and they oscillate around zero and are
delayed with respect to the external magnetic field. The second

type of solution, which does not satisfy Eqs. (23a) and (23b), is
called a nonsymmetric solution, but this solution corresponds
to a ferrimagnetic (i) solution because the submagnetizations
mA(wt) and mB(wt) are not equal to each other [mA(wt) �=
mB(wt)], and they oscillate around a nonzero value. Hence,
if mA(wt) and mB(wt) oscillate around ±2 and ±5/2,
respectively, this solution is called the ferrimagnetic-I (i1)
phase; if mA(wt) and mB(wt) oscillate around ±1 and ±5/2,
respectively, this solution is called the ferrimagnetic-II (i2)
phase. These facts are seen explicitly by solving Eqs. (18)
and (19) numerically. These equations are solved by using the
numerical Adams-Moulton predictor-corrector method for a
given set of parameters and initial values and are presented in
Fig. 1. Figures 1(a) and 1(b) represent the paramagnetic (p)
and ferrimagnetic-I (i1) fundamental phases, respectively, and
Figs. 1(c)–1(e) represent the i1 + i2, i1 + p, and i1 + i2 + p
mixed phases, respectively.

B. Thermal behavior of the dynamic magnetizations, hysteresis
loop area, and correlation

In this section, we investigate the thermal behavior of
the average order parameters in a period or the dynamic
magnetizations (MA,B), hysteresis loop area (A), and cor-
relation (C) as a function of the reduced temperature. We
should also mention that in the numerical calculations, the
hysteresis loop area A and the dynamic correlation C are
also measured in units zJ . In order to investigate the thermal
behavior of MA,B , A, and C, we solve Eqs. (20), (21), and (22)
by combining the numerical methods of the Adams-Moulton
predictor corrector with Romberg integration. This study leads
us to characterize the nature (continuous or discontinuous) of
the dynamic transitions as well as to obtain the DPT points. A
few interesting results are plotted in Figs. 2(a)–2(c) in order
to illustrate the calculation of the DPT points. In these figures,
TC/zJ and Tt/zJ represent the second- and first-order phase
transition temperatures, respectively. Figure 2(a) shows the
thermal behavior of MA,B , A, and C for D/zJ = − 0.25
and h/zJ = 0.15; MA = 2, and MB = 5/2 at zero
temperature, and MA and MB decrease to zero continuously as
the reduced temperature increases; therefore, a second-order
phase transition occurs at TC/zJ = 1.625 and the dynamic
phase transition is from the ferrimagnetic-I (i1) phase to the
paramagnetic (p) phase. Moreover, the hysteresis loop area
A becomes zero and the dynamic correlation C becomes a
minimum negative value at TC/zJ . In this case, the dynamic
nature of the phase transition is independent of the initial
values. On the other hand, to see the i1 + p mixed phase
the temperature dependence of MA,B , A, and C are plotted for
D/zJ = − 0.5 and h/zJ = 0.45 and different initial values, as
seen in Figs. 2(b) and 2(c). In Fig. 2(b), MA = 2 and MB = 5/2
at zero temperature and decreases to zero discontinuously
as the temperature increases; hence, the system undergoes
a first-order phase transition from the i1 phase to the p
phase at Tt/zJ = 0.55. Therefore, Tt/zJ is the first-order
phase transition temperature where the discontinuity or jump
occurs. Moreover, if one increases the reduced temperature
from zero, the A and C increase from zero and a certain
negative value, respectively, to a certain positive nonzero value,
and A suddenly jumps to the lower positive value and C
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(a) (b)

(c) (d)

(e)

FIG. 1. Time variations of the magnetizations [mA(wt), mB (wt)]: Exhibiting paramagnetic (p) phase: D/zJ = 0.025, h/zJ = 2.0, and
T /zJ = 2.0. (a) Exhibiting ferrimagnetic-I (i1) phase: D/zJ = − 0.375, h/zJ = 1.0, and T /zJ = 0.7. (b) Exhibiting the coexistence region
(i1 + i2): D/zJ = 0.025, h/zJ = 0.5, and T /zJ = 1.5. (c) Exhibiting the coexistence region (i1 + p): D/zJ = − 0.5, h/zJ = 1.0, and
T /zJ = 0.9. (d) Exhibiting the coexistence region (i1 + i2 + p): D/zJ = 0.025, h/zJ = 0.5, and T /zJ = 1.5.

jumps to a lower negative value; hence, these behaviors also
show that the system undergoes a first-order phase transition
at Tt/zJ . Figure 2(c) illustrates that the system does not
undergo any phase transitions, but the p phase always exists.
Therefore, Figs. 2(b) and 2(c) show that the i1 + p coexistence

region or mixed phase occurs in the system, and this fact
is seen in the phase diagram of Fig. 3(e) for h/zJ = 0.4,
explicitly. For the latter two examples, the dynamic na-
ture of the phase transition strictly depends on the initial
values.
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(a)

(b) (c)

FIG. 2. The reduced temperature dependence of the dynamic magnetizations (MA and MB ), dynamic hysteresis loop area (A), and dynamic
correlation (C) for the various values of D/zJ and h/zJ . TC/zJ and Tt/zJ are the second- and first-order phase transition temperatures,
respectively. (a) Exhibiting a second-order phase transition from the i1 phase to the p phase for D/zJ = − 0.25 and h/zJ = 0.15; TC is found
at 1.1750. (b) Exhibiting a first-order phase transition from the i1 phase to the p phase for D/zJ = − 0.5 and h/zJ = 0.4; Tt/zJ is found at
0.55. (c) The system does not undergo any phase transitions, but the p phase always exists for D/zJ = − 0.5 and h/zJ = 0.4.

C. Dynamic phase diagrams

Since we obtained the phases and DPT points in Secs. III A
and III B, respectively, we can now present the dynamic

phase diagrams of the system. The calculated dynamic phase
diagrams in the (T /zJ , h/zJ ) plane are presented in Fig. 3
for various values of the interaction parameters. In these phase
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h/
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T/zJT/zJ

T/zJ

h/
zJ

T/zJ T/zJ

h/
zJ

FIG. 3. The dynamic phase diagrams in the (T /zJ , h/zJ ) plane. The i1 + i2, i1 + p, and i1 + i2 + p mixed phases in addition to the
i1 and p fundamental phases, depending on the interaction parameter, are found. Dashed and solid lines represent the first- and second-order
phase transitions, respectively. The special points are represented as zero-temperature critical (Z), double critical end (B), triple point (T P ),
and critical end point (E): (a) D/zJ = 0.025, (b) D/zJ = 0.25, (c) D/zJ = − 0.25, (d) D/zJ = − 0.375, (e) D/zJ = − 0.45, and
(f) D/zJ = − 0.5.

diagrams, the solid and dashed lines represent the second-
and first-order phase transition lines, respectively, and the
dynamic tricritical point is denoted by a filled circle. B, Z,

E, and T P represent the dynamic double critical end point,
zero-temperature critical point, triple point, and critical end
point, respectively. Moreover, as can be seen in Fig. 4, we
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(a)

(b)

FIG. 4. . Same as Fig. 3, but in the (T /zJ , h/zJ ) plane
that was obtained for dynamic MFA. The special points are the
dynamic tricritical point, which is with a represented filled circle, the
dynamic triple point (T P ), and the dynamic critical end point (E).
(a) D/zJ = − 0.375, and (b) D/zJ = − 0.45.

have also presented dynamic phase diagrams in the (T /zJ ,
h/zJ ) plane by using the dynamic MFA in order to see the
influence of the correlations and the artifact of some of the
first-order transition lines in the dynamic MFA.

For a two-dimensional kinetic mixed Ising system, we plot
the dynamic phase diagrams of the system in the (T /zJ , h/zJ )
plane for various values of D/zJ in Fig. 3 and six main
different topological types of phase diagrams are observed.
From these phase diagrams the following five interesting
phenomena are observed. (1) The phase diagrams in Figs. 3(a)–
3(e) illustrate one tricritical point, but Fig. 3(f) does not contain
any tricritical point; hence in this figure the dynamic phase
line is only a first-order line. (2) In Fig. 3(c), the system
also exhibits reentrant behavior, i.e., as the temperature is
increased, the system passes from the paramagnetic (p) phase
to the i1 + p coexistence or mixed phase, and back to the
p phase again for high values of h/zJ . In spin systems,
reentrant behavior can be understood as follows. At high
temperatures, the entropy is the most important factor and
uncorrelated fluctuations determine the thermodynamics. The
system is then in the p phase bias due to the applied field. As
the temperature is lowered, the energy and entropy are both
important and the correlated fluctuations affect the dominance
of either phase significantly. The system enters the ordered
phase. At low temperatures, the energy is important, not the
entropy, and the system reenters the p phase again [36,37]. (3)
Figure 3(a) illustrates a dynamic double critical end point (B),

Fig. 3(b) exhibits a triple point (T P ), Fig. 3(d) shows both
a critical end point (E), and a zero-temperature critical point
(Z), and Fig. 3(e) displays only a zero-temperature critical
point (Z) besides a tricritical point. We should also mention
that a similar phase diagram to Fig. 3(b) was also obtained
in kinetic single Ising systems with different spins [5,38,39],
except that in those studies the ferrimagnetic phase becomes
a ferromagnetic phase and the mixed phase is different. On
the other hand, phase diagrams similar to this one have also
been obtained in mixed Ising systems [40]. Moreover, a similar
phase diagram to Fig. 3(f) has also been obtained in the kinetic
spin-2 BC [39], except that the ferrimagnetic phase becomes
a ferromagnetic phase. It is worthwhile mentioning that this
system does not undergo any dynamic phase transitions for
D/zJ � − 0.5125, and thus dynamic phase diagrams cannot
be obtained for D/zJ � − 0.5125 in this system.

We also calculate the phase diagrams and the (T /zJ ,
h/zJ ) plane by using the dynamic MFA, as seen in Fig. 4.
Figure 4(a) is calculated for D/zJ = − 0.375 in the (T /zJ ,
h/zJ ) plane, which corresponds to Fig. 3(d). In this phase
diagram, the system exhibits one coexistence region or mixed
phase, namely, the i1 + p mixed phase besides the i1
and p fundamental phases. Moreover, this system displays
a dynamic triple point (T P ) besides the dynamic tricritical
point. The dynamic phase boundaries among these phases
are first-order lines, except for the boundaries between the
i1 and p fundamental phases for high values of T /zJ . For
D/zJ = − 0.45, the phase diagram is presented in Fig. 4(b),
which corresponds to Fig. 3(e). The system shows the i1 + p
mixed phase besides the i1 and p fundamental phases; the
system does not contain any tricritical point. Moreover, this
system exhibits a critical end point (E). The dynamic phase
boundaries among these phases are first-order lines, except
for the boundaries between the i1 + p and p phases for high
values of T /zJ .

In order to see the influence of the correlations and artifacts
of some of the first-order transition lines in the dynamic
MFA, due to its limitations, such as the correlation of spin
fluctuations not being considered, we compared Fig. 4(a) with
Fig. 3(d) and Fig. 4(b) with Fig. 3(e). From the comparison,
the following two fundamental differences were obtained:
(i) In Figs. 4(a) and 4(b), the dynamic phase boundaries among
the phases are first-order phase transition lines, except for the
boundary between the i1 and p fundamental phases in Fig. 4(a)
and the boundary between the i1 + p and p fundamental
phases in Fig. 4(b), which are second-order lines. On the other
hand, in Fig. 3(d), the dynamic phase boundaries among the
phases are second-order phase transition lines, except for the
boundary between the i1 + p and p phases and that between
the i1 and p fundamental phases, which are first-order lines. In
Fig. 3(e), the dynamic phase boundaries among the phases are
second-order phase transition lines, except for the boundary
between the i1 + p and p phases for high values of T /zJ

and low values of h/zJ , which is a first-order line. Therefore,
most of the first-order phase lines either disappear or become
second-order lines within the dynamic EFT. (ii) While the
dynamic tricritical point occurred within the dynamic MFA
for low values of T /zJ and high values of h/zJ , as seen in
Fig. 4(a), the phase diagram for the EFT exhibits a dynamic
tricritical point for high values of T /zJ and low values of h/zJ
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within the dynamic EFT, as seen in Fig. 3(d)). Moreover, the
system exhibits a tricritical point in Fig. 3(e), but the system
illustrates a dynamic tricritical end point (E) instead of a
dynamic tricritical point in Fig. 4(b).

IV. SUMMARY AND CONCLUSION

In this study, we analyzed, within the effective-field theory
(EFT) with correlations, the stationary states of the kinetic
mixed spin-2 and spin-5/2 Ising ferrimagnetic model Hamilto-
nian with bilinear (J) and a single-ion potential or crystal-field
interaction (D) in the presence of a time-varying (sinusoidal)
magnetic field [h(t) = h0 sin(wt)]. First, we studied the time
dependence of the magnetizations for different h/zJ , D/zJ,
and T /zJ values in order to find the phases in the system.
Then, the dynamic magnetizations, hysteresis loop area, and
the dynamic correlation were calculated and investigated as
a function of reduced temperature. These studies led us to
characterize the nature (first- or second-order) of the dynamic
phase transitions as well as to obtain the DPT points. Finally,
the dynamic phase diagrams were presented in the (T /zJ ,
h/zJ ) plane. We found that the behavior of the system strongly
depends on the values of the interaction parameter and six
fundamental phase diagrams were obtained in the (T /zJ ,
h/zJ ) plane. The phase diagrams exhibited the i1, i2, and
p fundamental phases and three mixed phases composed of
binary and ternary combinations of the fundamental phases,

depending on the interaction parameters. We also compared
the results with the results of the dynamic MFA calculation and
found that some of the first-order lines and dynamic tricritical
points did not appear within the dynamic EFT; they only
existed within the framework of the dynamic MFA. Therefore,
one concludes that these first-order lines as well as dynamic tri-
critical points are the artifact of the dynamic MFA calculation.

Finally, we hope this study will contribute to the theoretical
and experimental research on the dynamic magnetic properties
of kinetic mixed Ising systems as well as to research on
magnetism. We also hope that this work will stimulate
theoretical physicists to continue to obtain more theoretical
results about the dynamic properties of mixed Ising systems
by using more accurate techniques such as dynamic Monte
Carlo (MC) simulations. Moreover, we hope our results will be
helpful in the time-consuming process of determining critical
behavior while using dynamic MC simulations.
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APPENDIX A: THE VALUES OF W A
i (σi → σ ′

i )

The probabilities WA
i (σi → σ ′

i ) in Eq. (6) are calculated as
follows:

WA
i (2 → 0) = WA

i (1 → 0) = WA
i (−1 → 0) = WA

i (−2 → 0) = WA
i (0)

= 1

τ

1

2 exp(βD) cosh(βx) + 2 exp(4βD) cosh(2βx) + 1
,

WA
i (2 → 1) = WA

i (0 → 1) = WA
i (−1 → 1) = WA

i (−2 → 1) = WA
i (1)

= 1

τ

exp(βx) exp(βy)

2 exp(βD) cosh(βx) + 2 exp(4βD) cosh(2βx) + 1
,

WA
i (1 → 2) = WA

i (0 → 2) = WA
i (−1 → 2) = WA

i (−2 → 2) = WA
i (2)

= 1

τ

exp(2βx) exp(4βD)

2 exp(βD) cosh(βx) + 2 exp(4βD) cosh(2βx) + 1
,

WA
i (2 → −1) = WA

i (1 → −1) = WA
i (0 → −1) = WA

i (−2 → −1) = WA
i (−1)

= 1

τ

exp(−βx) exp(βD)

2 exp(βD) cosh(βx) + 2 exp(4βD) cosh(2βx) + 1
,

WA
i (2 → −2) = WA

i (1 → −2) = WA
i (0 → −2) = WA

i (−1 → −2) = WA
i (−2)

= 1

τ

exp(−2βx) exp(4βD)

2 exp(βD) cosh(βx) + 2 exp(4βD) cosh(2βx) + 1
,

where x = J
∑

j SB
j + h(t).

APPENDIX B: THE VAN DER WAERDEN COEFFICIENTS

The Van der Waerden coefficients A(α), B(α), C(α), D(α), E(α), and F (α) for the spin-5/2 in Eq. (11), and K(α), L(α),
M(α), and N (α) for the spin-2 in Eq. (12) are given as follows:

A(α) = 1

128

[
3 cosh

(
5 α

2

)
− 25 cosh

(
3 α

2

)
+ 150 cosh

(
α

2

)]
,

B(α) = 1

960

[
9 sinh

(
5 α

2

)
− 125 sinh

(
3 α

2

)
+ 2250 sinh

(
α

2

)]
,
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C(α) = 1

48

[
−5 cosh

(
5 α

2

)
+ 39 cosh

(
3 α

2

)
− 34 cosh

(
α

2

)]
,

D(α) = 1

24

[
− sinh

(
5 α

2

)
+ 13 sinh

(
3 α

2

)
− 34 sinh

(
α

2

)]
,

E(α) = 1

24

[
cosh

(
5 α

2

)
− 3 cosh

(
3 α

2

)
+ 2 cosh

(
α

2

)]
,

F (α) = 1

60

[
sinh

(
5 α

2

)
− 5 sinh

(
3 α

2

)
+ 10 sinh

(
α

2

)]
,

and

K(α) = 1
6 [8 sinh(α) − sinh(2α)], L(α) = 1

12 [16 cosh(α) − cosh(2α) − 15],

M(α) = 1
6 [sinh(2α) − 2 sinh(α)], N (α) = 1

12 [cosh(2α) − 4 cosh(α) + 3],

where α = J∇.

APPENDIX C: THE COEFFICIENTS ai AND b j

The coefficients ai (i = 0, 1, . . ., 20) and bj ( j = 0, 1, . . ., 16) in Eqs. (18) and (19) are defined as follows:

a0 = 1

4294967296

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

81 f1(h − 10 J ) − 2700f1(h − 9 J ) + 49950 f1(h − 8 J ) − 576300f1(h − 7 J )
+4572925 f1(h − 6 J ) − 23752176 f1(h − 5 J ) + 75239400 f1(h − 4 J )
−59476400 f1(h − 3 J ) − 342915150f1(h − 2 J ) + 1157549400 f1(h − J )
+2673589236 f1(0) + 1157549400 f1(h + J ) − 342915150f1(h + 2 J )
−59476400 f1(h + 3 J ) + 75239400 g(h + 4 J ) − 23752176 g(h + 5 J )
+4572925 f1(h + 6 J ) − 576300f1(h + 7 J ) + 49950 f1(h + 8 J ) − 2700f1(h + 9 J )
+ 81 f1(h + 10 J )

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

a1 = 1

8053063680

⎡
⎢⎢⎢⎢⎢⎣

−243 f1(h − 10 J ) + 9450f1(h − 9 J ) − 232200 f1(h − 8 J ) + 3500550f1(h − 7 J )
−36915425f1(h − 6 J )260628264 f1(h − 5 J ) − 1238698800 f1(h − 4 J )
+3102663800 f1(h − 3 J ) − 1437457950f1(h − 2 J ) − 18688785300 f1(h − J )
+18688785300 f1( h + J ) + 1437457950 f1(h + 2 J ) − 3102663800 f1(h + 3 J )
+1238698800 f1(h + 4 J ) − 260628264 f1(h + 5 J ) + 36915425 f1(h + 6 J )
−3500550 f1(h + 7 J ) + 232200 f1(h + 8 J ) − 9450 f1(h + 9 J ) + 243 f1(h + 10 J )

⎤
⎥⎥⎥⎥⎥⎦

,

...

a20 = 1

207360000

⎡
⎢⎢⎢⎣

f1(h − 10 J ) − 20f1(h − 9 J ) + 190 f1(h − 8 J ) − 1140f1(h − 7 J ) + 4845 f1(h − 6 J )
−15504 f1(h − 5 J ) + 38760 f1(h − 4 J ) − 77520 f1(h − 3 J ) + 125970f1(h − 2 J )
−167960 f1(h − J ) + 184756 f1(h) − 167960 f1(h + J ) + 125970f1(h + 2 J )
−77520 f1(h + 3 J ) + 38760 f1(h + 4 J ) − 15504 f1(h + 5 J ) + 4845 f1(h + 6 J )
−1140f1(h + 7 J ) + 190 f1(h + 8 J ) − 20f1(h + 9 J ) + f1(h + 10 J )

⎤
⎥⎥⎥⎦ ,

b0 = g1 (h) ,

b1 = − 1
3 [−g1(h − 2J ) + 8g1(h − J ) − 8g1(h + J ) + g1(h + 2J )] ,...

b16 = − 1

331776

⎡
⎣−12870g1(h) − g1(h − 8J ) − 16g1(h − 7J ) + 120g1(h − 6J ) − 560g1(h − 5J ) + 1820g1(h − 4J )

−4368g1(h − 3J ) + 8008g1(h − 2J ) − 11440g1(h − J ) + 8008g1(h + 2J ) − 4368g1(h + 3J )
+1820g1(h + 4J ) − 560g1(h + 5J ) + 120g1(h + 6J ) − 16g1(h + 7J ) + g1(h + 8J )

⎤
⎦ .
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(2010); S. A. Deviren and E. Albayrak, Physica A 390, 3283
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