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Nonequilibrium processes require that the density operator of an interacting system with Hamiltonian
H(t) = H0(t) + λV converges and produces entropy. Employing projection operators in the state space, the
density operator is developed to all orders of perturbation and then resummed. In contrast to earlier treatments
by Van Hove [Physica 21, 517 (1955)] and others [U. Fano, Rev. Mod. Phys. 29, 74 (1959); U. Fano, in Lectures
on the Many-Body Problem, Vol 2, edited by E. R. Caniello (Academic Press, New York, 1964); R. Zwanzig, in
Lectures in Theoretical Physics, Vol. III, edited by W. E. Britten, B. W. Downs, and J. Downs (Wiley Interscience,
New York, 1961), pp. 116–141; K. M. Van Vliet, J. Math. Phys. 19, 1345 (1978); K. M. Van Vliet, Can. J. Phys.
56, 1206 (1978)], closed expressions are obtained. From these we establish the time-reversal symmetry property
P (γ,t |γ ′,t ′) = P̃ (γ ′,t ′|γ,t), where the tilde refers to the time-reversed protocol; also a nonstationary Markovian
master equation is derived. Time-reversal symmetry is then applied to thermostatted systems yielding the Crooks-
Tasaki fluctuation theorem (FT) and the quantum Jarzynski work-energy theorem, as well as the general entropy
FT. The quantum mechanical concepts of work and entropy are discussed in detail. Finally, we present a nonequi-
librium extension of Mazo’s lemma of linear response theory, obtaining some applications via this alternate route.
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I. INTRODUCTION

The past two decades have seen a strong interest in ther-
modynamic systems driven far from equilibrium. Generally,
these systems are open, having exchange with large reservoirs.
Thermodynamic potentials thus exist, as derived from the
states of the reservoirs. In particular, as in Clausius’s days,
isothermal systems coupled to a heat bath have been studied
extensively. The driving protocol, in which thermodynamic
variables ai or fields F (t) are changed over a time interval
(t0 → t1) is denoted by ξ (t). In order for measurements at the
beginning and end point of the interval to be meaningful, it
must be assumed that the system equilibrates with the heat bath
at those times. However, the canonical equilibrium at time t1
and possibly also at t0 is a constrained or driven equilibrium
with respect to the variables varied in the protocol; obviously,
the processes envisaged are neither quasistatic nor stationary.

While thermodynamic processes can be studied from a
phenomenological or macroscopic point of view, the pro-
cesses can only be reasonably understood with the methods
of nonequilibrium statistical mechanics. Unfortunately, the
explosion of papers on driven systems of the last epoch
have mainly been based on the classical phase-space de-
scription; detailed quantum statistical considerations have
been comparatively few. Second, in most quantum papers
on the subject, the time evolution is linked to either the
unperturbed von Neumann equation or to the behavior of
Heisenberg operators, as in Kubo’s linear response theory
(LRT). However, it is well known that there is no increase
of entropy based on the time development of the density
operator in the von Neumann equation and any aspects of
irreversibility are absent, thus making the results circumspect
as to their applicability to actual nonequilibrium processes; we
note in this regard that nonequilibrium thermodynamics was
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formerly called “irreversible thermodynamics.” As abundantly
shown in our previous work (to be cited below), we must work
in the interaction picture based on a partitioned Hamiltonian
H0 + λV and employ time-dependent perturbation theory to
all orders to obtain relevant results. This procedure was started
in a seminal paper in Physica in 1955 by Leon Van Hove [1].
Whereas his was mostly a “brute-force” procedure in which a
doubly infinite series for the exponentiated Liouville operator

exp(−iLt)

= {exp[−(i/h̄)(H0 + λV) t]→ ← exp[(i/h̄)(H0 + λV) t]}
(1.1)

was evaluated by specifically combining terms of the same
order, better techniques employing projection operators were
later developed by Fano [2], Zwanzig [3], and the author and
collaborators [4–7], largely summarized in the nonequilibrium
part of our recent book [8]. The main outcome of Van Hove’s
paper was that, in the long-time weak-coupling limit, the
diagonal part of the so-obtained “reduced density operator”
ρR satisfies the irreversible Pauli-Van Hove master equation
(ME) with a Markovian conditional probability P (γ,t |γ ′,t ′)
connecting the quantum states {|γi〉} of H0; the entropy
production −(d/dt)TrρR ln ρR is now positive semidefinite.

The driven systems in this paper are more complicated
in that the processes considered are nonstationary. This is
reflected in the evolution operator U (t,t ′) which is not merely
a function of t − t ′. As will be discussed below, we need to
consider both the forward protocol operating over the time
interval (t0 → t1) and the backward protocol operating over
(t1 → t0). The principal property of the conditional probability
for this nonstationary process, now duly randomized by the
interactions λV(t), is the time-reversal symmetry,

Pt (γξ ,t |γξ ′ ,t ′) = P−t (γξ ′ ,t ′|γξ ,t); (1.2)

for the subscripts on the states, see below. Both forward
and backward processes still satisfy a ME, but the transition
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probabilities must be labeled with the time points t or −t,

respectively.
The time-reversal symmetry property is the main element

that enters into the quantum statistical treatment of the
many nonequilibrium fluctuation theorems (FT’s) and the
work-energy theorems developed since the mid-1990s. In the
former—in the broadest sense—we compare probabilities of
“action functionals” for forward processes with those for
backward processes and the associated “uncompensated heat”
(Clausius); in the latter we are concerned with the relationship
of expended work to various thermodynamic potentials.

The quantum mechanical form Eq. (1.2) was first mentioned
by the author in a recent paper [9] on the Crooks-Tasaki FT
[10,11] and on the work–free energy relationship established
by Christopher Jarzynski [12–15]; it was proven there for an
unperturbed Hamiltonian, or, what is equivalent, in zero order
for the perturbational Hamiltonian. The result (1.2) is also
found in a very recent paper of Cohen and Imry, but again,
only for a nonpartitioned Hamiltonian [16] and, therefore, not
applicable to real irreversible processes. The main charge of
this paper is to prove (1.2), or (2.6) below, as well as the
associated ME, employing all orders of perturbation for the
processes envisaged; this will comprise Secs. I to III. While
the computations are still laborious, final closed-form results
for the reduced evolution operator UR(t,t ′) will be established.

In the later sections of this paper, Secs. IV and V, we shall
then apply this property to obtain thermodynamic results.1

Also, we propose an extension of Mazo’s lemma of LRT,
giving an “updated” version of the quantum exponentiated
work FT by Talkner, Lutz, and Hänggi [17–19]. Truly
microscopic applications are limited, however, to processes
for which the protocol ξ (t) consists of c numbers. In other
cases, the variables must be coarse grained since they usually
do not commute with the Hamiltonian and with each other.
The beautiful microscopic developments must then be diluted
and a mesoscopic description emerges; results analogous to
those of Ref. [9] will be recovered. Also, we obtain the
general asymptotic FT for entropy production, cf. Galavotti
and Cohen [20], Kurchan [21,22], Lebowitz and Spohn [23],
Evans and Searles [24], and Harris and Schütz [25], among
many, many others, see the alphabetical list in Ref. [25].

Finally, we must be more specific about the eigenstates
employed in Eq. (1.2). Basically, we are dealing with
a time-dependent Hamiltonian H [ξ (t)] = H0[ξ (t)] + λV(t).
Usually, the interaction λV (e.g., electron-phonon interaction
or interaction with external agencies such as a heat bath) is
independent of time. It will be expedient to consider a set
of equivalent time-independent Hamiltonians Hξ which over
the time interval of the protocol are parametrized by ξ ; the
so-obtained eigenstates are the sets {|γξ 〉}. For many-body
states both γ and ξ are quasicontinuous.

II. PROOF OF TIME-REVERSAL SYMMETRY

For the unperturbed Hamiltonian the result requires only a
few lines. For the diagonal part of the density operator ρ(t) we

1These sections can be read independently, if one accepts the
statement (2.6) for the irreversible P ’s without proof.

have with t > t ′

p(γξ ,t) = 〈γξ |U (t,t ′)ρ(t ′)U †(t,t ′)|γξ 〉
=

∑
γ ′γ ′′

〈γξ |U (t,t ′)|γ ′〉 〈γ ′|ρ(t ′)|γ ′′〉 〈γ ′′|U †(t,t ′)|γξ 〉,

(2.1)

where we inserted the “decomposition of unity”∑ |γ 〉〈γ | = 1 ; note that U is the evolution operator

U (t,t ′) = T exp

[
−i

∫ t

t ′
H(ϑ)dϑ/h̄

]
, (2.2)

with T being the time-ordering operator. If we make an
initial random phase assumption that ρ(t ′) is diagonal2, i.e.,
〈γ ′|ρ(t ′)|γ ′′〉 = p(γ ′,t ′)δγ ′γ ′′ , we obtain

p(γξ ,t) =
∑
γξ ′

|〈γξ |U (t,t ′)|γξ ′ 〉|2p(γξ ′ ,t ′). (2.3)

From Bayes’s rule, we see that this implies a conditional
probability P ,

P (γξ ,t |γξ ′,t ′) = |〈γξ |U (t,t ′)|γξ ′ 〉|2. (2.4)

Now, since

〈γξ |U (t,t ′)|γξ ′ 〉∗ = 〈γξ ′ |U †(t,t ′)|γξ 〉 = 〈γξ ′ |U (t ′,t)|γξ 〉, (2.5)

where U (t ′,t) is the backward evolution with inverse time
ordering, it follows that

P (γξ ,t |γξ ′ ,t ′) = P̃ (γξ ′ ,t ′|γξ ,t), (2.6)

where the tilde refers to the backward process (as did our
previous subscript, “−t”).

The above procedure is the quantum equivalent of the
various treatments in which a trajectory is followed by the
Liouville equation. However, the P here obtained is not
Markovian and the full solution of the von Neumann equation
involves a convolution integral over all previous times. The
correct pathway to irreversibility requires that there are interac-
tions λV that randomize the motion proper, represented by the
principal system Hamiltonian H0. This is similar as in Boltz-
mann’s 1871 transport equation in which collisions perturbed
the ponderomotive motion due to gradients and fields; this was
the essence of his “H (capital eta for entropy)” theorem.

A. Projection operators and the state space

The full evolution is still given by the first line of Eq. (2.1),
but between interactions the system evolves according to the
zero-order unitary operator analogous to Eq. (2.2),

U 0(t,t ′) = T exp

[
−i

∫ t

t ′
H0(ϑ)dϑ/h̄

]
. (2.7)

Because of the time dependence, a straightforward resol-
vent expansion based on Laplace transformation cannot be
employed. We will, therefore, stay in the time domain at

2The von Neumann equation is a first-order differential equation,
for which this initial condition is legitimate; note that we do not make
a repeated random-phase assumption (RRPA) in this paper, except in
Sec. IIIA2 with qualification.
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first and solve separately for the diagonal and nondiagonal
parts. Laplace transforms will be used, however, to evaluate
certain operator structures. Whereas the projection-operator
procedure is least laborious when applied to the von Neumann
equation, the commutators of that formalism need special
scrutiny since the bilinear concomitant in Green’s theorem
is often nonzero, thus rendering the Dirac notation ambiguous
unless some rules are established a priori ( [8], Section 16.10).
We shall therefore work directly in the state spaceS (dual space
denoted by S̄) of H0, with the initial developments following
the pattern of Appendix B of our paper [5].

1. Preliminaries

We, first, briefly consider the case where H0 and V
are independent of time, H0 having eigenstates {|γ 〉}. Any
operator can be split into a diagonal part and a nondiagonal
part as follows,

A =
∑
γ ′γ ′′

|γ ′〉 〈γ ′|A|γ ′′〉 〈γ ′′| =
∑
γ ′

|γ ′〉 〈γ ′|A|γ ′〉 〈γ ′|

+
∑
γ ′ �=γ

|γ ′〉 〈γ ′|A|γ ′′〉 〈γ ′′| = PA + (1 − P)A. (2.8)

Here, P is the projection superoperator on the diagonal
Liouville subspace of S ⊗ S̄ and 1 − P on its complementary
subspace. We have the usual rules P2 = P and P(1 − P) ≡
PQ = 0 . Explicitly from Eq. (2.8), we have the usual
superoperator two-sided action form

P =
∑

γ

{|γ 〉 〈γ |→ ←|γ 〉 〈γ |}, or

(2.9)
PK =

∑
γ

(|γ 〉 〈γ |) 〈γ |K|γ 〉,

Q =
∑

γ

∑
γ ′

{|γ 〉 〈γ |→ ←|γ ′〉 〈γ ′|}, γ �= γ ′. (2.9′)

A product of two operators can be split as follows:

AB = {(Ad + And)(Bd + Bnd)}d + {(Ad + And)(Bd + Bnd)}nd

= (AdBd )(d) + (AdBnd)(nd) + (AndBd )(nd) + (AndBnd)d
+ (AndBnd)nd.

The subscripts in parentheses are automatically fulfilled and
can be omitted. As to the Hamiltonian, we note that H0 only
has a diagonal part, whereas V is nondiagonal (any possible
diagonal part must be included inH0). Thus, from the standard
differential equation for U we have

dU/dt = (1/h̄i) [H0 + λV] U (t,t ′), (2.10)
dUd (t,t ′)

dt
= (1/h̄i) [H0 Ud (t,t ′) + λ(VUnd(t,t ′))d ]

= (1/h̄i) [H0 Ud (t,t ′) + λPVUnd(t,t ′)], (2.11)
dUnd(t,t ′)

dt
= (1/h̄i) [H0Und(t,t ′) + λVUd (t,t ′)

+ λ(VUnd(t,t ′))nd]

= (1/h̄i) [H0Und(t,t ′) + λVUd (t,t ′)
+ λ(1 − P)VUnd(t,t ′)]; (2.12)

we note that the superoperators P and 1 − P work on all
operators to their right, unless otherwise indicated by paren-
theses. The equations (2.11) and (2.12) are fully equivalent
to Eq. (2.10); they must be solved conjointly with the weak-
coupling, long-time limit being carried out judiciously.

2. The state space

In order to parametrize the time dependence of H0[ξ (t)] ,

we shall represent the time by a set of discrete time points
ti (i = 0,1, . . . ,n) on the interval with ti=0 = t ′ and ti=n = t.

The value of ξ will be held constant over an interval, being
equal to its value at the lower point. The Hamiltonian now
becomes H0[ϑ] = H0

ξi
, ti � ϑ < ti+1 . This being a function

of bounded variation, its integral still exists, giving for the
evolution operator U 0,

U 0(t,t ′) = T exp

[
−i

∫ t

t ′
H0(ϑ)dϑ/h̄

]

= T exp
n−1∑
i=0

[−iH0
ξi

(ti+1 − ti)/h̄
]

=
n−1∏
i=0

exp
[−iH0

ξi
(ti+1 − ti)/h̄

] =
n−1∏
i=0

U 0(ti+1,ti),

(2.13)

where we presume that the H0’s of the various time intervals
commute, a likely proposition. The evolution operators on the
subintervals are quasistationary, i.e., a function of the time
differences only, U 0(ti+1,ti) = U 0(ti+1 − ti), and the limits
can be shifted for computational purposes; this is a purely
mathematical device, however, and the original time limits
must be restored to be useful in the overall result Eq. (2.13),
with the subintervals being contiguous.

The full state space is the tensor product of the spaces for
the individual Hamiltonians [the situation is not unlike the
state space of the grand-canonical ensemble with eigenstates
|ηN,N〉]. Accordingly, the full eigenstates are denoted by |ϕ〉
with

|ϕ〉 = |γ,ξ 〉 ⊗ |γn−1,ξn−1〉 ⊗ |γn−2,ξn−2〉

⊗ · · · ⊗ |γ1,ξ1〉 ⊗ |γ ′,ξ ′〉 ≡
(∏

⊗i

|γξi
〉
)

, (2.14)

where the far right-hand side is a short-cut notation to avoid
overlabelling. The projection operators also involve the full
state space withP = 
Pi . However, for any operator that acts
only over an interval (tξi

,tξi+1 ) only Pi gives a matrix element
that differs from unity. Since the expression for P [Eq. (2.9)
with |γ 〉 replaced by |ϕ〉] requires that we sum over all
eigenstates |ϕ〉, we basically sum all projectors not involving
Pi , thus yielding a product of unit operators. Therefore, the
diagonal projection for such operators only requires that we
apply Pi and it suffices that we work in the sub-Liouville
space Si ⊗ S̄i , thereby assuring that the procedure remains
manageable.
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B. Perturbational form for the evolution operator

1. The diagonal part

Let (τ ′,τ ) be a time interval such that ti � τ ′,τ < ti+1. For
the evolution operator on this interval we already found the
equations for its diagonal part, (2.11), and for its nondiagonal
part, (2.12); these are solved together. From Eq. (2.12) we
readily obtain

Und(τ,τ ′) = (1/h̄i)
∫ τ

τ ′
dϑ G(τ − ϑ,τ ′)λVUd (ϑ,τ ′)

= (1/h̄i)
∫ τ

τ ′
dϑ G(ϑ,τ ′) λVUd (τ − ϑ,τ ′), (2.15)

where G is the Green’s superoperator

G(τ,τ ′) = I
(
exp

{
(1/h̄i)(τ − τ ′)

[
H0

ξi
+ λ(1 − P)V

]})
� (τ − τ ′), (2.16)

with � being the Heaviside function and I the identity
superoperator. Equation (2.15) is substituted into Eq. (2.11)
to yield the integrodifferential equation

dUd (τ,τ ′)
dt

= 1

h̄i
H0

ξi
Ud (τ,τ ′) − (λ2/h̄2)

×
∫ τ

τ ′
dϑPVG(ϑ,τ ′)VUd (τ − ϑ,τ ′). (2.17)

This result is still exact. We now impose the long-time,
weak-coupling (or Van Hove) limit,

λ → 0, τ → ∞, λ2τ is finite; (2.18)

(in reality λ remains small but finite, while τ is just large in
comparison with the microscopic transition times, say τtr ∼
10−16s) . The Green’s superoperator is then approximated by

G0(τ,τ ′) = I
(
exp

{
(1/h̄i)(τ − τ ′)H0

ξi

})
�(τ − τ ′). (2.19)

For Ud we now have

dUd (τ,τ ′)
dτ

= 1

h̄i
H0

ξi
Ud (τ,τ ′) − λ2

h̄2

∫ τ

τ ′
dϑ PVe

−i (ϑ−τ ′)H0
ξi

/h̄

×VUd (τ − ϑ,τ ′). (2.20)

We note that the integral is of order λ2τ. Further, we set W =
exp [iτH0

ξi
/h̄]Ud and we let, at first, τ ′ = 0 (meaning we shift

axes, relabeling τ − τ ′ → τ̄ ); then, for W ,

dW (τ̄ ,0)

dτ̄
= −λ2

h̄2 e
i τ̄H0

ξi
/h̄

∫ τ̄

0
dϑ PVe

−i ϑH0
ξi

/h̄

×V e
−i (τ̄−ϑ)H0

ξi
/h̄

W (τ̄ − ϑ,0). (2.21)

Writing P in full as in Eq. (2.9) and inserting closure∑ |γ̄ξi
〉 〈γ̄ξi

| = 1 before the second V , we get

dW (τ̄ ,0)

dτ̄
= −λ2

h̄2

∑
γξi

,γ̄ξi

|γξi
〉 〈γξi

|ei εγ ξi
τ̄ /h̄

∫ τ̄

0
dϑ 〈γξi

|V|γ̄ξi
〉

× e−i εγ̄ ξi
ϑ/h̄〈γ̄ξi

|V|γξi
〉e−i εγ ξi

(τ̄−ϑ)/h̄W (τ̄ − ϑ,0)

= −λ2

h̄2

∑
γξi

,γ̄ξi

|γξi
〉 〈γξi

|
∫ τ̄

0
dϑ |〈γξi

|V|γ̄ξi
〉|2

× e−i (εγ̄ ξi
−εγ ξi

)ϑ/h̄ W (τ̄ − ϑ,0). (2.22)

The ε′s are the eigenvalues (EV) of H0
ξi

on the chosen interval;
note that for ease of notation we placed the state symbol γ and
the interval label ξi of the EV on the same level.

Taking now the Laplace transform of Eq. (2.22) and
denoting the transform by Ŵ (s) , we have

sŴ (s) − W (0)

= −λ2

h̄2

∑
γξi

,γ̄ξi

|γξi
〉 〈γξi

| |〈γξi
|V|γ̄ξi

〉|2
s + i

(
εγ̄ ξi

− εγ ξi

)
/h̄

Ŵ (s). (2.23)

Considering asymptotic times implies s → 0+; thus, we can
employ the well-known identity

1

s + i
(
εγ̄ ξi

− εγ ξi

)
/h̄

= h̄

[
−i P

1

εγ̄ ξi
− εγ ξi

+ πδ
(
εγ̄ ξi

− εγ ξi

)]
, (2.24)

where P denotes the principal value. Further, letting �γξi
→∫

�γ ξi
, where �γ includes the density of states, we set

C(γξi
) = 2π

∫
�γ̄ξi

|〈γξi
|V|γ̄ξi

〉|2δ(εγ̄ ξi
− εγ ξi

)
, (2.25)

D(γξi
) = 2

∫
�γ̄ξi

|〈γξi
|V|γ̄ξi

〉|2 P/
(
εγ̄ ξi

− εγ ξi

)
. (2.26)

Solving from Eq. (2.23) for Ŵ (s) and noting that W (0) = 1,
the inverse yields, upon restoring τ ′,

W (τ,τ ′) = exp

{
−(λ2/2h̄)(τ − τ ′)

×
∑
γξi

|γξi
〉 〈γξi

| [C(γξi
) − iD(γξi

)]

}
. (2.27)

By series expansion, one may verify that, for any f (γ ),

exp

[
−

∑
γ

|γ 〉 〈γ | f (γ )

]
=

∑
γ

|γ 〉 〈γ | exp[−f (γ )]. (2.28)

Whence, finally, for Ud ,

Ud (τ,τ ′) =
∑
γξi

|γξi
〉 〈γξi

|{exp{−(i/h̄)εγ ξi
(τ − τ ′)

− (λ2/2h̄)(τ − τ ′) [C(γξi
) − iD(γξi

)]}. (2.29)

We note that the miracle has happened: the original
oscillatory behavior has been altered into a decaying be-
havior showing irreversibility; note that − (λ2/2h̄)C(γξi

) is
negative semidefinite, being an integral over the transition rates
Wtξi

(γξi
,γξ ′ ) , as given by Fermi’s golden rule. We also give

(2.29) in the more compact form, noting that the decomposition
theorem allows us to resum,

Ud (τ,τ ′) = exp
{−(i/h̄)(τ − τ ′)H0

ξi
− (λ2/2h̄)(τ − τ ′)

× [
C

(
H0

ξi

) − iD
(
H0

ξi

)]}
. (2.30)

Extending (τ,τ ′) to the limits (ti+1,ti) , we obtain the diagonal
part of the evolution operator for the entire interval. From
Eq. (2.30), affixing the superscript R for reduced operator, we
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obtained

UR
d (t,t ′) =

∏
i

exp
{−(i/h̄)H0

ξi
(ti+1 − ti) − (λ2/2h̄)(ti+1 − ti)

× [
C

(
H0

ξi

) − iD
(
H0

ξi

)]}
. (2.31)

2. The nondiagonal part

For the nondiagonal part we may not approximate G byG0,

since all orders (λτ )n occur. Letting τ ′ = 0, we have for the

Laplace transform of Eq. (2.15) with Eq. (2.16)

Ûnd(s) = 1

h̄i

1

s + (i/h̄)
[
H0

ξi
+ λ(1 − P)V

] λ(1 − P)VÛd (s),

(2.32)

where in front of the last V we can add the (1 − P) with
impunity. We seek to obtain a convolution series in the diagonal
part Ud. To that effect, we rewrite (2.32) as follows,

Ûnd(s) = 1

s + (i/h̄)H0
ξi

+ (λ2/h̄)K − (1/h̄i)[λ(1 − P)V + iλ2K]
(1/h̄i) λ(1 − P)VÛd (s), (2.33)

where we introduced a new operator,

K=�γξi
|γξi

〉〈γξi
〉[C(γξi

) − iD(γξi
)] = [

C
(
H0

ξi

) − iD
(
H0

ξi

)]
.

(2.34)

Also, from Eq. (2.30) we find

Ûd (s) = 1

s + (i/h̄)H0
ξi

+ (λ2/h̄)K
. (2.35)

Notice the similarity of the denominators in Eqs. (2.33) and
(2.35).

Now the following operator identity is easily verified,
B−1 = A−1 + A−1(A − B) B−1. This can be iterated ad in-
finitum. We, thus, obtain the perturbation series,

Ûnd(s) = Ûd (s)
∞∑

n=0

{
1

h̄i
[λ(1 − P)V + iλ2K] Ûd (s)

}n

× 1

h̄i
(1 − P)VÛd (s). (2.36)

In the square brackets we neglect the term with λ2 versus the
term in λ, to obtain

Ûnd(s) = Ûd (s)
∞∑

n=1

{
λ

h̄i
[(1 − P)VÛd (s)

}n

. (2.37)

Since the product operator VUd (s) is clearly nondiagonal, it is
destroyed by the P, so we can a posteriori simplify to

Ûnd(s) = Ûd (s)
∞∑

n=1

{(λ/h̄i)VÛd (s)}n. (2.38)

Its inversion yields a time-ordered (n + 1)−fold convolu-
tion; hence,

Und(τ̄ ) =
∞∑

n=1

(
λ

h̄i

)n ∫ τ̄

0
dϑn

∫ ϑn

0
dϑn−1

∫ ϑn−1

0
dϑn−2 · · ·

×
∫ ϑ2

0
dϑ1Ud (τ̄ − ϑn)VUd (ϑn − ϑn−1)V

×Ud (ϑn−1 − ϑn−2) · · ·VUd (ϑ2 − ϑ1)VUd (ϑ1).

(2.39)

In contrast to Van Hove’s series for the matrix elements, this
series of operators can be summed!

To this purpose, we introduce the interaction operator,

UI
nd(τ̄ ) = U−1

d (τ̄ ) Und(τ̄ ) , (2.40)

with superscript “−1” denoting the inverse; also let VI (τ̄ ) =
U−1

d (τ̄ )V Ud (τ̄ ). Noting the composition property

U−1
d (τ̄ ) = U−1

d (τ̄ − ϑn) U−1
d (ϑn) , (2.41)

and the time-inversion property3

U−1
d (τ̄ − ϑ) = Ud (ϑ − τ̄ ) , (2.42)

one finds

UI
nd(τ̄ ) =

∞∑
n=1

(
λ

h̄i

)n ∫ τ̄

0
dϑn

∫ ϑn

0
dϑn−1

∫ ϑn−1

0
dϑn−2 · · ·

×
∫ ϑ2

0
dϑ1 VI (ϑn)VI (ϑn−1)VI (ϑn−2) · · ·

×VI (ϑ1). (2.43)

This can be changed into the equivalent form, resetting the
time axis,

UI
nd(τ,τ ′) = 1

n!

∞∑
n=1

(
λ

h̄i

)n

T
∫ τ

τ ′
dϑn

∫ τ

τ ′
dϑn−1

∫ τ

τ ′
dϑn−2

× · · ·
∫ τ

τ ′
dϑ1 VI (ϑn,τ

′)VI (ϑn−1,τ
′)

× · · ·VI (ϑ1,τ
′). (2.44)

Going back to Und, we obtain

Und(τ,τ ′) = Ud (τ,τ ′)
{
T exp

[
(λ/h̄i)

∫ τ

τ ′
dϑ U−1

d (ϑ,τ ′)

×VUd (ϑ,τ ′)
]

− 1

}
. (2.45)

3Time inversion shall also involve reversal of the magnetic field H ,

when present.
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Adding now the diagonal part, the surprising final result is

U (τ,τ ′) = Ud (τ,τ ′)
{
T exp

[
(λ/h̄i)

∫ τ

τ ′
dϑ U−1

d (ϑ,τ ′)VUd (ϑ,τ ′)
]}

, (2.46)

with Ud given by Eq. (2.30). We can extend the result to the entire subinterval, τ = ti+1 and τ ′ = ti .

3. Reduced forms

For the full reduced (i.e., postperturbation procedure) evolution operator we obtained

UR(t,t ′) =
(∏

i

exp
{−(i/h̄)(ti+1 − ti)

[
H0

ξi
− (λ2/2)D

(
H0

ξi

)]})(∏
i

exp
[− (λ2/2h̄)(ti+1 − ti) C

(
H0

ξi

)] )

×
{
T exp

[
−i (λ/h̄)

∫ t

t ′
dϑ U−1

d (ϑ,t ′)VUd (ϑ,t ′)
] }

. (2.47)

We notice that the last factor has a structure quite similar to the point of departure, Eq. (2.2). However, the second factor shows
that the reduced evolution operator is no longer unitary.

We must now again consider the matrix elements, the analog of Eq. (2.4) being

P (γξ ,t |γξ ′ ,t ′) = |〈γξ |UR(t,t ′)|γξ ′ 〉|2. (2.48)

From Eq. (2.47) we have, splitting off the first and the last factors in the product,

〈γξ |UR(t,t ′)|γξ ′ 〉 = 〈γξ | exp{−(i/h̄)(t − tn−1) [εγ ξ − (λ2/2)D(γξ )]}exp[−(λ2/2h̄) (t − tn−1)C(γξ )]

×
(

n−2∏
i=1

exp
{−(i/h̄)(ti+1 − ti)

[
H0

ξi
− (λ2/2)D

(
H0

ξi

)]})(
n−2∏
i=1

exp
[−(λ2/2h̄)(ti+1 − ti) C

(
H0

ξi

)])

×
{
T exp

[
−i (λ/h̄)

∫ t

t ′
dϑ U−1

d (ϑ)VUd (ϑ)

] }
exp{−(i/h̄)(t1 − t ′) [εγ ξ ′ − (λ2/2)D(γξ ′)]}

× exp[− (λ2/2h̄) (t1 − t ′)C(γξ ′)]|γξ ′ 〉. (2.49)

Next, we consider the complex conjugate matrix element,

〈γξ |UR(t,t ′)|γξ ′ 〉∗ = 〈γξ ′ |UR†(t,t ′)|γξ 〉. (2.50)

For UR†(t,t ′) all unitary parts in Eq. (2.49) simply require i →
−i , which is tantamount to time reversal (or transposition,
denoted by the superscript tr). Also note that the time-ordered
integral, apart from being complex conjugated, retains its form
with the integrand being the same cf. (2.42)[

U−1
d (ϑ,ti)VUd (ϑ,ti)

]tr = U−1
d (ϑ,ti)VUd (ϑ,ti). (2.51)

The state of the exponentials with real arguments bears
more scrutiny; for clarity, we set the exp symbol in bold.
Under Hermitian conjugation, these remain invariant! To see
this, we must go back to Eqs. (2.20), (2.22), and (2.24).
Hermitian conjugation of Eqs. (2.20) and (2.22) requires
complex conjugation of Eq. (2.24), which leaves the δ part
unchanged, since

1

s ± i
(
εγ̄ ξi

− εγ ξi

)
/h̄

= ∓ ih̄ P
1

εγ̄ ξi
− εγ ξi

+ πh̄δ
(
εγ̄ ξi

− εγ ξi

)
. (2.52)

Therefore, the arguments (−λ2/2h̄)�tξiC(γξi) , with the C ′s
being the integrals (2.25), are unchanged. However, the entire
form Eq. (2.49) only holds for the forward process since

we solved for forward time, cf. the Heaviside function for
each subinterval in Eqs. (2.16) and (2.19). The real argument
exponentials ensure forward irreversibility; from the ME (next
section) we can prove that the entropy increases during the
exercise of the protocol.

We now turn to the reverse process. The differential
equations of departure for Ud (τ,τ ′) and Und(τ,τ ′) still hold
but they must be solved for backward time d/d(−τ ), using
the adjunct Green’s operator, G̃(τ ′,τ ) [26], the tilde indicating
that τ precedes τ ′. We can then find the time-reversed
result 〈γξ ′ |ŨR(t ′,t)|γξ 〉; in the exp factors the times are now
interchanged, the argument still being negative semi-definite
(viz. + (λ2/2h̄)(ti − ti+1)C � 0) . Whence we established

〈γξ ′ |UR†(t,t ′)|γξ 〉 → 〈γξ ′ |ŨR(t ′,t)|γξ 〉, (2.53)

where the tilde on the UR is essential. Altogether, we
ascertained,

〈γξ |UR(t,t ′)|γξ ′ 〉∗ = 〈γξ ′ |ŨR(t ′,t)|γξ 〉. (2.54)

Multiplying both sides with their complex conjugates, we
definitively confirmed Eq. (2.6),

P (γξ ,t |γξ ′ ,t ′) = |〈γξ |UR(t,t ′)|γξ ′ 〉|2 = |〈γξ ′ |ŨR(t ′,t)|γξ 〉|2
= P̃ (γξ ′ ,t ′|γξ ,t). QED
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III. THE MASTER EQUATION

The purpose of this section is to show that the ob-
tained postperturbation conditional probability P (γξ ,t |γξ ′ ,t ′)
is Markovian and as such satisfies the master equation,
postulated in Ref. [9]. We will only do this for the forward
time process; the backward time equation can be obtained
along the same lines but is seldom needed. The superscripts R

will henceforth be omitted.

A. The quasistationary case

We, first, discuss the ME for a quasistationary process
τ ′ → τ, with τ and τ ′ being, again, times in an interval ti �
τ ′,τ < ti+1, the zero-order Hamiltonian being H0

ξi
. Again, let

us consider the perturbational solution of the von Neumann
equation for τ > τ ′,

ρ(τ ) = U (τ,τ ′)ρ(τ ′) U †(τ,τ ′). (3.1)

Assuming the initial operator to be diagonal, we have

ρ(τ ) =
∑
γ̄ξ ′

U (τ,τ ′)|γ̄ξ ′ 〉p(γ̄ξ ′ ,τ ′) 〈γ̄ξ ′ | U †(τ,τ ′). (3.2)

The states |γ̄ξ ′ 〉 are eigenstates of the Hamiltonian near the
initial point τ ′ ; the subscript ξ ′ will henceforth be suppressed.
For U (τ,τ ′) we shall use Eq. (2.46); for its Hermitian conjugate
U †(τ,τ ′) we keep forward times. Hence, from Eqs. (2.46),
(2.51), and (3.2),

ρ(τ ) =
∑

γ̄

Ud (τ,τ ′) T (ϑ)

{
exp

[
−i (λ/h̄)

∫ τ

τ ′
dϑ U−1

d (ϑ,τ ′)VUd (ϑ,τ ′)
] }

|γ̄ 〉 〈γ̄ |

× T (ϑ̄)

{
exp

[
i (λ/h̄)

∫ τ

τ ′
dϑ̄ U−1

d (ϑ̄,τ ′)VUd (ϑ̄,τ ′)
] }

U
†
d (τ,τ ′) · p(γ̄ ,τ ′) . (3.3)

We proceed to obtain the derivatives of the time-ordered operators, which act on the initial time projectors |γ̄ 〉 〈γ̄ |. For the
first time-ordered exponential operator we have

T (ϑ)
∞∑

n=0

1

n!

(−iλ

h̄

)n ∫ τ

τ ′
dϑn

∫ τ

τ ′
dϑn−1 · · ·

∫ τ

τ ′
dϑ1 U−1

d (ϑn,τ
′)VUd (ϑn,τ

′) · · ·U−1
d (ϑ1,τ

′)VUd (ϑ1,τ
′). (3.4)

Although Ud is in the integrands, we will see below that the parts to be retained are unitary. We will adopt a time-reversed order
for the integrals, writing instead

T −1(ϑ)
∞∑

n=0

1

n!

(−iλ

h̄

)n ∫ τ

τ ′
dϑ1

∫ τ

τ ′
dϑ2 . . .

∫ τ

τ ′
dϑn U−1

d (ϑ1,τ
′)VUd (ϑ1,τ

′) · · · U−1
d (ϑn,τ

′)VUd (ϑn,τ
′) , (3.5)

where T −1 means that the equivalent convolution form still starts with
∫ τ

τ ′ dϑn

∫ ϑn

τ ′ dϑn−1 . . . . For the product operators we then
obtain

T −1(. . .)|γ̄ 〉 〈γ̄ |T (. . .) =
∞∑

n=0

(
1

n!

)2 (
λ2

h̄2

)n

T −1(ϑ)T (ϑ̄)
∫ τ

τ ′
dϑ1 . . .

∫ τ

τ ′
dϑn−1

n−1∏
i=1

U−1
d (ϑi,τ

′)VUd (ϑi,τ
′)

×
(∫ τ

τ ′
dϑnU

−1
d (ϑn,τ

′)VUd (ϑn,τ
′)|γ̄ 〉 〈γ̄ |

∫ τ

τ ′
dϑ̄n U−1

d (ϑ̄n,τ
′)VUd (ϑ̄n,τ

′)
)

×
∫ τ

τ ′
dϑ̄n−1

∫ τ

τ ′
dϑ̄n−2 . . .

∫ τ

τ ′
dϑ̄1

1∏
i=n−1

U−1
d (ϑ̄i ,τ

′)VUd (ϑ̄i ,τ
′). (3.6)

The double integral in the large round brackets is readily
evaluated. First, from Eq. (2.30), we note that

Ud (ϑn,τ
′) = exp

{−(i/h̄)(ϑn − τ ′)
[
H0

ξi + O(λ2)
]}

, (3.7)

U−1
d (ϑn,τ

′) = exp
{
(i/h̄)(ϑn − τ ′)

[
H0

ξi + O(λ2)
]}

. (3.8)

The terms with O(λ2) will be omitted (only in the time-ordered
integrals being dealt with here) since further computation
would show that they give λ4τ terms that should not be
retained; whence the modified Ud and U−1

d are unitary. Next
we insert a closure sum

∑
γ ′ |γ ′〉 〈γ ′| = 1 before the first V

and another one
∑

γ ′′ |γ ′′〉〈γ ′′| = 1 behind the second V . The
double integral now yields

( )
=

∑
γ ′

∑
γ ′′

|γ ′〉
∫ τ

τ ′
dϑne

(i/h̄)(ϑn−τ ′)(εγ ′−εγ̄ )〈γ ′|V|γ̄ 〉

×
∫ τ

τ ′
dϑ̄ne

(i/h̄)(ϑ̄n−τ ′)(εγ̄ −εγ ′′ )〈γ̄ |V|γ ′′〉 〈γ ′′|
.=

∑
γ ′

|γ ′〉〈γ ′|
∫ τ

τ ′
dϑn

∫ τ

τ ′
dϑ̄n e(i/h̄)(ϑn−ϑ̄n)(εγ ′−εγ̄ )

× |〈γ ′|V|γ̄ 〉|2; (3.9)
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in the conditional equality
.= we omitted the zero-trace terms

�γ ′�γ ′′ �=γ ′ |γ ′〉 · · · 〈γ ′′| which do not contribute to the density
operator. Thus, we only retain terms with γ ′ = γ ′′. For large
τ this double integral yields 2πh̄(τ − τ ′) δ(εγ ′ − εγ̄ ); note the
result is linear in τ. With the usual transition rate

W (γ ′|γ̄ ) = (2πλ2/h̄)|〈γ ′|V|γ̄ξ ′ 〉|2 δ(εγ ′ − εγ̄ ), (3.10)

(where entries behind the vertical bar are the data of departure),
we see that the double integral has given us

∂

∂τ

( )
= (λ2/h̄2)−1

∑
γ ′

|γ ′〉 〈γ ′| W (γ ′|γ̄ ) . (3.11)

Obviously, we have only differentiated one pair of integrals.
We now repeat this procedure for all other pairs of integrals,
involving dϑn−i and dϑ̄n−j ; this requires that we make i

transpositions to the right in the reverse ordered set and
j transpositions to the left in the normally ordered set.
These integrals are now adjacent and are evaluated as before,
giving for the derivative the same result as in Eq. (3.11).
Notice also that the time ordering for the remaining integrals
on both sides has not been affected, since the pair, after
evaluation, is removed from the two sets. Altogether, there
are n2 contributions (3.11). In the first two factors on the
right-hand side of Eq. (3.6) we end up with (1/m!)2 (λ2/h̄2)m,

where m = n − 1 . But, obviously, to commence the pair
differentiation we need to have at least one pair, i.e., n has
to start at 1; consequently, m starts again at zero. Clearly,
the differentiation recreates the original series of time-ordered
integrals, hence, also the time-ordered exponentials which,
moreover, yield an algebraic sum involving the projectors of
H0. Thus, the entire expression for ρ as given in Eq. (3.3) is
recovered, except for the original projector |γ̄ 〉 〈γ̄ | , which has
been “used up.” For the complete differentiation of the two
series of integrals we, thus, obtained

∂ρd

∂τ

∣∣∣∣
part(a)

=
∑
γ ′

(|γ ′〉〈γ ′|) (|γ̄ 〉〈γ̄ |)−1 W (γ ′|γ̄ )Pρ(τ )

=
∑

γ̄

∑
γ ′

|γ ′〉〈γ ′|W (γ ′|γ̄ ) 〈γ̄ |ρ(τ )|γ̄ 〉. (3.12)

We added the subscript d (for diagonal part) on the left-hand
side, noting from Eq. (3.11) that this differential is diagonal at
all times; since the right-hand side must then also be diagonal,
we added the P in front of ρ and evaluated the result in the
second line, based on the explicit form Eq. (2.9).

Next, we must differentiate the terms Ud and U
†
d in Eq. (3.3).

It is noticed that they commute with the projector expression
inside, so U

†
d near the far end of Eq. (3.3) can be brought to the

front next to Ud. The reduced operators in their full form are
not unitary anymore, as shown by the detailed expressions
of Eqs. (2.29) and (2.30). Using the latter, the imaginary
exponentials yield unity, so that remains

Ud (τ,τ ′) U
†
d (τ,τ ′) = exp

[−(λ2/h̄)(τ − τ ′) C
(
H0

ξi

)]
. (3.13)

For the derivative we now have (∂ρ/∂τ )part(b) =
−(λ2/h̄) C(H0

ξi
)ρ(τ ) . This part is also diagonal, as expected.

Writing C(H0
ξi

) in spectral decomposition and employing also

(2.28), we find

∂ρd

∂τ

∣∣∣∣
part(b)

= −(λ2/h̄)
[
C

(
H0

ξi

)
ρ(τ )

]
= −(λ2/h̄)

∑
γ ′

|γ ′〉 〈γ ′|C(γ ′
ξi

) 〈γ ′|ρ(τ )|γ ′〉

= −(2πλ2/h̄)
∑
γ ′

∑
γ̄

|γ ′〉 〈γ ′||〈γ ′|V|γ̄ 〉|2

× δ(εγ̄ − εγ ′)〈γ ′|ρ(τ )|γ ′〉
= −

∑
γ ′

∑
γ̄

|γ ′〉 〈γ ′|W (γ̄ |γ ′) 〈γ ′|ρ(τ )|γ ′〉. (3.14)

Combining now both results, Eqs. (3.12) and (3.14), the final
result reads

∂ρd (τ )

∂τ
=

∑
γ ′

∑
γ̄

|γ ′〉 〈γ ′|{W (γ ′|γ̄ ) 〈γ̄ |ρ(τ )|γ̄ 〉

−W (γ̄ |γ ′) 〈γ ′|ρ(τ )|γ ′〉} ≡ −�dρd (τ ). (3.15)

This is the ME form in Liouville space; we shall comment on
it in part B of this section. Taking the matrix element 〈γ |ρd |γ 〉
on both sides, we obtain the more familiar form in the function
space,

∂p(γ,τ )

∂τ
=

∑
γ̄

{W (γ |γ̄ ) p(γ̄ ,τ ) − W (γ̄ |γ ) p(γ,τ )}

≡ −Mγ [p(γ,τ )]. (3.16)

We still notice the property of microscopic reversibility,
W (γ |γ̄ ) = W (γ̄ |γ ). However, we wrote Eq. (3.16) with
distinct W ’s, of equal value, so that it reads like a conservation
principle: going from γ̄ to γ we get a gain-term, while going
from γ to γ̄ we have a loss term.

Next, we write

p(γ,τ ) =
∑
γ ′

P (γ,τ |γ ′,τ ′)p(γ ′,τ ′), (3.17)

where P is the conditional Markov probability. Substituting
this into Eq. (3.16), we obtain∑

γ ′
p(γ ′,τ ′)

∂P (γ,τ |γ ′,τ ′)
∂τ

= −
∑
γ ′

p(γ ′,τ ′) Mγ [ P (γ,τ |γ ′,τ ′)] , τ � τ ′. (3.18)

Since this holds for any p(γ ′,τ ′) , we also have, noting the
initial condition for P ,

∂P (γ,τ |γ ′,τ ′)
∂τ

+ Mγ [P (γ,τ |γ ′,τ ′)]

= δ(τ − τ ′) δ(γ − γ ′)/χ (γ ), (3.19)

where χ (γ ) is the density of states. This is the usual Markovian
master equation (MME). Or, writing Mγ in full,

∂P (γ,τ |γ ′,τ ′)
∂τ

=
∑

γ̄

{W (γ |γ̄ ) P (γ̄ ,τ |γ ′,τ ′)

−W (γ̄ |γ ) P (γ,τ |γ ′,τ ′)}, τ > τ ′.
(3.20)
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B. The nonstationary process

The far right-hand side of Eq. (3.15) defines the master
superoperator in Liouville space; it was introduced by the
author in 1976 during a series of seminars at the University
of Utrecht. Its advantage is that it allows a direct solution
for the density operator, which mirrors the solution of the
von Neumann equation, ρ(τ ) = {exp[−iL(τ − τ ′)]} ρ(τ ′), cf.
(1.1), for the weak-coupling, long-time limit:

ρd (τ ) = (exp[−�d (τ − τ ′)])ρd (τ ′). (3.21)

We can now extend the τ and τ ′ to the entire interval
(ti ,ti+1). The full solution over the interval (t ′,t) then is

ρd (t)= (
exp

[−�
tn − 1
d (t − tn− 1)

])(
exp

[−�
tn − 2
d (tn− 1 − tn− 2)

])
× . . .

(
exp

[−�t ′
d (t1 − t ′)

])
ρ(t ′). (3.22)

The superscripts on the master operator �d indicate the
time points (with corresponding set of eigenstates |γξi

〉) that
are applicable to that interval. Differentiating to t we find
∂ρd/∂t = −�

tn−1
d ρd (t). Since the eigenstates |γξn−1〉 → |γξ 〉

cover the entire last interval (tn−1,t) , we will use the
superscript t instead. The final explicit form of the ME in
Liouville space then reads,

∂ρd (t)

∂t
=

∑
γξ

∑
γ̄

|γξ 〉 〈γξ |{Wt (γξ |γ̄ ) 〈γ̄ |ρ(t)|γ̄ 〉

−Wt (γ̄ |γξ ) 〈γξ |ρ(t)|γξ 〉}. (3.23)

Here |γξ 〉 is an eigenstate at t while |γ̄ 〉 can be any state of the
entire state space. The equivalent ME in function space has
the form, cf. Ref. [9] and Gaspard [27],

∂p(γξ ,t)

∂t
=

∑
γ̄

{Wt (γξ |γ̄ ) 〈γ̄ |ρ(t)|γ̄ 〉

−Wt (γ̄ |γξ ) 〈γξ |ρ(t)|γξ 〉}. (3.24)

Lastly, it may not have escaped the reader that we used an
initial random-phase assumption on each subinterval (ti ,ti+1).
Basically, this means that we have “reset” the conditions when
we switch to a new set of eigenstates. However, another
interpretation is that the density operator needs not to be
diagonal at any time [6,8]; we just seek the response of the
diagonal part. [There also is a nondiagonal part, featuring the
reduced Liouville operator L0 [8], not considered here.]

a. Discussion. While the master equation itself is not
necessary for the applications to the fluctuation theorems
dealt with in Sec. IV A and can be dispensed with in the
first part of Sec. IV B, we included it here to show that the
perturbational form of the time-reversal property is associated
with a Markovian ME that has a positive entropy production,
as expected for a driven non-equilibrium process; the proof
is provided in Sec. IV B2. In any quantum mechanical theory
for irreversible processes, we need either internal dissipative
processes or an explicit randomizing coupling with the
reservoir(s); previous papers have mostly failed to satisfy these
criteria.

The ME for nonstationary processes differs only from that
for stationary processes in that the transition probabilities must
be subscripted with the time t for which ∂ρ/∂t is evaluated. If
one does not want to connect with the physical processes via

the von Neumann equation as done here, that result can also
be obtained from the Chapman-Kolmogoroff equation of the
stochastic literature, which serves as a “consistency criterion”
for Markov processes, cf. van Kampen [28].

Since we approached the topic by considering a set of
quasistationary subintervals, our present proof of the Pauli-Van
Hove master equation deserves particular attention. Basically,
we followed van Hove’s procedure in extracting the relevant
terms from the double series expansion for Uρ0U

†, rather than
Zwanzig’s method in considering the single series expansion
for the perturbed Liouville operator, followed also in our book
[8], Sections 16.11 and 12. However, in contrast to the very
lengthy expressions in Refs. [1] and [5], we obtained a closed-
form result for U (τ,τ ′) and the subsequent differentiation
of ρ(τ ) was straightforward and without “gimmicks.” In
particular, there was no need for “Van Hove’s functional
rule.” Rather than inserting closure sums at particular places
in the computations, Van Hove relied on a postulated linear
relationship pertaining to a product of V operators, separated
by any operator expression �:

〈γ |V �V|γ ′〉 = δ(γ − γ ′)
∫

dγ ′′〈γ | �|γ ′〉X(γ ′′,γ )

+
∫

dγ ′′〈γ ′′| �|γ ′′〉Y (γ ′′; γ,γ ′), (3.25)

where X and Y are at first unknown kernels in the indi-
cated variables. [As for X, one easily shows that X(γ,γ̄ ) =
|〈γ |V|γ̄ 〉|2.] In subsequent computations, the terms in Y do
not yield terms of order λ2τ , in contrast to the terms with X.
Thus, Van Hove ascribes the obtained irreversible behavior
to the diagonal singularity of the functional rule (3.25). The
present calculation shows that the diagonal singularity plays
no preponderant role in the emergence of irreversible results;
rather, we believe that the partitioning of the Hamiltonian as
H0 + λV , with small but finite λ , is of essence in the quest for
irreversibility.

IV. THERMODYNAMIC APPLICATIONS

A. Crooks-Tasaki and Jarzynski revisited

1. Microscopic considerations

As noted by a number of authors, among others [16,18], the
deduction of the Crooks-Tasaki FT, as well as the Jarzynski
work–energy theorem from standard quantum mechanical
considerations involving the time evolution, such as set forth
here, is basically straightforward. However, there is a catch:
What is work? We shall discuss this in detail below.

The pivotal point is the time-reversal symmetry. Thus,
starting from Eq. (2.6), applied for the time interval (t0,t1), we
multiply the left-hand side with pcan(γ0,t0) and the right-hand
side with pcan(γ1,t1) to obtain

P (γ1,t1|γ0,t0) pcan(γ0,t0)

= P̃ (γ0,t0|γ1,t1) pcan(γ1,t1)[pcan(γ0,t0)/pcan(γ1,t1)], (4.1)

whereby it is understood that the eigenstates |γ1〉 and |γ0〉
belong to different Hamiltonians, as parametrized by H [ξ (t1)]
and H [ξ (t0)] , respectively. With pcan given by the Gibbs
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distribution (1/Z)e−βεγ , we have, by Bayes’s rule [29],

W2(γ1,t1; γ0,t0) e−β(εγ 1−εγ 0) = W̃2(γ0,t0; γ1,t1) e−β (F 0
1 −F 0

0 );

(4.2)

here W2 is the two-point probability and F 0 denotes the
equilibrium free energy of the system. Or also, with �F 0 =
F 0

1 − F 0
0 ,

W2(γ1,t1; γ0,t0)/W̃2(γ0,t0; γ1,t1) = eβ [(εγ 1−εγ 0)− �F 0]. (4.3)

Let us assume a one-to-one correspondence between
energies and eigenstates; any extraneous degeneracy, such as
due to spin, will be the same for both W2’s. Then, alternately
for Eq. (4.3),

p(εγ 1 − εγ 0)/p̃(εγ 0 − εγ 1) = eβ [(εγ 1−εγ 0)− �F 0]. (4.4)

Note that this implies that the measurement of the difference
(εγ 1 − εγ 0) is a two-time exercise.4 Clearly, we obtain
the Crooks-Tasaki FT if we can establish that this energy
difference is an eigenvalue w of the quantum mechanical
work W performed on the system. We, first, give some
heuristic—and, at face value, incorrect—arguments as found
in the literature [16].

We shall restrict ourselves to the scenario that the protocol
ξ (t) generates a set of c numbers. For that case, the imposed
changes can be modeled by an external field Hamiltonian,
as is customary in LRT, Hext = −AF (t), where A is a
system operator and F a c number; for a system of charged
particles, A is the shift of all charges, �i qi (ri − ri, eq),
and F (t) an applied electric field. We can make a Fourier
analysis of F (t) over the applicable interval, with Fourier
amplitudes Fω. This will leave a linewidth δε = h̄/�τ with
�τ ∼ (ti+1 − ti), the width of a subinterval over which the
system Hamiltonian can be approximated as being constant.
As shown elsewhere [30,31], the truncated phasors contribute
to zero-point energy fluctuations. To the extent that these can
be neglected, there will be conservation of system energy. It
is now argued that the electric field component Fω will couple
to the system, causing corresponding harmonic displacements
of the charges, which in turn emit virtual photons of the same
frequency. The reabsorption by the system gives excitations of
its quantum states with the selection rule h̄ω = (εγ 1 − εγ 0).
The probability for this to occur is proportional to |Fω|2.
Now let, at first, the system plus external agent be fully
isolated. Though the external agent has been described here
as having a Hamiltonian operator, we may assume that the
agent has so many degrees of freedom that the correspondence
rule applies; then, �‖AFω‖ = W, where W is the classical
work performed. For the described sequence of events, in the
correspondence limit we have W ∼ w = h̄ω.

When, next, we reconnect with the heat bath, the work must
be broken up into two parts. Prior to the heat transfer to the
reservoir we have wsystem = εγ 1 − εγ 0 + �Q. After transfer,
the heat gained by the reservoir is �Q. For simplicity, let the

4The problem of collapse of the state and decoherence will not
be touched on, since the time-measurement interval is very large
compared to any quantum transition times.

reservoir consist of an isothermal ideal gas; then �Ereserv = 0,

thus wreserv = −�Q. Adding, we find again

w = wsystem + wreserv = εγ 1 − εγ 0 . (4.5)

We note hereby that Tasaki’s FT concerns closed quantum
systems, whereas Crooks FT deals with thermostatted classical
systems; this confirms that the bath is often not essential. In
practice, however, truly closed systems are academic in that
they are not amenable to measurements. From Eqs. (4.4) and
(4.5) we now obtain

p(w)/p̃(−w) = eβ[w−�F 0], (4.6)

which is the Crooks-Tasaki FT. Despite its simplicity, the
“proof” and the model presented here have some heuristic
as well as extremely unrealistic elements in it.5

To improve on the argument, one could consider the
quantized field and its forward autocorrelation function
Tr{ρcan[F(τ )F(0)]} in a canonical ensemble; its Fourier
transform (times a factor of 2) yields the spectral density S(ω).
Evaluating the trace for the Fourier transform in the represen-
tation {|γξ 〉}, one obtains

S(ω) = 4πh̄
∑
γ1 γ0

pcan(γ0) |〈γ0|F |γ1〉|2 δ
[
h̄ω − (

εγ1 − εγ0

)]
.

(4.7)

The δ function of the spectral analysis confirms Eq. (4.5); see
also Sec. V B.

a. Definition of work. The concept of work must be clarified
before any results can be meaningful. In the many-body phase
space, work is directly related to the difference of the classical
Hamiltonians. When this is carried over to quantum statistics,
we must resort to the Heisenberg picture noting that, by the
Heisenberg equation of motion, the total derivative of the
Heisenberg Hamiltonian is equal to the local derivative. Hence,
dHH (t) = [∂HH (t)/∂t]dt or also

HH (t1) − HH (t0) =
∫ t1

t0

(∂HH/∂ξ ) dξ. (4.8)

With the notion that ∂HH/∂ξ relates to the local work, it is
now tempting to equate the left-hand side of Eq. (4.8) with the
operator for work W; cf. the extensive article in this journal
by Allahverdyan and Nieuwenhuizen [32]. They stress, in
particular, that in a quantum statistical mixture of states, there
will be sizeable fluctuations given by the Bochkov-Kusov (BK)
equality [33]. For this reason, it seems to us that work should
not be defined by Eq. (4.8) except in the classical limit when
HH ∼ H.

Here we posit that work is not an observable in the Hilbert
space S, as was also noted by Talkner et al. [17]. However,
while W is not a bounded operator in S, the unitary operator
eiuW exists and, by Stone’s theorem [34,35], has a spectral
decomposition

eiuW =
∫

eiuwdp̂(w), (4.9)

5It may have been grossly overlooked that, for normal coupling
frequencies, this “Gedanken experiment” pertains to femto- or
atto-Joules of work delivered, unless one supposes the process to
be repeated a great many times.
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where w are the measurable eigenvalues and dp̂(w) the incre-
mental projectors. Upon averaging, this implies a characteristic
function,6

〈eiuW〉 =
∫

eiuwdP (w), (4.10)

with dP being the incremental cumulative distribution function
(cdf). Generally the right-hand side is a Lebesgue-Stieltjes
integral, cf. [8] Section 1.7. Formally, we can write dP (w) =
p(w) dw , but the probability density (pdf) may be singular. It
is now expedient to define work by the relationship

exp[iuW] ≡ exp{iu [HH (t1) − HH (t0)]}. (4.11)

As to the characteristic function (4.10), it follows that the
averaged exponentiated work is rigorously equal to the forward
time-ordered correlation function,

〈exp[iuW]〉 = 〈exp {iu [HH (t1) − HH (t0)]}〉
= 〈T exp [iuHH (t1)] exp [−iuHH (t0)]〉.

(4.12)

To obtain the connection with the Schrödinger forms, we
will write the operator average on the left-hand side in the form
of a trace, i.e., 〈exp[iuW]〉 = Tr{ρ exp[iuW]} [where, as in
footnote 6, 〈w|ρ|w〉 = p(w)]. We then have, with U being the
original evolution operator of Eq. (2.2),

Tr{ρeiuHH (t1)e−iuHH (t0)}
= Tr{ρU †(t1,t0)eiuH(t1)U (t1,t0)e−iuH(t0)}
c.i.= Tr{eiuH(t1)U (t1,t0)e−iuH(t0)ρU †(t1,t0)}
com= Tr{U (t1,t0)eiuH(t1)e−iuH(t0)ρU †(t1,t0)}
c.i.= Tr{eiuH(t1)e−iuH(t0)ρU †(t1,t0)U (t1,t0)}
= Tr{eiu[H(t1)−H(t0)]ρ} = Tr

{
eiu[H0(t1)−H0(t0)]ρ

}
. (4.13)

In the various transitions we employed the property of
cyclic invariance (c.i.) of the trace and that two particular
adjacent operators commute (com); also we observed that
the perturbations λV are independent of time as presumed
throughout this article, thus yielding the last right-hand side.
Evaluating the trace in the representation {|γξ 〉} now gives

〈eiuW〉 = 〈eiu(εγ 1−εγ 0)〉. (4.14)

Taking the inverse Fourier transform,
(1/2π )

∫ ∞
−∞ du e−iuw · · · , on both sides, we obtain

p(w) = δ [w − (εγ 1 − εγ 0)]. (4.15)

Finally, let us go back to Eq. (4.4). Substituting (4.15)
into Eq. (4.4), we established the Crooks-Tasaki FT in a fully
quantum statistical manner,

p(w)/p̃(−w) = eβ[w−�F 0]. (4.16)

Next, we notice that the characteristic function with u =
z + iv is analytic for 0 � v � β; for a proof based on

6In Dirac notation, 〈exp[iuW]〉 = Tr{ρ ∫
exp[iuw] d (|w〉〈w|)} =∫

exp[iuw] d (〈w|ρ|w〉) = ∫
exp[iuw] dP (w). However, a correct

application of Stone’s theorem requires the mathematical notation
for the scalar product and the projectors.

Schwartz’s inequality, cf. Ref. [22]. Hence, letting u → iβ,

Eq. (4.14) yields

〈e−βW〉 = 〈e−β(εγ 1−εγ 0)〉. (4.17)

Now, the average at the right-hand side of Eq. (4.17) can be
obtained by a double integration [

∫∫
dγ1dγ0] over W2. Thus,

going back to Eq. (4.2) and integrating both sides, noticing
that the distribution W̃2 is normalized, Eqs. (4.2) and (4.17)
yield the quantum Jarzynski work-energy theorem,

〈e−βW〉 = e−β �F 0
. (4.18)

b. Discussion. With the work being given as a functional
of the Heisenberg operators, we, first, used the standard
time-dependent evolution operator of Eq. (2.2) to connect with
the Schrödinger Hamiltonian. We were then able to connect
with the eigenstates of the system, obtaining Eqs. (4.12)–
(4.17). But, as in LRT, which manipulates the properties of
Heisenberg operators, the theory must gain physical content
by an a posteriori randomization (called by Kubo “stochastici-
zation”), cf. Ref. [36], p. 196. Thus, the results must be
applied in conjunction with the fully stochastic results of
Eqs. (4.1)–(4.4), which form the basis of our treatment. Also,
we notice that the connection between the work and the
eigenstates of the system emerges explicitly.

In this respect, we mention another intriguing brief commu-
nication of Talkner et al. [18]. They consider the characteristic
function of W for u = z + iβ, which is in the domain of
analyticity as indicated above. Let Z(t0) be the partition
function at the beginning of the protocol and Z(t1) be the
partition function at the end of the protocol and let �(u) be
the characteristic function of the work operator W as defined
above. Then, by manipulation of the trace,

Z(t0)�(u)

= Tr{U †(t1,t0) ei(z+iβ)H(t1)U (t1,t0) e−i(z+iβ)H(t0)e−βH(t0)}
= Tr{eizH(t1)e−βH(t1)U (t1,t0) e−izH(t0)U †(t1,t0)}
= Tr{eizH(t1)e−βH(t1)U †(t0,t1) e−izH(t0)U (t0,t1)}
= Tr{U †(t0,t1) e−izH(t0)U (t0,t1) eizH(t1)e−βH(t1)}
= Tr{e−iz[HH (t0)−H(t1)] e−βH(t1)} = Z(t1) �̃(−u + iβ),

(4.19)

or

�(u) = e−β�F 0
�̃[ −(u − iβ)]. (4.20)

The Fourier inversion of the left-hand side gives p(w). For
the right-hand side we obtain (proof is ours),

1

2π

∫ ∞

−∞
du e−iuw

∫ ∞

−∞
dw′e−iw′(u−iβ)p̃(w′)

= 1

2π

∫ ∞

−∞
dw′p̃(w′)

∫ ∞

−∞
du e−iu(w+w′)e−βw′

=
∫ ∞

−∞
dw′p̃(w′) δ(w + w′) e−βw′ = eβwp̃(−w).

(4.21)

Equations (4.20) and (4.21) directly yield Tasaki’s quantum
FT (4.16). In Sec. V we will show that (4.20) is a special form of
Mazo’s lemma of LRT [37], extended to nonequilibrium states.
While this is a beautiful derivation, it is incomplete in two
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respects: it offers no connection between the work performed
and the excited states of the system and the randomization is
not carried out, without which Kubo correlation functions do
not converge. As indicated by van Kampen [38] and by the
present author [5,8,39], linear response theory is a “hollow
shell” until the physics for dissipative behavior is put in place.

Our microscopic developments in this section yielded the
quantum results with full reference to randomizing interac-
tions, either stemming from internal dissipative causes like
electron-phonon collisions or due to interactions with external
reservoir(s). However, the condition that the protocol ξ (t) does
not involve a variation of system operators is stringent.

2. Mesoscopic considerations

When intensive observables other than fields are varied in
the processes that drive the system far from equilibrium such
as shearing in an isothermal fluid or volume expansion in
a thermostatted system (see below), a mesoscopic treatment
becomes necessary since the operators corresponding to these
observables, {ai}, i = 1 , . . . , s, do not commute with each
other or the Hamiltonian. The operators must then be given
a certain leeway δai . Coarse-graining will erase cross-matrix
elements for different cells; the process is described in some
detail in Ref. [9]. A mesoscopic ME can now be derived, cf.
Ref. [8], Sec. 18.3; however, it will not be needed. Therefore,
suffice it to consider the connection

P (a1,t1|a0,t0) = P (γ1,t1|γ0,t0) χ (a), (4.22)

where χ (a) is the density of states; the symbol a represents
all variables of the process. We noted hereby that a given
initial state |γ0〉 engenders a given set of variables ai0, but
many states |γ1〉 correspond with the leeway (ai,ai + δai) .

The mesoscopic conditional probability densities for forward
and backward driving processes are, therefore, related by
combining (2.6) and (4.22),

P (a1,t1|a0,t0) = P̃ (a0,t0|a1,t1) [χ (a1)/χ (a0)]. (4.23)

We now need the initial distributions for both sides. They
are not simply the canonical distributions of the previous
section, since the a’s are subject to additional fluctuations.
In Ref. [9] we proved the canonical Boltzmann-Einstein
probability density function (pdf),

W (a0,t0) = ĉ−1
0 e−β[F (a0)−F 0

0 ], W (a1,t1) = ĉ−1
1 e−β[F (a1)−F 0

1 ],

(4.24)

where the nonsuperscripted F ’s are nonequilibrium Helmholtz
free-energy functions, while the ĉ’s are normalization con-
stants that vanish logarithmically. Multiplying both sides of
Eq. (4.23) with the initial pdf’s, some algebra yields

W2(a1,t1; a0,t0) [ĉ0χ (a0)/ĉ1χ (a1)] eβ[F (a0)−F (a1)]

= W̃2(a0,t0; a1,t1) e−β �F 0
; (4.25)

here ĉχ (a) = ��(a) is the accessible number of states in the
coarse-grained intervals. Using further the well-known result

��(a) = exp(S/kB), we established

W2(a1,t1; a0,t0) e−β [E(a1)−E(a0)] = W̃2(a0,t0; a1,t1) e−β �F 0
.

(4.26)

For the coarse-grained energy difference, the connection
with the (classical) work is immediate,

E(a1) − E(a0) = W(a0 → a1). (4.27)

Also, we have W2(a1,t1; a0,t0) = p [W(a0 → a1)] and simi-
larly for W̃2. This, then, gives the mesoscopic form of the
Crooks-Tasaki FT,

p(W)/p̃(−W) = exp[β(W − �F 0)]. (4.28)

Integrating both sides of Eq. (4.26),
∫∫

da1da0 · · · , the
mesoscopic Jarzynski equality appears,

〈exp(−βW(a)〉 = exp(−β �F 0). (4.29)

Further results along these lines are found in Ref. [9],
Sec. III.

A final note concerns isothermal compression or expansion
of a gas in a cylinder of cross section A. The average pressure
is 2/3 of the energy density for all ideal gases, BE, FD,
and Boltzmann. This suggests that a microscopic pressure
operator can be defined as a constant times the Hamiltonian
volume derivative A−1(∂H/∂ξ ), where ξ monitors the position
x of the piston. Hence, it might be tempting to consider a
work-related operator

∫
(∂HH/∂ξ )ξ̇ dt. However, ξ itself is

now an operator, noncommuting with the Hamiltonian and
subject to substantial fluctuations �ξ ; a mesoscopic approach
is, therefore, imperative, contrary to the treatment in Ref. [16].

B. Entropy fluctuation theorems

The entropy FT’s have been obtained in a number of
articles, cf. Refs. [20–25] and references therein; however,
except for the small contribution in Ref. [22], the derivations
are primarily based on phase-space or classical trajectory
considerations. Yet a number of papers deal with stochastic
dynamics [22,23,25,40] which, although not linked to the von
Neumann equation as point of departure (as in this paper)
can easily be adapted to a quantum mechanical viewpoint.
Even so, we gathered from a study of these papers that a
fully microscopic description, while allowing for a Gibbs
entropy, is not compatible with the concepts of entropy current
Iη and entropy production η. In fact, the entropy current
which serves for the exchange with a thermostat, will be
zero if based on microscopically reversible transition rates
W (γ ′|γ ) = W (γ |γ ′); see the form for Iη [Eq. (4.44)] below.
Thus, we must assume that a thermostatted process is described
by a mesoscopic ME, for which the “states” will be labelled by
σ rather than by a, as in our previous subsection, in order to be
in line with the basic papers on the subject [23,25]. We shall
omit these complications at first and give a brief microscopic
discussion for isolated systems.

1. The entropy FT for isolated systems

From the time-reversal symmetry (2.6), we find again the
microscopic two-point probability with Bayes’ rule,

W2(γ1,t1; γ0,t0) = W̃2(γ0,t0; γ1,t1) [p(γ0,t0)/p(γ1,t1)], (4.30)
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or also

W2(γ1,t1; γ0,t0) = W̃2(γ0,t0; γ1,t1) e−[ln p(γ1,t1) − ln p(γ0,t0)].

(4.31)

Now we remember that the nonequilibrium Gibbs entropy is
given by

SG(t) = −kBTrρ(t) ln ρ(t)

= −kB

∑
γ

p(γ,t) ln p(γ,t)

= −kB〈ln p(γ,t)〉nonequil. (4.32)

However, the Gibbs entropy does not fluctuate—as does
the Boltzmann entropy—but is an average over p(γ,t).
We therefore introduce a more microscopic nonequi-
librium entropy by S = −kB ln p(γ,t). Substituting this
into Eq. (4.31), we find

W2(γ1,t1; γ0,t0) = W̃2(γ0,t0; γ1,t1) e�S/kB, (4.33)

where �S = S(γ1,t1) − S(γ0,t0). Obviously, the distribution
function for �S is just the two-point probability function W2;
hence, we obtain the “transient entropy FT,”

p(�S)/p̃(−�S) = e�S/kB . (4.34)

Next, let us assume that the driven system has reached
a nonequilibrium steady state at time t0 from where on the
protocol will be time independent, so that p = p̃ . We then
find the “steady-state entropy FT,”

p(−�S)/p(�S) = e−�S/kB . (4.35)

This relationship provides a quantitative answer to
Loschmidt’s objections to Boltzmann’s irreversible H theorem:
decreasing entropy can be observed, but with an exponentially
low relative probability. This far-reaching quantitative state-
ment was first obtained in a limited way by Evans, Cohen, and
Morris in 1993 [41]. An asymptotic form will be presented
later.

2. Thermostatted systems

The general ME for a nonstationary process, randomized by
the nondeterministic interactions λV with the heat reservoir,
reads7

∂p(σ,t)

∂t
=

∑
σ ′ �=σ

[wσ ′,σ (t)p(σ ′,t) − wσ,σ ′(t)p(σ,t)]

≡ −Mσ [p(σ,t)], (4.36)

where Mσ is the function-space master operator and wσ,σ ′(t)
is the time-dependent transition rate from σ to σ ′; these rates
are connected to the microscopic rates of Sec. III B by

wσ,σ ′(t) = Wt (γ
′|γ ) χ (σ ′,t), wσ ′,σ (t) = Wt (γ |γ ′) χ (σ,t),

(4.37)

7We use the partial derivative, ∂/∂t , since p(σ ) stems from p(γ ) =
〈γ |ρ|γ 〉 in which ρ is a Schrödinger operator (not a Heisenberg
operator), cf. (3.24).

where χ is the density of states. Because of microscopic
reversibility for the W ’s, we have

wσ,σ ′(t)/wσ ′,σ (t) = χ (σ ′,t)/χ (σ,t). (4.38)

Next, we introduce the conditional probability,
P (σ1,t1|σ0,t0), related to the microscopic conditional
probability by P (γ1,t1|γ0,t0) χ (σ1,t1). Notice that a given
state σ0 is engendered by a given state γ0. We also write
��(σ ) = χ (σ ) δσ, being the accessible number of quantum
states. From the time-reversal symmetry property (2.6) we
find

P (σ1,t1|σ0,t0) = P̃ (σ0,t0|σ1,t1) [��(σ1,t1)/�� (σ0,t0)].

(4.39)

While the classical papers abundantly speak of the stochas-
tic “trajectory,” such notions are foreign to a quantum
description; only the initial and final states have meaning. If in
Eq. (4.36) the σ ’s referred to occupancies of sites in a lattice
gas, we could use the tenets of generation-recombination
noise theory or employ quantum field concepts. However, in a
mesoscopic description, a simpler approach will be justified.
So, we content ourselves here with a heuristic picture. The
two-point probabilities for the forward and backward protocol
are related by

W2(σ1,t1; σ0,t0) = W̃2(σ0,t0; σ1,t1)
(

exp{−[ln p(σ1,t1)

− ln p(σ0,t0)]}) (
��(σ1,t1)/��(σ0,t0)

)
.

(4.40)

As we noted before, the first factor is exp(�Ssyst/kB); the
second factor represents the nonequilibrium entropy flow to
the thermostat, exp(�Sflow/kB). Multiplying the two factors,
the arguments of the exponentials relate to the total entropy
difference, giving exp (�Stotal/kB). We thus obtain the more
complete transient entropy FT, analogous to Eq. (4.34),

p(�Stotal)/p̃(−�Stotal) = e�Stotal/kB . (4.41)

The word transient stems from the classical description, in
which the stochasticity is attributed to the succession of jumps
{wt (σ,σ ′)} of the classical path.

a. Nonequilibrium entropy. For a thermostatted system
the Gibbs entropy mentioned in subsection 1 is generalized
to SG[σ,t] = −kB

∑
σ p(σ,t) ln p(σ,t). Employing the ME

(4.36), this yields, for the time derivative in a straightforward
fashion,

∂SG[p(σ,t)]

∂t
= 1

2
kB

∑
σ,σ ′

[p(σ,t)wσ,σ ′(t)

−p(σ ′,t)wσ ′,σ (t)] ln

[
p(σ,t)

p(σ ′,t)

]

= kB

∑
σ,σ ′

p(σ,t)wσ,σ ′(t) ln

[
p(σ,t)

p(σ ′,t)

]
. (4.42)

Following Schnakenberg [42], this is now split into
an entropy production η and an entropy current Iη
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as follows:

η [p(σ,t)] = 1

2
kB

∑
σ,σ ′

[p(σ,t)wσ,σ ′(t) − p(σ ′,t)wσ ′,σ (t)]

× ln

(
p(σ,t)wσ,σ ′(t)

p(σ ′,t)wσ ′,σ (t)

)

= kB

∑
σ,σ ′

p(σ,t)wσ,σ ′(t) ln

(
p(σ,t)wσ,σ ′(t)

p(σ ′,t)wσ ′,σ (t)

)
,

(4.43)

Iη [p(σ,t)] = kB

∑
σ

p(σ,t)
∑
σ ′

wσ,σ ′(t) ln

(
wσ,σ ′(t)

wσ ′,σ (t)

)
.

(4.44)

Clearly, for the entropy production we have

∂SG/∂t + Iη = η � 0, (4.45)

by Klein’s lemma; in a driven system the equals sign will
rarely occur since the “states” σ,σ ′ mostly stem from different
HamiltoniansH [ξ (t)] of the protocol. On the contrary, entropy
current can have either sign.8 We now follow Ref. [25] in
associating ∂SG/∂t with the system’s entropy rate, contrary to
Ref. [23] wherein Iη plays that role.

As noted above, all these “entropy derivates” are still aver-
ages over p(σ,t). True nonequilibrium concepts are obtained
by omitting

∑
σ p(σ,t) · · · ; the corresponding quantities will

be denoted by ∂S/∂t, Iη, and η̂. Basically, this makes
sense only for Iη ≡ ∂Sflow/∂t since the others still contain
ln[p(σ,t)/p(σ ′,t ′)]; however, these can always be added on as
“boundary values.”

The integration of the system entropy,
∫

dt(∂Ssyst/∂t),
will lead directly to our previous result, �Ssyst =
−kB ln[p(σ1,t1)/p(σ0,t0)]. The integration of the entropy
current Iη, leading to �Sflow, is a far more complex problem.
The flow is caused by the interactions λV with the reservoir
but the mesoscopic flow is not quantifiable as an attribute
in a “quantum phase space.” In fact, it renders the process
to be non-Markovian in a statistical sense. One might think
of a lattice gas, the σ ′s being site occupancies, which are
triggered to change (flip) by the entropy current flowing across
a bond. The primary stochastic variable is Iη(t), with the σ ′s
being modulated random variables. The compound process
is best described in an abstract vector space R with the σ ′s
being represented by elements (kets) |σ 〉 and their dual space
elements (bras) 〈σ |. The space R will be the tensor product
of the space F for the flipping and the space C for the entropy
current Iη(t) , i.e., R = C ⊗ F . The generic operator of C is
the master operator M and the corresponding operator in R
will be denoted by M; we note that both operators are linear,
an advantage that is always there when we operate on the
many-body level.

The formal solution of the ME (4.36) and of its concomitant
equation of the same form for the conditional probability is

8We still note that (4.45) is the “quantum phase-space” equivalent
of Boltzmann’s H-function statement in μ space, ∂H/∂t + divJh =
ηh(r,t) � 0 .

given by

P (σ,t |σ ′,0) = 〈σ |T exp

[
−

∫ t

0
dϑM(ϑ)

]
|σ ′〉, (4.46)

with initial value δσ,σ ′ . Here the matrix element denotes the
following operation:

〈σ |M|σ ′〉 =
[[

∑

σ

]] (
wσ,σ ′ − wσ ′,σ

∑
σ

δσ,σ ′

)
, (4.47)

where the sum is omitted if it acts on a vector but included when
acting on a scalar; action on p(σ,t) yields the ME. The operator
form in projectors |σ 〉 〈σ | and pseudoprojectors |σ 〉 〈σ ′| is
found in Ref. [25], Eq. (2.4) [replace H by M and omit the
parentheses (σ ′,σ )]. These results will be used below.

3. Asymptotic entropy fluctuation theorem

We need more detail to find the generating function of the
entropy due to flow �Sflow = ∫ t Iηdϑ, whereby we assume
that the entropy flow is zero at t = 0. Also, henceforth we
set kB = 1 , i.e., entropy is expressed in dimensionless units
S/kB. In the space R this now yields

〈e−λ �Sflow〉>
=

∑
σ,σ ′

〈σ |T exp

[
−

∫ t

0
dϑMIη

(λ,ϑ)

]
|σ ′〉p(σ ′,0)〉; (4.48)

the subscript > refers, as before, to the forward protocol. The
matrix elements of the exponential in Eq. (4.48) should not
be misconstrued: one must expand the exponential and take
the matrix elements in each term, using matrix multiplication
for higher orders. Therefore, suffice it to consider the matrix
element in the first order. The operatorMIη

(λ,ϑ) can be found
from the compounding theorem [29] or from the entropy flow
(4.44). Including the variable exp(−λ) in the master expression
(4.48), we have, using only the first term of Eq. (4.47) with the
second term implied,

〈σ |MIη
(λ,ϑ)|σ ′〉

= −wσ,σ ′(ϑ) exp{−λ ln[wσ,σ ′(ϑ)/wσ ′,σ (ϑ)]}. (4.49)

The following symmetry property is the key to the FT to be
obtained,

〈σ |MIη
(λ,ϑ)|σ ′〉 = 〈σ ′|M̃Iη

(1 − λ,ϑ)|σ 〉, (4.50)

where the tilde—as always—refers to the backward process.
The proof is simple; we note,

〈σ |MIη
(λ,ϑ)|σ ′〉

= −wσ,σ ′(ϑ) exp{−λ ln[wσ,σ ′(ϑ)/wσ ′,σ (ϑ)]}
= −wσ ′,σ (ϑ) exp{(1 − λ) ln[wσ,σ ′(ϑ)/wσ ′,σ (ϑ)]}
= −wσ ′,σ (ϑ) exp{−(1 − λ) ln[wσ ′,σ (ϑ)/wσ,σ ′(ϑ)]}
= 〈σ ′|M̃Iη

(1 − λ,ϑ)|σ 〉. (4.51)

We shall now also include the system entropy,
exp(−�Ssyst), in the generating function. One then obtains
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the more complete expression,

〈e−λ �S〉> =
∑
σ,σ ′

(p(σ,t))λ〈σ |T exp

[
−

∫ t

0
dϑMIη

(λ,ϑ)

]
|σ ′〉(p(σ ′,0))1−λ〉, (4.52)

where �S = �Stotal . Using the symmetry property (4.50), as well as
∫ t

0 f (ϑ)dϑ = ∫ t

0 f (t − ϑ) dϑ, needed in the reverse
process, it is a minor task to obtain our main result; hence,

〈e−λ �S〉> =
∑
σ,σ ′

(p(σ,t))λ〈σ |T exp

[
−

∫ t

0
dϑMIη

(λ,ϑ)

]
|σ ′〉(p(σ ′,0))−λp(σ ′,0)〉

=
∑
σ,σ ′

(p(σ ′,0))1−λ〈σ ′|T exp

[
−

∫ t

0
dϑM̃Iη

(1 − λ,t − ϑ)

]
|σ 〉(p(σ,t))λ〉

=
∑
σ,σ ′

(p(σ ′,0))1−λ〈σ ′|T exp

[
−

∫ t

0
dϑM̃Iη

(1 − λ,t − ϑ)

]
|σ 〉(p(σ,t))−(1−λ)p(σ,t)〉. (4.53)

We thus established

〈e−λ �S〉> = 〈e−(1−λ) �S〉<. (4.54)

It remains to invert the generating function. The left-hand
side yields p(�S). For the right-hand side we have the inverse,
setting R ≡ �S,∫ c+i∞

c−i∞
dλ eλR

∫ ∞

0
dR′p̃(R′) e−(1−λ)R′

=
∫ ∞

0
dR′e−R′

p̃(R′)
∫ i∞

−i∞
dλ eλ(R+R′)

=
∫ ∞

0
dR′e−R′

p̃(R′) δ(R + R′)

= eRp̃(−R). (4.55)

Or, for the FT,

p(�S) = e�S p̃(−�S). (4.56)

Let us assume that the system reaches a steady state at some
point in time, so that p̃ = p, from where on there is a steady
entropy production η̂; then �S ∼ η̂ t . The asymptotic FT now
reads

p(η̂) ∼ e η̂tp(−η̂) (4.57)

or, more succinctly,

lim
t→∞

(
−1

t
ln

[
p(−η̂)

p(η̂)

])
= η̂, (4.58)

which is the form implied in most treatments, see, e.g.,
Kurchan [21] or Lebowitz and Spohn [23].

Finally, we should emphasize that the treatment in this
Sec. V B for the entropy FT fully takes account of the
irreversible character of the time evolution based on the
master equation; this in contrast to what superficially looks
like an equivalent derivation by Talkner et al. [18] for the
Crooks-Tasaki work FT discussed at the end of the Sec. V A,
which employs the evolution operator of the unperturbed von
Neumann equation.

V. OTHER ASPECTS

A. Nonequilibrium extension of Mazo’s lemma of linear
response theory

While we believe that the time-reversal symmetry property
of Eq. (2.6) is at the core of nonequilibrium fluctuation
theorems, there are some developments in standard linear
response theory that are worth extending to driven nonequi-
librium systems. As such, we will briefly consider what has
become known as Mazo’s lemma published in 1969 [37],
although the lemma may have been around in earlier years. The
essence of the lemma is that it relates forward-time correlation
functions to reverse-time correlation functions; it is necessary
for the derivation of the quantum version of the fluctuation-
dissipation theorem, cf. Kubo [36], which ties the response
function to the Fourier transform of equilibrium correlation
functions.

Thus, let C and D be two observables represented by
Schrödinger operators C and D. Their Heisenberg forms will
have a bracketed time dependence, whereby at t = 0 they
coincide with their Schrödinger equivalents. Mazo’s lemma
now reads

∫ ∞

−∞
dt e−iωtTr{ρeqC(t)D}

= e−βh̄ω

∫ ∞

−∞
dt e−iωtTr{ρeqDC(t)}. (5.1)

The proof, reproduced nearly verbatim in our book
(Ref. [8], subsection 16.3.3) is based on analytical extension
in the complex plane. Thus, starting with the right-hand side
and multiplying with the partition function, we have

∫ ∞

−∞
dt e−iωtTr{e−βHD C(t)}

=
∫ ∞

−∞
dt e−iωtTr{e−βHD eiHt/h̄Ce−iHt/h̄}

=
∫ ∞

−∞
dt e−iωtTr{eiHt/h̄Ce−iHt/h̄e−βHD}
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= eβh̄ω

∫ ∞

−∞
dt e−iω(t−ih̄β)Tr {e−βHeiH(t−ih̄β)/h̄

× Ce−iH(t−ih̄β)/h̄D}

= eβh̄ω

∫ ∞− ih̄β

−∞− ih̄β

dz e−iωzTr{ e−βHC(z)D}. (5.2)

There is analyticity on 0 � Imz � − h̄β , cf. Ref. [22], and
we make a contour integration along the real axis from −R

to + R, the line z = x − ih̄β, and the lines z = ±R − iy.

Noting that the contributions along the latter vanish for R →
∞ due to the mixing property, the final integral of Eq. (5.2)
can be replaced by the real axis integral eβh̄ω

∫ ∞
−∞ dt · · · and

(5.1) follows. Alternately, we can avoid analytical extension
and evaluate the trace in the representation |η〉 of H. For the
left-hand side of Eq. (5.1) one gets

lhs (5.1)

=
∑
η,η′

∫ ∞

−∞
dt e−iωtpeq(η) 〈η|C|η′〉ei(εη−εη′ )t/h̄〈η′|D|η〉

= 2πh̄
∑
η,η′

Z−1e−βεη 〈η|C|η′〉 〈η′|D|η〉 δ[h̄ω − (εη − εη′ )].

(5.3)

Observing the δ function, we substitute exp(−βεη) =
exp(−βεη′ ) exp(−βh̄ω); Eq. (5.3) then yields the right-hand
side of Eq. (5.1). In the notation of the present article, Mazo’s
lemma has given us the connection

∫ ∞

−∞
dt e−i ωtT [〈C(t)D(0)〉eq]

= e−βh̄ω

∫ ∞

−∞
dte−iωtT −1[〈D(0) C(t)〉eq]. (5.4)

In a driven system subject to the protocol ξ (t), the evolution
operator (2.2) can be approximated by a stepwise defined
function; the integral in Eq. (2.2) then yields a form as in
the middle member of Eq. (2.13), which we repeat here,

U (t,0) = T exp
n−1∑
i=0

[−iHξi
(ti+1 − ti)/h̄

]
; (5.5)

note that the superscript 0 on H has been left off and that we
begin at t ′ = 0 . For the forward protocol it is convenient to
start from a canonical equilibrium state after which we leave
the system isolated until time t ; after finishing the process,
we reconnect with the bath without doing work. Likewise,
for the reverse protocol, we start from the equilibrated state
at t and run the reverse process to time 0, after which we
reconnect with the reservoir. Mazo’s lemma is still valid
on each subinterval. However, when we reach a point of
discontinuity, the Hamiltonian and its eigenstates change. On
each subinterval, the Hamiltonian will, as before, be associated
with the preceding breakpoint, i.e., on ti � t < ti+1 it will be
denoted by Hi , with eigenstates |ηi〉. We can now use the
same algebra as before; additionally, we must multiply the
new result by the ratio of the partition functions, Z(η1)/Z(η0).

We thus obtain the extension of Mazo’s lemma,∫ ∞

−∞
dt e−iωtT [〈C(t)D(0)〉can]

= eβ(εη1−εη0) e−β [F 0(t1)−F 0(0)]

×
∫ ∞

−∞
dt e−iωtT −1[〈D(0) C(t)〉can]. (5.6)

We note that this result involved the δ function δ(|h̄ω| − εη1 −
εη0); for the implications, see footnote 5. Consequently, only
miniexcitations of the system are accomplished; the many
required repeats mean that, in practice, the system must be
“mostly” connected with the reservoir, as was also foreseen in
Crooks’ original paper [10].

The next question is in regard to what will happen to
these results after we carry out the perturbation procedure to
the evolution operator and, consequently, to all Heisenberg
operators. “Convergent LRT” has been considered by the
author and coworkers in the cited literature and is summarized
in the second part of Chapter XVI of Ref. [8]. Modified
response functions are found in subsection 16.10.4; correlation
functions can be done similarly. Since diagonal parts and
nondiagonal parts do not mix in the evaluation of the trace,
there will be separate diagonal and nondiagonal correlation
functions, which must be evaluated; we note hereby that the
diagonal parts involve the resolvent of the master superopera-
tor �d while the nondiagonal parts are based on the resolvent
of the interaction Liouville operator L0. The results obtained
from the diagonal correlation functions via this lemma should,
therefore, be identical to the results foreseen in the previous
sections of this article; the nondiagonal contributions, which
do not produce entropy, appear additionally and at times can
be significant.

B. Application to the characteristic function
of quantum mechanical work

In the present context, we consider once more “work” as
given by Eq. (4.12). Now in Eq. (5.6) let C(t) = exp[itHH (t1)/
h̄] and D(0) = exp[−itHH (0)/h̄] = exp[−itH/h̄]; we then
have ∫ ∞

−∞
dt e−iωtT 〈eit HH (t1)/h̄e−itH/h̄〉

= eβ(εη1−εη0)e−β[ F 0(t1)−F 0(0)]

×
∫ ∞

−∞
dt e−iωtT −1〈 e−itH/h̄eitHH (t1)/h̄〉. (5.7)

Substituting t = h̄u and letting εη1 − εη0 = w, this yields∫ ∞

−∞
du e−iwu〈eiuW〉>

= eβwe−β[F 0(t1)−F 0(0)]
∫ ∞

−∞
due−iwu〈e−iuW〉<, (5.8)

These integrals (÷2π ) are the inverse Fourier transforms of the
characteristic functions, giving p(w) and p̃(−w) , respectively.
Whence the Crooks-Tasaki FT naturally reemerges,

p(w)/p̃(−w) = exp [β(w − �F 0)]. (5.9)
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Next, let us write (5.8) as follows:

(1/2π ) e−βw

∫ ∞

−∞
du e−iwu〈eiuW〉>

= (1/2π ) e−β�F 0
∫ ∞

−∞
du e−iwu〈e−iuW〉<. (5.10)

With the Fourier transform of e−βw being 2π δ(u + iβ), the
inverse transform of (5.10) is by the Faltung theorem,∫ ∞

−∞
du′δ [iβ + (u − u′)] 〈eiu′W〉> = e−β�F 0〈e−iuW〉<

(5.11)

or,

〈e(iu−β)W〉> = e−β�F 0〈e−iuW〉< . (5.12)

This is actually a new fluctuation theorem involving the
characteristic functions for work in the forward and reverse
protocol. Setting u = 0 gives the quantum Jarzynski work-
energy theorem.

Altogether, Mazo’s lemma, extended to non-equilibrium
driven thermostatted systems, is very useful for quantum-
mechanical considerations involving time reversal.

VI. CONCLUSIONS

This article was motivated by two facts: First, there are
relatively few papers on fluctuation theorems (FT’s), as well as
work–energy relationships (W–E’s), that are strictly quantum
mechanical in origin. Second, the papers that do emanate
from quantum principles are based on the von Neumann
equation or on the “pure” Heisenberg picture, neither of
which predicts an increase in entropy, a fact already known
to Gibbs in the equivalent Liouville treatment of his time.
All FT’s and W–E’s of this nature cannot really be applicable
to driven nonequilibrium processes. We strongly believe that
such theorems are either wrong or, at best, incomplete. The
situation is similar as with LRT; LRT gets physical content
only after a “stochasticization” – (Kubo’s terminology) has
been applied. In the present context, it is often possible to do
the operations in the normal order, i.e., we incorporate the
necessary asymptotic requirements for the system’s evolution
by working in the interaction picture, thus dealing a priori with
internal interactions, as well as with the random exchange with
the reservoir(s). The need for such a modified treatment was
announced in our previous paper [9]. The “conversion” of
the von Neumann equation to the entropy-producing master
equation for the stationary case had been carried out by Van
Hove as early as 1955 [1] and later by Zwanzig, Fano, and the
author and collaborators [2–7]. The quest for convergent LRT
expressions had also been considered in some of these papers
and has been summarized in our recent book [8] in the second
part, dealing with nonequilibrium statistical mechanics.

The first part of this article reconsiders the derivation of
the ME in the interaction picture, but now for stationary as
well as nonstationary processes. In Sec. II we showed that the
time-reversal symmetry of the conditional probability for the
forward and backward protocol remains valid after an infinite-
order perturbational treatment of the evolution operator. In

Sec. III the master equation is newly derived, whereby we
obtained an explicit closed-form expression for the evolution
operator, not established hitherto, both for stationary and
nonstationary protocols. These derivations are rather tedious
but yield the basic tools necessary for a realistic convergent
treatment of FT’s and W–E’s.

The second part of this article, which, if needs be, can
be read without the details of the preceding sections, is then
set forth in Secs. IV A, IV B, and V. In Sec. IV A we
redo the quantum version of the Crooks-Tasaki FT but based
on our convergent entropy-producing evolution probabilities
with special emphasis on the meaning of “work,” which, in
our opinion, cannot be represented by a bounded quantum-
mechanical operator in the Hilbert space S of the Hamiltonian
but does have a unitary operator representation in S, in
agreement with a similar earlier view expressed in a recent
letter by Talkner, Lutz, and Hänggi [17].

In Sec. IV B we then dwell on the various treatments of
the entropy FT’s. We did not find a satisfactory derivation
based on true quantum concepts; most papers, in particular,
those of the earliest discoverers, Galavotti-Cohen, Kurchan,
Evans-Searles, Lebowitz-Spohn, and Harris-Schütz [20–25],
work in classical phase space or deal with “stochastic
trajectories,” concepts foreign to quantum statistics. Our
treatment is exclusively based on the convergent form of
time-reversal symmetry derived in the first part of this paper
and on probability aspects for the initial and final quantum
states of the protocols, with no reference whatsoever to the
“path” connecting these states. With the Gibbsian definition of
nonequilibrium fluctuating quantum entropy as −kB ln p(σ ),
where σ denotes a “mesoscopic state,” the various entropy
FT’s are easily obtained. The symmetry relations between the
generating functions of the forward and backward protocol
reappear, as well as the asymptotic entropy FT for the
stationary state, first formulated by Evans, Cohen, and Morris
in 1993 [41].

Altogether, we do not claim fundamentally new results,
except for the derivation of the full, nonstationary ME and
time-reversal symmetry based on the interaction picture, with
entropy-producing probabilities p(σ,t). We have looked on
what has transpired in the past two decades in the proliferation
of papers on FT’s and W–E’s with critical intent; we may
have been iconoclastic for some researchers, whose tenets on
work and heat we simply do not share. We have provided
new quantum-mechanical meaning for these FT’s, it being our
view that thermodynamics, no less than the standard model
in particle physics, is based on the quantum nature of the
universe.
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