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Effects of reservoir squeezing on quantum systems and work extraction
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We establish a quantum Otto engine cycle in which the working substance contacts with squeezed reservoirs
during the two quantum isochoric processes. We consider two working substances: (1) a qubit and (2) two coupled
qubits. Due to the effects of squeezing, the working substance can be heated to a higher effective temperature,
which leads to many interesting features different from the ordinary ones, such as (1) for the qubit as working
substance, if we choose the squeezed parameters properly, the positive work can be exported even when TH < TL,
where TH and TL are the temperatures of the hot and cool reservoirs, respectively; (2) the efficiency can be higher
than classical Carnot efficiency. These results do not violate the second law of thermodynamics and it can be
understood as quantum fuel is more efficient than the classical one.
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I. INTRODUCTION

The subject of quantum heat engine [1–5] has attracted
increasing attention since it was first reported by Scovil and
Schultz-Dubois [6]. The essential difference between classical
and quantum heat engine is that the working substance of
quantum heat engine is quantum systems, e.g., spin or coupled
spins [7–11], harmonic-oscillator systems [12], multilevel
system [13], or cavity quantum electrodynamical systems [14].
The main interests of these studies focus on whether it can
improve the efficiency of quantum heat engine beyond the
classical limit [15], how to better the work extraction [16,17],
and under which condition the positive work can be extracted
[9,17]. Among all of these studies, Scully and his collaborators
proposed a quantum heat engine based on cavity quantum
electrodynamical system and claimed that the work can be
extracted from a single heat bath via vanishing quantum
coherent [15]. This result shows that quantum coherent as
a quantum resource can better the work extraction.

In this paper, we consider another quantum resource,
squeezed reservoir. We construct a quantum Otto cycle based
on squeezed reservoir. We consider a single qubit and coupled
qubits as working substance, respectively. In the thermo-
dynamical cycle, the squeezed reservoir alters the steady
state of the working substance. As a result, some interesting
features appear; for example, the efficiency can be higher
than Carnot efficiency and even when TH < TL, positive work
can be done. Furthermore, we notice that entanglement is a
quantum resource, and quantum engine with entangled system
as working substance is an interesting topic [18–20]. Hence, it
is of interest to discuss the effects of entanglements in the two
steady states on the basic thermodynamical quantities during
the cycle, as we shall show the dependence of thermodynamics
quantities on the entanglement are changed strikingly by the
squeezing.

The paper is organized as follows. In Sec. II, we present
a general description of the cycle. In Secs. III and IV we
consider two cases, i.e., a qubit and two interacting qubits,
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as working substance and discuss the effects of squeeze on
the steady states of working substance and thermodynamics.
Conclusions are given in Sec. V.

II. GENERAL DESCRIPTION OF THE CYCLE

In our discussion, we consider a four-stroke quantum Otto
heat engine, which includes two quantum isochoric processes
(stages 1 and 3) and two quantum adiabatic processes (stages
2 and 4). Detailed performance of the cycle is described as
follows.

(i) Stage 1: The working substance with certain probability
Pi0 in each energy level contacts with a hot squeezed reservoir.
The squeezed reservoir can be described by a unitary squeezed
operators (with squeezed parameters r1 and φ1) acting on a
thermal equilibrium state at temperature TH . The working
substance under consideration can be a qubit with transition
frequency ω1 (see Sec. III) or two identical qubits with
transition frequency ω and coupling constant J1 (see Sec. IV).
During this stage, only heat is transferred due to the change
in occupation probabilities. Hence, this stage is a quantum
isochoric process [16,17,21]. The dynamics of the working
substance can be described by the Markovian master equation
in Lindblad form [22–24]. After enough time, the system will
fall into a steady state with the occupation probability Pi1 of
each energy level.

(ii) Stage 2: The system is isolated from the reservoir and
then undergoes a quantum adiabatic expansion process, in
which the transition frequency changes from ω1 to ω2 (for
one qubit) and coupling constant changes from J1 to J2 (for
two qubits). As a result, the energy structure is varied from Ei1

to Ei2. We assume that the expansion is slow enough so that
the probability in each eigenstate keeps unchanged according
to the quantum adiabatic theorem. No heat is transferred and
an amount of work is done by the system in this stage.

(iii) Stage 3: This stage is almost an inverse process of Stage
1. The working substance is coupled to a cold squeezed reser-
voir at temperature TL and squeezed parameters r2 and φ2 while
the energy structure is kept fixed. During this isochoric process,
the population of each energy level changes from Pi1 to Pi2,
and some heat is transferred but no work is done in this stage.
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(iv) Stage 4: The system is removed from the cold squeezed
reservoir and undergoes a quantum adiabatic contraction, in
which the transition frequency changes from ω2 to ω1 (for one
qubit) and the coupling constant changes from J2 to J1 (for
two qubits). Probability of each eigenstate Pi2 is maintained.
Accordingly, the energy structure is varied from Ei2 to Ei1,
and an amount of work is done during this stage on the system.

A condition Pi2 = Pi0 is needed for a complete cycle.
During the cycle, the heat transferred and the work done can
be obtained according to the quantum version of the first law
of thermodynamics [16,17,21]. In this interpretation, the heat
transfer is the change of occupations in the energy levels and
the work is the shift of the energy levels. As a result, the heat
absorbed, Q1, and released, Q2, and the net work in the whole
cycle are

Q1 =
∑

i

Ei1(Pi1 − Pi2), (1)

Q2 =
∑

i

Ei2(Pi2 − Pi1), (2)

and

W = Q1 + Q2 =
∑

i

(Ei1 − Ei2)(Pi1 − Pi2). (3)

Here, Q > 0 and Q < 0 correspond to absorption and release
of heat from and to the reservoir while W > 0 and W < 0
correspond to work performed by and on the quantum heat
engine. Generally speaking, for the mentioned quantum Otto
cycle, a restriction about the temperature TH > TL is necessary
to obtain positive work. Moreover, for a two-level system
(qubit) as working substance and the reservoir at thermal
equilibrium state, a more rigorous condition TH > TL

ω1
ω2

is
needed [17] in order to have positive work output, i.e., W > 0.
However, in the following discussion, we can see even when
TH < TL, positive work may be done by the system with
appropriate condition.

III. EXAMPLE 1: QUBIT SYSTEM

In this section, we consider a two-level system or qubit
as working substance. The Hamiltonian of a qubit is H1 =
1
2h̄ωσ z. We first consider the qubit interacts with the squeezed
reservoir, i.e., Stages 1 and 3 in the cycle. Assuming the
squeezed reservoir at temperature T and two squeezed pa-
rameters are r and φ, and the transition frequency is ω for the
qubit, the master equation of the qubit can be written as [22]
(in the interaction picture)

∂

∂t
ρ = γ (N + 1)

(
σ−ρσ+ − 1

2
σ+σ−ρ − 1

2
ρσ+σ−

)

+ γN

(
σ+ρσ− − 1

2
σ−σ+ρ − 1

2
ρσ−σ+

)
− γMσ+ρσ+ − γM∗σ−ρσ−, (4)

where N = n cosh 2r + sinh2 r , M = − 1
2 sinh 2reiφ(2n + 1).

Here, n = [exp( h̄ω
kT

) − 1]−1 is the Planck distribution giving
the number of thermal photons at temperature T with
frequency ω, γ denotes the coupled strength, and k is the
Boltzmann constant. After some simple calculations, we will
find that the squeezed phase φ does not affect the steady

state of the system and the steady state of the system can be
obtained as

ρ = 1

(2n+1) cosh 2r

×
(

n cosh 2r+ sinh2 r 0

0 n cosh 2r+ cosh2 r

)
. (5)

Now we return to our quantum Otto cycle. According to
Eqs. (1), (2), and (3), we have

Q1 = h̄ω1�Pe, (6)

Q2 = −h̄ω2�Pe, (7)

W = Q1 + Q2 = h̄(ω1 − ω2)�Pe, (8)

where

�Pe = sinh
[

1
2

(
h̄ω2
kT2

− h̄ω1
kT1

)]
2 cosh h̄ω1

2kT1
cosh h̄ω2

2kT2

+ sinh2 r1

cosh 2r1
tanh

h̄ω1

2kT1

− sinh2 r2

cosh 2r2
tanh

h̄ω2

2kT2
. (9)

The first term on the right-hand side of Eq. (9) coincides with
the usual results while the last two terms include the effects of
reservoir squeezing. Figure 1 exhibits the numerical example
for our quantum Otto heat engine. We plot the net work output
for such a cycle as functions of TL and TH when r1 = 1, r2 = 0,
and ω1

ω2
= 2. We focus on the isoline map (right figure). In this

isoline map, the TL − TH plane can be divided into three parts
by two lines: TH = TL and TH = ω1

ω2
TL. Below TL = TH is

the classical forbidden region. In this region, positive work
cannot be exported by both classical and quantum heat engine.
Between TL = TH and TH = ω1

ω2
TL is the quantum forbidden

region. In this region, positive work can be done by classical
heat engine but cannot by the quantum one. In Fig. 1, however,
we can see that in both of these two regions positive work can
be done due to the effect of squeezing.

We should emphasize that this interesting phenomenon
does not violate the second law of thermodynamics. This
can be understood as follows: for the state at the end of
each quantum isochoric process, i.e., Eq. (5), when r = 0 we
can recover the usual result ρth = 1

Z1
exp(−βH1) with Z1 =

Tr exp(−βH1), i.e., a two-level system at thermal equilibrium
with temperature T and transition frequency ω. However, when
r �= 0, the steady state can also be seen as a thermal equilibrium

TL

T
H

1 2 3 4

1

2

3

4

0

2

4 0

2

40

0.2

0.4

THTL

W

FIG. 1. (Color online) The work done by the two-level system
(in units of h̄ω2) as functions of TH and TL (in units of h̄ω2

k
). Other

parameters are chosen as r1 = 1, r2 = 0, and ω1
ω2

= 2.
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FIG. 2. (Color online) T eff/T as a function of squeezed parameter
r at different temperature.

state but at effective temperature T eff, which depends on the
environment temperature T and squeezed parameter r as

kT eff = h̄ω

ln
[

tanh2 r+exp( h̄ω
kT

)

1+tanh2 r exp( h̄ω
kT

)

] . (10)

T eff is always higher than T (see Fig. 2). Hence, at the end
of the quantum isochoric process, the effective temperature
of the working substance is higher than the reservoir. As
a consequence, when TH < ω2

ω1
TL, T eff

H may be higher than
ω2
ω1

TL and positive work can be done. This means that quantum
fuel is more efficient than classical one. Figure 2 shows the
dependence of T eff on the squeezed parameter r at different
temperatures. Two features can be observed from the figure.
First, squeezed parameters can always increase the effective
temperature of the qubit. Second, a lower reservoir temperature
is more efficient in increasing the effective temperature of
the qubit at the end of the quantum isochoric process. When
the reservoir temperature is large enough (compared to h̄ω),
T eff/T tends to cosh 2r , which is independent of the reservoir
temperature.

Due to the advantage of quantum fuel, the positive work
condition for our quantum Otto cycle is

tanh h̄ω1
2kT1

cosh 2r1
<

tanh h̄ω2
2kT2

cosh 2r2
, (11)

which is equivalent to T eff
H > ω1

ω2
T eff

L , and the efficiency is

ηq = W

Q1
= 1 − ω2

ω1
. (12)

This result is the same as the one obtained in Ref. [17], in
which the working substance is brought into some kind of
contact with two equilibrium heat baths, and it seems that
squeezing cannot improve the heat engine efficiency. However,
in Ref. [17], the positive work condition TH > ω1

ω2
TC is needed,

which leads to ηq lower than the Carnot efficiency ηc = 1 −
TL

TH
. In the present cycle, the positive condition is T eff

H > ω1
ω2

T eff
L .

Hence, when r1 > r2, ηq may be higher than ηc, i.e., squeezed
reservoir improves the efficiency. Examples can also be found
in Sec. IV.

IV. EXAMPLE 2: TWO-QUBIT SYSTEM WITH DIPOLE
INTERACTION

In this section we consider two interacting qubits as working
substance. The Hamiltonian of the system reads

H2 = 1
2h̄ω

(
σ z

1 + σ z
2

) + J (σ+
1 σ−

2 + σ−
1 σ+

2 ). (13)

Here, J is the exchange constant, J > 0 and J < 0 correspond
to the antiferromagnetic and the ferromagnetic cases, respec-
tively. In this paper, we only consider the antiferromagnetic
case, i.e., J > 0. The four eigenvectors and corresponding
eigenvalues for this Hamiltonian can be easily obtained as

|s1〉 = |00〉, E1 = −h̄ω,

|s2〉 = |11〉, E2 = h̄ω,

|s3〉 =
√

2

2
(|10〉 + |01〉), E3 = J, (14)

|s4〉 =
√

2

2
(|10〉 − |01〉), E4 = −J.

Similar to Sec. III, we first consider the steady state of the
system induced by squeezed reservoir at temperature T and
squeezed parameters r and φ. In the interaction picture, the
master equation for the system reads

∂

∂t
ρ = γ

∑
i=1,2

[
(Ni + 1)

(
X−

i ρX+
i −1

2
X+

i X−
i ρ − 1

2
ρX+

i X−
i

)

+Ni

(
X+

i ρX−
i − 1

2
X−

i X+
i ρ − 1

2
ρX−

i X+
i

)

− γMiX
+
i ρX+

i − γM∗
i X−

i ρX−
i

]
, (15)

where the two eigenoperators and the corresponding eigenfre-
quencies

X−
1 =

√
2

2
(|s1〉〈s3| + |s4〉〈s2|), h̄ω1 = h̄ω + J,

(16)

X−
2 =

√
2

2
(|s3〉〈s2| − |s1〉〈s4|), h̄ω2 = h̄ω − J,

satisfy [H2,X
±
i ] = ±ωiX

±
i and the coefficients are

Ni = n(ωi) cosh 2r + sinh2 r,
(17)

Mi = − 1
2 sinh 2reiφ[2n(ωi) + 1].

Here, n(ωi) = [exp( h̄ωi

kT
) − 1]−1. The derivation about this

equation is given in Appendix A. We can obtain the initial-state
independent steady state after some calculation as

ρ=
∑

i

Pi |si〉〈si |=

⎛
⎜⎜⎜⎜⎝

P2 0 0 0

0 1
2 (P3 + P4) 1

2 (P3 − P4) 0

0 1
2 (P3 − P4) 1

2 (P3 + P4) 0

0 0 0 P1

⎞
⎟⎟⎟⎟⎠ ,

(18)
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FIG. 3. (Color online) Effective temperature kT eff
ij as a function

of squeezed parameter r at different temperatures. Here we have set
kT = h̄ω.

where

P1 = (N1 + 1)(N2 + 1)

(2N1 + 1)(2N2 + 1)
,

P2 = N1N2

(2N1 + 1)(2N2 + 1)
,

P3 = N1(N2 + 1)

(2N1 + 1)(2N2 + 1)
, (19)

P4 = N2(N1 + 1)

(2N1 + 1)(2N2 + 1)
,

are occupation probabilities of the system. We can see
these probabilities are also φ independent. We should note
that when r = 0, the steady state Eq. (18) is equivalent to
the thermal equilibrium state ρth = 1

Z2
exp (−βH2), where

Z2 = Tr exp(−βH2). However, different from Sec. III, when
r �= 0, Eq. (18) is not a thermal equilibrium state. It is a
nonequilibrium steady state [25] and we cannot define a
unique effective temperature for this state [21]. But any two
energy levels |si〉 and |sj 〉 can have an effective temperature
defined as

kT eff
ij = Ei − Ej

ln Pj − ln Pi

. (20)

From the structure of Eq. (15), we have T eff
23 = T eff

41 ≡ T eff
b ,

T eff
24 = T eff

31 ≡ T eff
a . Figure 3 shows the dependence of T eff

a and
T eff

b on the squeezed parameter r in both weak and strong
coupling cases. We can see that when r = 0, the steady state
of the system is the thermal equilibrium state since T eff

a =
T eff

b = T , which confirms our foregoing analysis. When r �= 0,
reservoir squeezing increases the effective temperatures; T eff

a

and T eff
b are no longer equal. Moreover, in strong coupling

region (J = 2h̄ω), the effective temperatures are higher than
the one in weak coupling case. We discuss two thermodynamic
quantities for the steady state, the specific heat at constant
squeezing Cr = ( ∂U

∂T
)r , where U = 〈H 〉 = ∑

i PiEi is the
energy of the system, and von Neumann entropy S = −ρ ln ρ,
which is an extension of the Gibbs entropy to the quantum
case. The von Neumann entropy is proportional to the

0
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(∂
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FIG. 4. (Color online) The specific heat at constant squeeze and
von Neumann entropy as functions of r and T (in units of h̄ω/k). We
have chosen J = 0.5h̄ω.

thermodynamical entropy. The numerical results are shown
in Fig. 4. We can see from the figure that for fixed r , the
specific heat is a nonmonotone function of T , it first increases
as T increases and then decreases, and it approaches zero when
T → ∞. For fixed T , specific heat decreases as r increases
monotonously. The results for the entropy are different, i.e., S

increases as both T and r increase.
Another aspect of the system is the entanglement in the

steady state. We take concurrence [26] as the measure of the
entanglement. For the state given in Eq. (18), the concurrence
can be written as C = 2 max{ 1

2 |P3 − P4| − √
P1P2,0}. It is

of interest to study effects of entanglement in the two steady
states on the basic thermodynamics quantities in the cycle.
According to the expression for the entanglement, we can solve
the relation between the exchange constant J and concurrence
C. Based on this relation, we can obtain the dependence of
the thermodynamics quantities such as Q1, Q2, W , and η on
the two concurrences in the two steady states. The analytical
expressions for these dependences are too complicated even in
the case of h̄ω = 0. As a result, only the numerical results
are given in the paper. These can be found in Figs. 5, 6,
and 7. Here we have set r2 = 0 in all these figures, i.e.,
working substance interacts with a thermal reservoir in Stage
3. Several features can be seen from the figures. (1) When
h̄ω = 0, the isoline of efficiency is open curve. This means
the dependence of η on c1 and c2 is monotonic. In detail, the
efficiency increases monotonically with c1 for fixed c2 and
decreases monotonically with c2 for fixed c1. When h̄ω �= 0,
the isoline of efficiency becomes a quasiloop. This means the
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FIG. 5. (Color online) Variation of the efficiency η with the
entanglement of the two steady states at the end of stages 1 and
3 in an isoline map of efficiency for kT1 = 2kT2, h̄ω = 0, r2 = 0, and
(a) r1 = 0.2, (b) r1 = 0.5.
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FIG. 6. (Color online) Variations of (a) Q1, (b) Q2, (c) W , and
(d) η with c1 and c2 in isoline maps of efficiency for kT1 = 2kT2,
r1 = 0.2, r2 = 0, and h̄ω = kT2.

dependence of η on c1 and c2 is no longer monotonic. When
c1 is fixed, the efficiency η increases first as c2 increase and
then decreases, which indicates that there exists an optimal
c2, which leads to maximum value efficiency for fixed c1. The
situation is the same when c2 is fixed. (2) Due to the effects of
reservoir squeezing, the entanglements in the steady states in
Stage 1 have an upper bound and this upper bound decreases as
squeezed parameter r increases. This can be seen from Fig. 5,
where the possible region of c1 is smaller when r is larger.
(3) The acceptable ranges for positive work output always
c2 > c1, even when h̄ω is larger. This is quiet different from
previous results. Hence, c2 > c1 is a necessary condition for
positive work output. Moreover, we can see from the figure
that due to the squeezed reservoir in Stage 1, the efficiency
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FIG. 7. (Color online) Variations of (a) Q1, (b) Q2, (c) W , and
(d) η with c1 and c2 in isoline maps of efficiency for kT1 = 2kT2,
r1 = 0.2, r2 = 0, and h̄ω = 5kT2.

can reach about 0.8, which exceeds the Carnot efficiency 0.5
for the parameters kT1 = 2kT2. We should also emphasize that
it does not violate the second law of thermodynamics because
squeezed reservoir can heat the working substance to a higher
effective temperature although the effective temperatures
between different energy levels are not equal (see Fig. 3). We
can also see from the figures that when the squeezed parameter
r1 is small (for example r1 = 0.2) the phenomenon that the
efficiency exceeds the Carnot efficiency can only appear in
a very small range of region (see the inset of Figs. 6 and
7). However, when the squeezed parameter r1 is larger (for
example r = 0.5) the region in which the efficiency exceed
Carnot efficiency becomes larger. This is another evidence
that squeezed reservoir improves the efficiency.

V. SUMMARY

In this paper, we have studied the effects of reservoir
squeezing on the steady states of systems and constructed
a quantum Otto engine based on squeezed reservoirs. For
one qubit system, the steady state of the system is a thermal
equilibrium state with effective temperature higher than the
reservoir temperature. For multiqubit system, the steady state
is not a thermal equilibrium state because the effective
temperatures between any two energy levels are not equal.
However, all of these effective temperatures are higher than
the reservoir. As a result, the quantum Otto cycle may exhibit
some new features: positive work can be done even when
TH < TL and the efficiency can be higher than the Carnot one.
These interesting features do not violate the second law of
thermodynamics. It can be understood as quantum resources
such as coherent and squeezing can be used to extract work
more efficiently. The effects of entanglement for two qubits
quantum Otto heat engine are also discussed.
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APPENDIX: THE DERIVATION FOR THE MASTER
EQUATION

The derivation for the master Eq. (4) can be found in many
textbooks such as Refs. [22,24]. Here we only give a simple
introduction about the derivation of Eq. (15). Equation (4) can
also be obtained in a similar manner.

The interaction between the system and the environment
can be written as

V = σ+
1 B + σ−

1 B†. (A1)

Here we have assumed that only qubit 1 is interacting with the
reservoir. We can obtain the similar conclusion for qubit 2 or
both qubits interacting with the reservoir. B = ∑

k gkbk is the
operator of the reservoir. Defining the eigenoperators as given
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in Eq. (16) and their corresponding eigenfrequencies satisfying
[H2,X

±
i ] = ±h̄ωiX

±
i . According to the Hamiltonian of the

system and reservoir, the interaction V can be transformed
into an interaction picture, called V (t). The Redfield equation
in the interaction picture [27]

∂

∂t
ρ = −TrE

∫ t

0
{V (t),[V (τ ),ρS ⊗ ρE]}dτ (A2)

can be used, and after some calculations we have

∂

∂t
ρ =

∑
i=1,2

[
Ki

(
X−

i ρX+
i − 1

2
X+

i X−
i ρ − 1

2
ρX+

i X−
i

)

+Gi

(
X+

i ρX−
i − 1

2
X−

i X+
i ρ − 1

2
ρX−

i X+
i

)

−PiX
+
i ρX+

i − P ∗
i X−

i ρX−
i

]
. (A3)

In the derivation of the above equation, we have
used the rotating wave approximation and the relation
(X+

i )2 = (X−
i )2 = 0. The coefficients in the equation are

defined as

Ki = 2
∫ t

0
〈B(t)B†(τ )〉eiωi (t−τ )dτ

Gi = 2
∫ t

0
〈B†(τ )B(t)〉eiωi (t−τ )dτ (A4)

Pi = 2
∫ t

0
〈B(t)B(τ )〉eiωi (t+τ )dτ,

where 〈· · · 〉 denotes the average over the reservoir state ρE .
For the squeezed reservoir

ρE =
∏
⊗k

SkρEthS
†
k, (A5)

where ρEth is the thermal equilibrium state operator for the
reservoir at temperature T and Sk = exp( 1

2ξ ∗b2
k − 1

2ξb
†2
k ) is

the squeezed operator. Here, ξ = reiφ . After the standard
process for the calculation of Eq. (A4) [22,24,27], where
the Born-Markov approximation and the Weisskopf-Winger
approximation are used, we obtain

Ki = γ (Ni + 1), Gi = γNi, Pi = γMi, (A6)

and then we reach Eq. (15).
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