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Inverse freezing in a cluster Ising spin-glass model with antiferromagnetic interactions
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Inverse freezing is analyzed in a cluster spin-glass (SG) model that considers infinite-range disordered interac-
tions between magnetic moments of different clusters (intercluster interaction) and short-range antiferromagnetic
coupling J1 between Ising spins of the same cluster (intracluster interaction). The intercluster disorder J is
treated within a mean-field theory by using a framework of one-step replica symmetry breaking. The effective
model obtained by this treatment is computed by means of an exact diagonalization method. With the results
we build phase diagrams of temperature T/J versus J1/J for several sizes of clusters ns (number of spins in
the cluster). The phase diagrams show a second-order transition from the paramagnetic phase to the SG order at
the freezing temperature Tf when J1/J is small. The increase in J1/J can then destroy the SG phase. It decreases
Tf /J and introduces a first-order transition. In addition, inverse freezing can arise at a certain range of J1/J and
large enough ns . Therefore, the nontrivial frustration generated by disorder and short-range antiferromagnetic
coupling can introduce inverse freezing spontaneously.
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I. INTRODUCTION

Inverse transitions (ITs) are reversible transformations from
a more ordered phase (crystalline) to a less ordered one
(liquid or disordered phase) as the temperature diminishes.
This counterintuitive class of phase transition has recently been
the subject of several theoretical and experimental studies. The
main reasons for the increasing interest are recent experimental
findings showing ITs in a great variety of physical systems such
as gold nanoparticles [1], magnetic thin films [2], high-Tc

superconductors [3], ferromagnetism in semiconductors [4],
organic monolayers on a metal surface [5], polymers [6], and
others (see Ref. [7] and references therein). From a theoretical
point of view, the identification of mechanisms underlying ITs
is a quite important issue and it is one of the points investigated
in the present work.

To improve the theoretical understanding of ITs, it is
useful to study models able to produce this phenomenon at
least qualitatively. In this sense, some spin-1 (sz = −1,0,1)
particle models have been adopted, with interesting results.
For instance, the Blume-Capel model [8] can describe an
IT (inverse melting) from the ferromagnetic order to the
paramagnetic (PM) phase as the temperature decreases since
an entropic advantage of the interacting states (sz = 1, − 1)
is assumed [7]. In other words, the IT arises if the sz = 0
states controlled by the crystal lattice field D are energetically
favored at the same time that an entropic advantage of
interacting states is adopted. Another important contribution
has been obtained from mean-field studies of the strongly
disordered Ghatak-Sherrington model, in which the IT known
as inverse freezing (IF) appears spontaneously. This means
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that a re-entrant transition from the spin-glass (SG) phase to
the PM one is found in phase diagrams of the temperature
versus D [7,9,10]. Particularly, the presence of frustration
introduced by disorder has been suggested as a mechanism
important to the existence of IF [7,9,10], but only disorder
without frustration has not been indicated as essential for the
spontaneous occurrence of ITs [11].

In addition, Monte Carlo investigations of the disordered
Blume-Capel model in three dimensions have also found
spontaneous IF for a certain range of D [12]. In this case, the
authors indicate that the low-temperature PM phase presents
a high number of sz = 0 sites, in contrast to the higher
temperature PM phase determined by completely disordered
interacting spin states. These results suggest that IF can occur
as a consequence of the simultaneous presence of frustration
and noninteracting spin states. The same conclusions are also
obtained by recent studies in fermionic SG models [13–15].
In the fermionic case the magnetic dilution caused by the
presence of empty and double-occupied sites (nonmagnetic
sites) play the role of sz = 0 states.

Recently, numerical studies of a two-dimensional random-
bond Ising model have shown that weak disorder and frustra-
tion can spontaneously introduce an IT from the ferromagnetic
to the PM phase [16]. However, in contrast to previous
analyses, this result is obtained by considering Ising spins.
Therefore, one can raise the following issues: Is a strongly
disordered SG model with Ising spins able to exhibit IF? and
Is the presence of sz = 0 spin states really necessary for the
existence of IF?

To answer these questions, the present work studies
a strongly disordered Ising SG model within a cluster
formulation, in which infinite-range intercluster disordered
interactions are considered with short-range AF interactions
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J1. The short-range interactions are only between Ising
spins belonging to the same cluster (intracluster interaction).
Therefore, the intercluster disorder can introduce frustration,
while the intracluster AF interaction can give rise to a decrease
in the effective magnetic moment of clusters without long-
range AF order. In other words, the disordered interactions
between the magnetic moments of clusters can be affected by
the intracluster AF interaction. In particular, the increase in J1

can favor a scenario in which the total magnetic moment of
clusters become very small. As a consequence, it can result in
a PM phase characterized by a large number of clusters with
zero or small magnetic moments forming a PM phase with
small intercluster interaction.

This cluster SG model has initially been proposed by
Soukoulis and Levin [17] to improve the thermodynamic
description of strongly disordered SG models by introducing
short-range interactions within a cluster mean-field treatment
of quenched disorder. Their analyses were done within the
replica symmetric approximation with both ferromagnetic
[17,18] and antiferromagnetic short-range interactions, in
which the behavior of the specific heat cv and magnetic
susceptibility χ were discussed. However, for the AF case,
the authors presented results for very strong AF coupling
between classical Heisenberg spins in rather specific cluster
configurations, in which a small number of spins in each
cluster ns is considered (ns � 6) [17]. In contrast, in this work,
the cluster SG model is studied in the range of weak and
medium AF coupling with Ising spin, which has not yet been
explored. In addition, the mean-field treatment of the disorder
is improved by adopting one-step replica symmetry breaking
(1S-RSB). We also use a simple square lattice geometry for the
spins in each cluster, which can be greater than 6 (ns � 20).
Furthermore, the results obtained are interpreted in the context
of the IF problem.

II. GENERAL FORMULATION

Therefore, the present study considers an infinite-range
cluster Ising SG model described by

H = −
Ncl∑
νλ

JνλS
z
νS

z
λ −

Ncl∑
ν

(
ns∑
ij

J 0
ij S

z
iνS

z
jν

)
, (1)

where Ncl and ns represent the number of clusters and the
number of spins in each cluster, respectively. In Eq. (1),
Sz

ν corresponds to the magnetic moment of cluster ν (Sz
ν =∑ns

i=1 Sz
iν), while Sz

iν is the Ising spin of site i of cluster ν.
The intercluster coupling Jνλ is a random variable given by
a Gaussian distribution with variance 16J 2/Ncl and mean 0.
J 0

ij is the intracluster exchange interaction between Ising spins
belonging to the same cluster. We consider here a square lattice
geometry and a nearest-neighbor antiferromagnetic coupling
J1 within the clusters.

The averaged free energy is obtained within the replica
method formalism: βf = limn→0(〈Zn〉Jνλ

− 1)/n, where
〈. . .〉Jνλ

means the average over the quenched disorder of Jνλ,
and Zn is the replicated partition function. Performing the
average over Zn and using Hubbard-Stratonovich transforma-
tions, which introduce the replica matrix elements {Q}, the

free energy per cluster is obtained as

βf

Ncl
= lim

n→0

1

n

{
β2J 2

2

∑
αγ

Q2
αγ − ln Tr exp

[
β

∑
ν

×
( ∑

α

∑
ij

Jij S
zα
iν Szα

jν +
∑
αγ

JQαγ Szα
ν Szγ

ν

)]}
, (2)

where α and γ are replica indices. In the thermodynamic
limit (Ncl → ∞), the functional integrals over Qαγ have been
evaluated by the steepest descent method, which gives

Qαγ = 〈
Sα

ν Sγ
ν

〉
and Qαα = 〈

Sα
ν Sα

ν

〉
, (3)

where 〈. . .〉 means the average over the effective model
represented by Eq. (2). The parameter Qαγ is related to the
cluster SG order parameter and the diagonal replica Qαα is
associated with the expectation value of the cluster magnetic
moment magnitude [17].

In the present work, the problem is analyzed within Parisi’s
scheme of 1S-RSB [19], in which the replica matrix is
parametrized as R = Qαα and

Qα,γ =
{
Q1 if I (α/a) = I (γ /a),
Q0 if I (α/a) �= I (γ /a), (4)

where I (x) gives the smallest integer which is �x. The
parameter a represents the size of diagonal blocks of the
1S-RSB solution. In this approximation, the cluster SG phase
occurs when Q0 �= Q1. Therefore, the 1S-RSB free energy is
obtained as

βf

Ncl
= β2J 2

4

[
R2 + a

(
Q2

1 − Q2
0

) − Q2
1

]
− 1

a

∫
Dz ln

∫
Dv[K(z,v)]a, (5)

where K(z,v) = ∫
DξTre−βHef and

Hef = −
∑
ij

J 0
ij S

z
iνS

z
jν − hSz

ν (6)

represents the effective one-cluster model with

h = J
√

(Q1 − Q0)v + J
√

(R − Q1)ξ + J
√

Q0z, (7)

and
∫

Dx = ∫ ∞
−∞ dx ex2/2√

2π
(x = z, v, or ξ ). The parameters

Q1, Q0, R, and a are obtained by minimizing the free
energy given by Eq. (5) (see the Appendix). The magnetic
susceptibility χ and the entropy s are also derived from
Eq. (5): χ = β(R − Q1 + a(Q1 − Q0)) and s = − ∂f

∂T
.

III. RESULTS AND DISCUSSION

Numerical results are obtained by solving the effective
one-cluster problem [Eqs. (5)–(7)]. We consider clusters of
ns Ising spins on a square lattice. The intracluster interaction
J 0

ij is antiferromagnetic (J 0
ij = −J1) and only between nearest

neighbors. The intercluster disordered interaction is adjusted
by J , where the temperature T and J1 are given in units
of J . Particularly, the SG order is characterized by the RSB
solution (Q1 − Q0 > 0). This means that Tf is located when
Q1 − Q0 becomes different from 0. The PM phase appears
in the region where Q0 = Q1. For instance, Fig. 1 exhibits
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FIG. 1. Order parameters and susceptibility as functions of (a)
temperature (for low J1/J ) and (b) short-range antiferromagnetic
interaction (for low T/J ). Results are for ns = 8. Inset in (a): Order
parameters for large J1/J .

the normalized order parameter behavior (q0 = Q0/n2
s , q1 =

Q1/n2
s , r = R/n2

s ) for a typical case with ns = 8. In Fig. 1(a),

the SG phase is found below Tf within the RSB region at a low
value of J1/J , but only the PM phase occurs at higher values
of J1/J [see inset in Fig. 1(a)]. The effects of increasing J1 can
be better analyzed in Fig. 1(b), in which the order parameters
present a discontinuous jump at the SG/PM phase transition
(SG/PM first-order transition) at lower temperatures. Here
it is worthwhile discussing the 1S-RSB approach. It locates
the PM/SG second-order transition correctly. The 1S-RSB
ansatz is also suitable for locating the PM/SG first-order
boundary. In particular, there is a very small difference between
results obtained with replica symmetry and those obtained
with the 1S-RSB concerning the location of the first-order
boundary. This result is already known from other works that
use the replica method [7,9,11]. Therefore the 1S-RSB can
give reliable results for our purpose, which is to build phase
diagrams.

The parameter r is also very important in the present study.
It can be interpreted as the average of total magnetic moment
of clusters. As one can see in Fig 1, r depends on T/J and
J1/J . r decreases when J1/J increases and it is very small
within the PM phase. This behavior is discussed in more detail
in Fig. 4. The magnetic susceptibility χ is also illustrated in
Fig. 1. It presents a cusp at Tf and is weakly dependent on
J1/J and T/J in the whole RSB phase.

The discussion above can also be applied to phase diagrams
of T/J versus J1/J . For this purpose, Fig. 2 shows phase
diagrams for a set of cluster sizes ns , in which ns is even.
They exhibit a general characteristic: the PM phase at high
temperatures suffers a continuous transition to the SG order
at Tf for low intensities of short-range antiferromagnetic
coupling. As J1/J increases, Tf /J gradually decreases until a
tricritical point, where the transition becomes first order. Near
the tricritical point, the behavior of the phase transition changes
with increasing value of ns : An SG-PM re-entrant transition
can appear for high enough values of ns (see, for example,
results with ns � 8). The SG/PM re-entrance is observed
as the temperature decreases for a certain range of J1. This

(a) (b) (c) (d)

FIG. 2. Phase diagrams of T/J versus J1/J for several cluster sizes ns with even values of ns . Solid and dashed lines represent second-
and first-order transitions, respectively. (a) Shapes of the clusters, where ns = 4, 8, 12, 16, and 20 are presented from top left to bottom right.
Dotted lines correspond to the temperatures where χ presents maximum values. (b–d) Details of the first-order transition, where dot-dashed
lines are the PM and SG spinodals. Inset in (a): Entropy as a function of temperature for J1/J = 0.803.
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(a) (b) (c) (d)

FIG. 3. Phase diagrams of T/J versus J1/J for odd ns . The same line convention as in Fig. 2 is used. (a) Shapes of the clusters with 5, 7,
9, and 15 sites; ns increases from top left to bottom right.

re-entrance is related to the IF as shown by the entropy results
in the lower inset in Fig. 2(a), which shows that the entropy of
the PM phase at low temperatures is lower than the SG one.
Particularly, the re-entrance becomes more pronounced as ns

increases. Furthermore, the difference between the transition
lines of two successive ns becomes smaller for larger ns .
Therefore, one can expect consistency of these results when
increasing the cluster size. In addition, the same qualitative
results were also obtained for other shapes of clusters such as
those presented in Refs. [17,18]. In other words, the presence
of short-range antiferromagnetic interaction in a cluster SG
problem can diminish Tf , introducing a first-order re-entrant
SG/PM transition.

The behavior of transition lines described above is also
observed for an odd number of spins in each cluster (see
Fig. 3) at small and intermediate values of J1/J . However,
there is an important difference in the phase diagrams with
odd versus even ns at strong antiferromagnetic intracluster
interactions. For the case with odd ns , the ground state is

 0
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FIG. 4. Magnetic susceptibility χ and order parameter r as a
function of T/J for higher values of J1/J .

SG for larger J1/J . Nevertheless, the Tf at higher J1/J goes
towards lower temperatures as ns increases. This suggests that
the transition lines for even and odd ns converge at the same
location in phase diagrams for clusters of large enough size.

Figure 4 exhibits the cluster magnetic moment r and
magnetic susceptibility χ , which allow one to discuss the
low-temperature cluster PM phase at high values of J1/J .
For instance, the intensity of r decreases as J1/J increases
[see Fig. 4(a)]. At the same time the long-range intercluster
coupling is weakened when r decreases, which can prevent the
occurrence of the SG phase (see the Appendix) at high J1/J

values. In addition, the increase in J1/J is able to introduce a
low-temperature cluster PM phase with a very low magnetic
moment, in which a high number of nonmagnetic clusters with
total moment Sz = 0 is found. This means that the intracluster
spins can freeze into perfect AF zero-moment states. As a
consequence, no interaction between net cluster moments
(no intercluster interactions) will give any long-range ordered
states. Therefore, it is the source of the entropy decrease in the
cluster PM phase compared to the high temperature one. In
fact the model is not spin-1, but for strong J1, the existence of
nonmagnetic clusters leads to effective nonmagnetic clusters,
and the model is similar to a spin-1 model, but at the
cluster level. The increase in cluster size also favors the AF
short-range coupling, reducing the order parameter r as shown
in Fig. 4(b). This behavior can also strongly affect Tf /J (see
the Appendix). However, for ns odd, the total moment is never
compensated inside the clusters, even at high values of J1/J ;
in this case, the SG phase can occur at very low temperatures
even with high values of J1/J .

The magnetic susceptibility also reflects the different be-
haviors of the cluster PM phase at low and high temperatures.
For example, χ presents a maximum that is displaced to higher
temperatures as J1/J increases [see Fig. 4(c)]. The same effect
is observed with increasing cluster size as shown in Fig. 4(d).
However, for odd values of ns the ground state can be SG,
which explains the increase in χ at very low temperatures.
The location of the χ maximum is also displayed in the phase
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diagrams in Figs. 2(a) and 3(a) by dotted lines. In this particular
case, one can see that the effects of short-range AF interactions
on the cluster PM phase are enhanced with increasing J1/J or
ns . In other words, the AF character within the clusters can be
favored by J1/J and mainly by ns . Particularly, for ns in the
thermodynamic limit, one can hope that the system presents
the pure AF order without disorder, as expected.

IV. CONCLUSIONS

To summarize, in the present work, we have studied the
IF transition by adopting an Ising cluster SG model with
antiferromagnetic short-range interactions J1 and infinite-
range disordered interactions J . Within the 1S-RSB, the results
indicate IF in a range of J1/J for a large enough cluster size.
Particularly, the low-temperature PM phase is characterized by
clusters with a low magnitude of magnetic moment, which are
obtained when short-range AF interactions between Ising spins
within the clusters are large. Therefore, frustration introduced
by disorder and a PM phase with a low cluster magnetic
moment are key elements to produce IF spontaneously in the
present study. These elements can be produced by strongly
disordered clusters of Ising spins with short-range antiferro-
magnetic interactions. There is another important issue to be
studied with this disordered cluster formalism. It is related to
the presence of intracluster geometric frustration introduced
by considering next-neighbor AF interactions such as the
so-called J1-J2 model (see, e.g., Ref. [20] and references
therein). There is clear evidence that trivial randomness alone
(unable to generate frustration) [21] is not enough to create the
necessary conditions to produce IF [11]. This specific point is
currently under investigation.
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APPENDIX: ORDER PARAMETERS

The 1S-RSB order parameters are obtained from the free
energy, Eq. (5), using the saddle point condition:

Q0 =
∫

Dz

[∫
Dv[K(z,v)]a−1

∫
Dξ

〈
Sz

ν

〉
Hef∫

Dv[K(z,v)]a

]2

, (A1)

Q1 =
∫

Dz

∫
Dv[K(z,v)]a−2

( ∫
Dξ

〈
Sz

ν

〉
Hef

)2∫
Dv[K(z,v)]a

, (A2)

with

R =
∫

Dz

∫
Dv[K(z,v)]a−1

∫
Dξ

〈
Sz

νS
z
ν

〉
Hef∫

Dv[K(z,v)]a
, (A3)

a2 β2J 2

4

(
Q2

1 − Q2
0

) = −
∫

Dz ln
∫

Dv[K(z,v)]a

+ a

∫
Dz

∫
Dv[K(z,v)]a ln K(z,v)∫

Dv[K(z,v)]a

(A4)

and 〈. . .〉Hef = Tr . . . exp(−βHef).
In order to locate the second-order PM/SG phase transition,

we can expand Eqs. (A1), (A2), and (A3) in powers of Q0 and
Q1. This procedure presents lengthy calculations that allow us
to express the RSB order parameter δ = Q1 − Q0 and R (for
T close to Tf ) as

δ ≈ β2J 2

K2
0

( ∫
dξ

〈
Sz

νS
z
ν

〉
H 0

ef

)2

δ + O(δ2), (A5)

R(J1/J,ns) ≈
∫

Dξ
〈
Sz

νS
z
ν

〉
H 0

ef

K0
+ O(δ2), (A6)

where K0 = ∫
Dξ exp(−βH 0

ef) and H 0
ef is obtained from

Eq. (6) with Q0 = Q1 = 0. Therefore, Tf can be located using
Eqs. (A5) and (A6): Tf /J = R(J1/J,ns). This indicates that
the location of Tf /J also depends on the intensity of the total
magnetic moment of clusters R.
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