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Thermodynamic properties of a Kerr nonlinear blackbody
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Within the framework of quantum field theory, we present the superfluid state of photons in a blackbody whose
interior is filled by a Kerr nonlinear crystal. The thermodynamic properties of a Kerr nonlinear blackbody are
investigated. At the transition temperature, the Gibbs free energy of the two phases is continuous but the entropy
density of the two phases is discontinuous. Hence, there is a jump in the entropy density and this leads to a latent
heat density. The photon system undergoes a first-order phase transition from the normal to the superfluid state.
The transition temperature is characteristic of a concrete crystal. The entropy density and specific heat capacity
are monotonically increasing functions of the temperature but are monotonically decreasing functions of the Kerr
nonlinear coefficient.
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I. INTRODUCTION

Nowadays it is recognized that superfluidity is a common
quantum property of many-particle systems in which the
number of particles is conserved. In 1911, Kamerlingh Onnes
at the University of Leiden discovered that the electrical
resistance of metal mercury fell sharply at about 4 K and
below this temperature the mercury exhibited no resistance
whatsoever [1]. Onnes realized that below 4 K electrons in
the mercury pass into a new state called the superconducting
state. In 1938, P. L. Kapitza at the Institute for Physical
Problems discovered that at a temperature of 2.17 K liquid
helium undergoes a second-order phase transition and below
this temperature liquid helium flows without friction through
narrow capillaries [2]. Kapitza realized that at temperatures
lower than the λ point liquid helium passes into a new phase
called the superfluid phase. In 1995, Cornell and Wieman
observed Bose-Einstein condensation in a vapor of rubidium-
87 atoms at temperatures of about 170 nK [3]. In such a
condensate the atoms can flow without friction, and so the gas
is a superfluid. At temperatures of about 10 nK, by increasing
the intensity of the laser beams in an optical lattice, Greiner
et al. can reversibly switch a gas of rubidium-87 atoms from a
superfluid to an insulating phase [4].

Since the electromagnetic field is a quantum system of
photons, the electromagnetic field in certain nonlinear media
can exhibit the superfluidity. As shown in Fig. 1, the model
of a Kerr nonlinear blackbody was described in Ref. [5].
In Ref. [5] we have shown that the photon system in a
Kerr nonlinear blackbody can be in a superfluid state. Kerr
nonlinear crystals must be centrosymmetric and can possess
a nonvanishing third-order susceptibility. More importantly
the third-order response leads to the intensity-dependent
refractive index, which is the basis of most nonlinear optical
switching devices. The crystal studied is determined as a
specific crystal with a diamond structure, such as C. In an
earlier work [6,7], we have shown that a photon blackbody
field in Kerr nonlinear crystal is a squeezed thermal radiation
state. In a previous work [8,9], we have studied the radiation
properties of a Kerr nonlinear blackbody. In the present paper,
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we shall investigate the thermodynamic properties of a Kerr
nonlinear blackbody. Inasmuch as such thermodynamics was
not explored previously, new features that are worthy of
exploration are pointed out here.

Within the framework of quantum field theory, we show
that the bare photons in blackbody radiation can sense an
attractive effective interaction by exchange of virtual nonpolar
phonons. Such an interaction leads to a photon superfluid
state, in which the bare photons with opposite wave vectors
and helicities are bound into pairs and single, unpaired bare
photons are transformed into a new kind of quasiparticle,
the nonpolariton. The photon superfluid state possesses some
peculiar thermodynamic properties. First, the Gibbs free
energy of normal and superfluid states is identically equal
to zero. Therefore, at the transition temperature, the Gibbs
free energy of the two phases is continuous. Second, at the
transition temperature, the entropy density of the two phases
is discontinuous. Hence, there is a jump in the entropy density
and this leads to a latent heat density. Third, the photon system
undergoes a first-order phase transition from the normal to the
superfluid state. The transition temperature is characteristic
of a concrete crystal. Fourth, the entropy density and specific
heat capacity are monotonically increasing functions of the
temperature but are monotonically decreasing functions of the
Kerr nonlinear coefficient. The predicted properties might be
verified in present-day physics laboratories.

The remainder of this paper is organized as follows.
Section II describes some properties of a normal blackbody. In
Sec. III, we diagonalize the Hamiltonian of the photon system
in a Kerr nonlinear blackbody. Section IV computes fundamen-
tal thermodynamic functions of a Kerr nonlinear blackbody. In
Sec. V, we describe the thermodynamics of phase transitions
of a Kerr nonlinear blackbody. The comprehensive discussion
is given in Sec. VI.

II. NORMAL BLACKBODY

A. Quantization procedure

The electromagnetic field is composed of mutually exciting
electric and magnetic fields E and B. The electromagnetic field
is a transverse field, propagates in vacuum with the speed c of
light, and satisfies the Maxwell equations. Since there are no
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FIG. 1. A Kerr nonlinear blackbody: a rectangular Kerr nonlinear
crystal enclosed by perfectly conducting walls and kept at a constant
temperature; there is a very small hole in a wall.

free charges in the blackbody, we can set the scalar potential of
the electromagnetic field to zero. Hence, the electromagnetic
field can be characterized by a single vector potential A, which
satisfies the Coulomb gauge ∇ · A = 0. Consequently, the
electric and magnetic fields are given by

E = −∂A
∂t

, B = ∇ × A. (1)

The Hamiltonian of the electromagnetic field reads as

Hem =
∫

dr
(

ε0

2
E2 + 1

2μ0
B2

)
, (2)

where ε0 and μ0 are the permittivity and the permeability of
vacuum, respectively, with ε0μ0 = c−2.

Now we need to quantize the electromagnetic field. Since
plane-wave modes constitute a complete orthonormal set, they
can be used for the expansion of the electromagnetic field in
any arbitrary geometry. The blackbody occupies a volume V .
In terms of the creation and annihilation operators a

†
kσ and

akσ of circularly polarized photons with wave vector k and
helicity σ = ±1, the vector potential of the electromagnetic
field is expanded as

A(r,t) =
∑
kσ

(
h̄

2V ε0ωk

)½

× [
akσ (t)ekσ eik·r + a

†
kσ (t)e∗

kσ e−ik·r], (3)

where h̄ is Planck’s constant reduced, ωk = c|k| is the
angular frequency of a photon, and ek,±1 are two orthonormal
circular polarization vectors perpendicular to k. On substi-
tuting Eqs. (1) and (3) into Eq. (2), the Hamiltonian of the
electromagnetic field is quantized as

Hem =
∑
kσ

h̄ωka
†
kσ akσ , (4)

where the zero-point energy terms are dropped. Equation (4)
represents the Hamiltonian of the system of noninteracting
photons in a normal blackbody.

Nkσ = a
†
kσ akσ are known as the number operators of

photons. The number operators have the eigenvalues nkσ =
0,1,2, . . .. Since the number operators commute with Hem,
the number of photons in each mode kσ is constant in time.
The number operators form a complete commuting set and

simultaneous eigenstates of this set are given by

|{nkσ }〉 =
∏
kσ

[
1√
nkσ !

(a†
kσ )nkσ

]
|0〉, (5)

where |0〉 is the vacuum state of the electromagnetic field.
State vector (5) is symmetric under the interchange of any two
creation operators, consistent with the Bose-Einstein statistics.
Since the number of photons is variable, the chemical potential
of the photon system is null. Consequently, Hem is a grand
canonical Hamiltonian.

B. Thermal radiation state

State vector (5) signifies a multimode number state of
photons, which is a pure state and, therefore, far from thermal
equilibrium. However, the electromagnetic field within a
blackbody is in thermal equilibrium [10]. Such equilibrium
is established via the continual absorption and emission
of photons by matter. An electromagnetic field in thermal
equilibrium is called blackbody radiation or thermal radiation
and characterized by a definite temperature T . The photons
in blackbody radiation are in a thermal radiation state,
which is called a normal state. In order to characterize the
thermal radiation state, we need to conceive a grand canonical
ensemble of photons. Some identical systems of the ensemble
may be in an eigenstate of the Hamiltonian Hem given by
Eq. (4), while the distribution of the ensemble over the
eigenstates is described by the density operator of the thermal
radiation state,

ρ = exp(−Hem/kBT )

Tr exp(−Hem/kBT )
, (6)

where kB is Boltzmann’s constant. The basis states used in the
trace are the eigenstates of the Hamiltonian Hem, which are
given by Eq. (5). A main thermodynamic quantity in normal
blackbody radiation is the total photon number Nn, which is the
ensemble average of the corresponding microscopic quantity,

Nn =
∑
kσ

〈Nkσ 〉, (7)

where we have utilized the average notation 〈Nkσ 〉 =
Tr(ρNkσ ).

It is easily found that the ensemble average of the number
operator of photons in a mode kσ satisfies the well-known
Bose-Einstein distribution,

〈Nkσ 〉 = 1

eh̄ωk/kBT − 1
. (8)

Putting Eq. (8) into Eq. (7) and in the usual way altering the
summation to an integration, we obtain Nn = V nn, where

nn = 1

π2c3

∫ ∞

0

ω2

eh̄ω/kBT − 1
dω. (9)

Here nn is the photon number density of normal blackbody
radiation. With the new variable of integration x = h̄ω/kBT ,
the resulting integral in Eq. (9) is equal to 2ζ (3), where ζ (3) =
1.20206 is theRiemann ζ function of 3. Equation (9) yields

nn = 2ζ (3)

π2

(
kBT

h̄c

)3

. (10)
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In Ref. [5], the total energy En of normal blackbody radiation
is acquired as En = V un, where un is the energy density of
normal blackbody radiation and is given by

un = 4σT 4/c, (11)

where σ = π2k4
B/60h̄3c2 is called the Stefan-Boltzmann con-

stant. Thereby the pressure of normal blackbody radiation is
given by

Pn(T ) = 1
3un(T ). (12)

For the constant-volume heat capacity of normal blackbody
radiation C

(n)
V , we have

C
(n)
V = (∂En/∂T )V = V c(n)

v , (13)

where c(n)
v is the constant-volume specific heat capacity and is

given by

c(n)
v = 16σT 3/c. (14)

According to the relation C
(n)
V = T (∂Sn/∂T )V , integration of

the constant-volume heat capacity gives the entropy of normal
blackbody radiation: Sn = V sn, where sn is the entropy density
of normal blackbody radiation and is given by

sn = 16σT 3/3c. (15)

It is interesting to note that the Gibbs free energy of normal
blackbody radiation is

Gn = En − T Sn + PnV = 0, (16)

which is consistent with zero chemical potential of photons.

III. KERR NONLINEAR BLACKBODY

The model of a Kerr nonlinear blackbody was described in
Ref. [5]. The crystal under study is a covalent one. The optical
vibration modes of a covalent crystal are all the nonpolar
modes that carry no electric dipole moments, so they are
infrared inactive. For convenience the crystal is taken to be
of the cubic symmetry, so it is optically isotropic. A Kerr
nonlinear crystal must be centrosymmetric. By “nonlinearity”
we mean that the crystal is first-order Raman active. Nonpolar
modes in a centrosymmetric crystal have even parity and are
Raman active [11]. In the cubic system, the common covalent
crystals that are both centrosymmetric and Raman active
have a diamond structure. At this point the crystal studied is
determined as a specific crystal with a diamond structure, such
as C. In a diamond-structure crystal a primitive cell contains
two identical atoms that exhibit a triply degenerate nonpolar
mode at zero wave vector, which is Raman active. For the
Raman-active mode, the two atoms in the primitive cell move
in antiphase. Because the following treatment has no relation
to acoustic modes, the vibrational modes of the crystal are
limited to the Raman-active mode, whose zero-wave-vector
frequency is denoted by ωR .

In Ref. [7] we have known that the interaction between
photons and phonons can lead to an attractive effective
interaction among the photons themselves. The attractive
effective interaction leads to bound photon pairs. In the
standing-wave configuration a photon pair is stable only if

the two photons have opposite wave vectors and helicities.
The pair Hamiltonian of the photon system is

H ′
em = 1

2

∑
kσ

h̄ωk(a†
kσ akσ + a

†
−k,−σ a−k,−σ )

+
∑

kσ,k′σ ′
Vkσ,k′σ ′a

†
k′σ ′a

†
−k′,−σ ′a−k,−σ akσ , (17)

where the photons have the pair potential

Vkσ,k′σ ′ =
⎧⎨
⎩

−V0h̄ωkh̄ωk′ if 0 < ωk<∞ and 0<ωk′ < ωR

0 otherwise
,

(18)

where V0 is a positive constant. We shall assume that the crystal
has a dispersion-free linear refractive index n0, so the photon
frequency is given by ωk = c|k|/n0.

Single, unpaired bare photons in the photon system are
transformed into a new kind of quasi-particle, the nonpolariton.
A nonpolariton is the condensate of virtual nonpolar phonons
in momentum space, with a bare photon acting as the nucleus of
condensation. The diagonalization of the pair Hamiltonian (17)
can be performed by the Bogoliubov transformation: ckσ =
UakσU † and c

†
kσ = Ua

†
kσU †. c

†
kσ and ckσ are the creation and

annihilation operators of nonpolaritons in the photon system.
The transition from the operators of bare photons to those of
nonpolaritons can be effected by a symplectic transformation:

U = exp

[
1

2

∑
kσ

ϕkσ (a†
kσ a

†
−k,−σ − a−k,−σ akσ )

]
, (19)

where the parameter ϕkσ is assumed to be real and spherically
symmetric: ϕ−k,−σ = ϕkσ . It is well known that the symplectic
transformation does not change the energy spectrum of the
photon system. The normalized state vector of photon pairs
in the photon system may be constructed as |G〉 = U |0〉, such
that ckσ |G〉 = 0.

As we know, the pair Hamiltonian (17) can be solved only
when the pair potential Vkσ,k′σ ′ is negative. Under the mean-
field approximation [7,12], the pair Hamiltonian of the photon
system is diagonalized into

H ′
em = Ep +

∑
kσ

h̄ω̃k(T )c†kσ ckσ . (20)

The frequency of nonpolaritons is acquired as ω̃k(T ) =
v(T )|k|, where v(T ) is the velocity of nonpolaritons deter-
mined by the equation

v(T ) = 2(c/n0)V0

∑
k

′
h̄ωk coth

h̄v(T )|k|
2kBT

, (21)

where the prefactor 2 arises from the summation over helicities
and the prime on the summation symbol means that ωk < ωR .
Ep is the energy of the system of photon pairs. The velocity
v(T ) determined by Eq. (21) is a monotonically increasing
function of temperature T , which is equal to c/n0 at transition
temperature Tc. In Ref. [5] we have shown that below Tc the
photon system is in a superfluid state, in which the photons
with opposite wave vectors and helicities are bound into pairs
and unpaired photons are transformed into nonpolaritons. At
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Tc, both photon pairs and nonpolaritons become single bare
photons. Above Tc, the Kerr nonlinear blackbody behaves like
a normal blackbody.

The solution of Eq. (21) requires numerical methods. To
this end, it is useful to introduce a dimensionless constant γ .
The constant γ is meaningful only if γ < 1 and signifies the
coupling strength between a bare photon and virtual nonpolar
phonons. Because v(Tc) = c/n0, we let y = v(T )/v(Tc) and
x = kBT /h̄ωR , such that Eq. (21) is transformed into a neat
form,

y − γ = 8γ

∫ 1

0

t3dt

exp (yt/x) − 1
. (22)

Therefore, v(T )/v(Tc) is a universal function of kBT /h̄ωR and
γ , independently of any particular property of the blackbody.
For future study we must know the temperature derivative
∂v(T )/∂T of the velocity. At first we infer from Eq. (21) that
∂v(T )/∂T = 0 at zero temperature. We then let y ′ = ∂y/∂x,
such that the equation of y ′ is deduced from Eq. (22) as

y ′ = 8γ

∫ 1

0

(y − xy ′) exp (yt/x)t4dt

x2[exp (yt/x) − 1]2
. (23)

The temperature derivative of the velocity is also a universal
function of kBT /h̄ωR and γ .

IV. THERMODYNAMIC FUNCTIONS

We saw in the last section that the state of a Kerr nonlinear
blackbody depends only on the values of temperature and
volume. This implies that the transition from the superfluid to
the normal state is reversible in the thermodynamic sense.
We may therefore apply thermodynamic arguments to a
Kerr nonlinear blackbody, using the temperature and volume
as thermodynamic variables. In what follows we compute
fundamental thermodynamic functions of these two variables.

A. Total nonpolariton number

For future study it will be convenient to define the number
operators Nkσ = c

†
kσ ckσ for nonpolaritons. The number oper-

ators have the eigenvalues nkσ = 0,1,2, . . .. The eigenstates
of number operators Nkσ are given by

|{nkσ }〉 =
∏
kσ

[
1√
nkσ !

(c†kσ )nkσ

]
|G〉. (24)

The Hilbert space of the photon system is spanned by the
complete orthonormal basis vectors |{nkσ }〉. In Ref. [5] we
have shown that the photon system in a Kerr nonlinear
blackbody is in a superfluid state. In order to characterize
the superfluid state, we need to conceive a grand canonical
ensemble of nonpolaritons. Some identical systems of the
ensemble may be in an eigenstate of the Hamiltonian H ′

em
given by Eq. (20), while the distribution of the ensemble over
the eigenstates is described by the density operator of the
superfluid state

ρ = exp(−H ′
em/kBT )

Tr exp(−H ′
em/kBT )

, (25)

where the basis states used in the trace are the eigenstates of
the Hamiltonian H ′

em, which are given by Eq. (24). The total

nonpolariton number Nr in a Kerr nonlinear blackbody is the
ensemble average of the corresponding microscopic quantity,

Nr =
∑
kσ

〈Nkσ 〉. (26)

It is easily found that the ensemble average of the number
operator of nonpolaritons in a mode kσ satisfies the well-
known Bose-Einstein distribution,

〈Nkσ 〉 = 1

eh̄ω̃k(T )/kBT − 1
. (27)

Putting Eq. (27) into Eq. (26) and in the usual way altering the
summation to an integration, we obtain Nr = V nr , where nr is
the nonpolariton number density in a Kerr nonlinear blackbody
and is given by

nr = 1

π2v3(T )

∫ ∞

0

ω̃2(T )

eh̄ω̃(T )/kBT − 1
dω̃(T ), (28)

where ω̃(T ) = v(T )|k|. With the new variable of integration
x = h̄ω̃(T )/kBT , the resulting integral in Eq. (28) is equal to
2ζ (3). Equation (28) yields

nr = 2ζ (3)

π2

[
kBT

h̄v(T )

]3

. (29)

At zero temperature nr is equal to zero and at temper-
atures T > 0nr is a monotonically increasing function of
temperature T .

B. Constant-volume heat capacity

First, we briefly state the results of Ref. [9]. In the standing-
wave configuration, the system of photon pairs cannot be
detected and the gas of free nonpolaritons constitutes the
thermal radiation of a Kerr nonlinear blackbody. The energy Er

of the thermal radiation is given by Er (T ) = V ur (T ), where

ur (T ) = 4σ (T )T 4/v(T ), (30)

where σ (T ) = π2k4
B/60h̄3v2(T ) is the temperature-dependent

Stefan-Boltzmann constant. ur (T ) is the energy density of the
thermal radiation and a monotonically increasing function of
temperature T .

Having obtained the energy of a Kerr nonlinear blackbody,
we now can compute its constant-volume heat capacity C

(r)
V .

According to Eq. (13), we have

C
(r)
V = (∂Er/∂T )V = V (∂ur/∂T ). (31)

From Eq. (30) one can gain the derivative

∂ur/∂T = π2k4
BT 3

15h̄3v3(T )

[
4 − 3

T

v(T )

∂v(T )

∂T

]
. (32)

The last derivative is positive at temperatures T > 0. A
physical quantity amenable to calculation is the constant-
volume specific heat capacity, which is defined by

c(r)
v = C

(r)
V /V = 16σ (T )T 3

v(T )

[
1 − 3T

4v(T )

∂v(T )

∂T

]
. (33)
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C. Entropy

We, first, compute the thermodynamic potential, which
is only a function of temperature and volume, because the
chemical potential of the nonpolariton system is zero. In the
grand canonical ensemble at temperature T , the grand partition
function Z is defined as

Z = Tr exp(−H ′
em/kBT ). (34)

Here H ′
em represents the Hamiltonian of the nonpolariton

system and is given by

H ′
em =

∑
kσ

h̄ω̃k(T )c†kσ ckσ . (35)

The thermodynamic potential is related to the Hamiltonian of
the nonpolariton system through the grand partition function,

�(T ,V ) = −kBT ln Z. (36)

Putting Eq. (35) into Eq. (34), the grand partition function
is obtained as

Z =
∏
kσ

Tr exp[−h̄ω̃k(T )c†kσ ckσ /kBT ]. (37)

If the trace in Eq. (37) is written out in detail with the complete
set of eigenstates |nkσ 〉 of number operator c

†
kσ ckσ , we have

Tr exp[−h̄ω̃k(T )c†kσ ckσ /kBT ]

=
∞∑

nkσ =0

〈nkσ | exp[−h̄ω̃k(T )c†kσ ckσ /kBT ]|nkσ 〉

=
∞∑

nkσ =0

exp[−h̄ω̃k(T )nkσ /kBT ]

= {1 − exp[−h̄ω̃k(T )/kBT ]}−1. (38)

Thereby the grand partition function may be determined as

Z =
∏
kσ

{1 − exp [−h̄ω̃k(T )/kBT ]}−1 . (39)

The logarithm of Eq. (39) yields the thermodynamic potential

�(T ,V ) = 2kBT
∑

k

ln {1 − exp [−h̄ω̃k(T )/kBT ]} . (40)

In the usual way from summation to integration, we obtain

�(T ,V ) = kBT
V

π2v3(T )

∫ ∞

0
ω̃2 ln[1 − exp(−h̄ω̃/kBT )]dω̃.

(41)

With the new variable of integration x = h̄ω̃/kBT , integration
by parts gives

�(T ,V ) = −V
(kBT )4

3π2h̄3v3(T )

∫ ∞

0

x3dx

ex − 1
. (42)

The integral is equal to π4/15. Thus,

�(T ,V ) = −V
π2(kBT )4

45h̄3v3(T )

= V

[
− 1

3
ur (T )

]
,

where ur (T ) is given by Eq. (30).

The entropy of a Kerr nonlinear blackbody is immediately
given by

Sr = −
(

∂�

∂T

)
V

= V

(
1

3
∂ur/∂T

)
. (43)

A physical quantity amenable to calculation is the entropy
density, which is defined by

sr = Sr/V = 1
3∂ur/∂T . (44)

Since ∂ur/∂T is given by Eq. (32), finally we obtain

sr = 16σ (T )T 3

3v(T )

[
1 − 3T

4v(T )

∂v(T )

∂T

]
. (45)

D. Gibbs free energy

We, first, notice that the radiation pressure of a Kerr
nonlinear blackbody is given by

Pr (T ) = 1
3ur (T ). (46)

One then notices that the total energy of a Kerr nonlinear
blackbody is given by E = Ep + Er , where Ep is the energy
of the photon-pair system and Er denotes the energy of
the nonpolariton system. Although Ep cannot be detected
in experiments, Ep can affect the Gibbs free energy of a
Kerr nonlinear blackbody. Thereby we introduce an effective
energy of a Kerr nonlinear blackbody by E∗

r = V u∗
r , where

u∗
r represents the effective energy density of a Kerr nonlinear

blackbody and is given by

u∗
r = ur (T )

[
1 − T

v(T )

∂v(T )

∂T

]
. (47)

The Gibbs free energy of a Kerr nonlinear blackbody is
defined as

Gr = E∗
r − T Sr + PrV . (48)

Putting Eqs. (45)–(47) into the last equation, we obtain

Gr = 0, (49)

which is consistent with zero chemical potential of nonpolari-
tons.

V. THERMODYNAMICS OF PHASE TRANSITIONS

A. Numerical calculation

According to Eq. (23), if one defines an integral,

I (y/x) =
∫ y/x

0

euu4du

(eu − 1)2
, (50)

then the temperature derivative of the velocity has an analytic
expression,

y ′ = 8γ x3yI (y/x)

y5 + 8γ x4I (y/x)
. (51)

At this point, we should note that x = kBT /h̄ωR , y = v(T )/
v(Tc), and y ′ = dy/dx. Based on Eq. (51), the variation
with x and γ of y ′ is shown in Fig. 2. For fixed γ , first,
the velocity derivative increases from zero to a maximum
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FIG. 2. (Color online) dy/dx: derivative of reduced velocity
y = v(T )/v(Tc) with respect to reduced temperature x = kBT /h̄ωR .
For three values of γ , variation of derivative dy/dx with reduced
temperature x = kBT /h̄ωR , where temperature T varies from zero to
transition temperature Tc.

as the temperature increases from zero, and then the ve-
locity derivative decreases as the temperature increases to
the transition temperature Tc. Particularly, as γ → 1, the
temperature derivative of the velocity is a monotonically
increasing function of T . For fixed T , the velocity derivative
is a monotonically decreasing function of γ .

In this paragraph, the nonpolariton number density nr (T )
in a Kerr nonlinear blackbody is compared with the photon
number density nn(T ) in a normal blackbody. nn(T ) and nr (T )
are given by Eqs. (10) and (29), respectively. The variation
of nr (T ) and nn(T ) with reduced temperature x = kBT /h̄ωR

is shown in Fig. 3, where, for nr (T ), temperature T varies
from zero to transition temperature Tc(γ ) and for nn(T )
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FIG. 3. (Color online) For three values of γ , variation of nonpo-
lariton number density nr with reduced temperature x = kBT /h̄ωR ,
where temperature T varies from zero to transition temperature Tc.
nn denotes the photon number density of a normal blackbody.
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FIG. 4. (Color online) For three values of γ , variation of effective
energy density u∗

r with reduced temperature x = kBT /h̄ωR , where
temperature T varies from zero to transition temperature Tc. un

denotes the energy density of a normal blackbody.

temperature T varies from zero to transition temperature
Tc(γ = 0.35). There are four features: (1) nr (T ) and nn(T ) are
monotonically increasing functions of T ; (2) for fixed T , nr (T )
is a monotonically decreasing function of γ ; (3) at transition
temperature Tc(γ ), nr (T ) = nn(T ); and (4) the nonpolariton
number density nr (T ) of a Kerr nonlinear blackbody is always
larger than the photon number density nn(T ) of a normal
blackbody. The reason for the fourth feature is that the
nonpolariton number density is the sum of the photon number
density and a part of the nonpolar phonon number density.

Now let us turn to the effective energy density u∗
r (T ) of

a Kerr nonlinear blackbody. u∗
r (T ) is given by Eq. (47). The

variation of u∗
r (T ) with reduced temperature x = kBT /h̄ωR

is shown in Fig. 4, where temperature T varies from zero to
transition temperature Tc(γ ). Figure 4 also shows the energy
density un(T ) of a normal blackbody, where temperature T

varies from zero to transition temperature Tc(γ = 0.35). There
are three features: (1) for fixed γ , u∗

r (T ) is a monotonically
increasing functions of T ; (2) for fixed T , u∗

r (T ) is a
monotonically decreasing function of γ ; and (3) near zero
temperature the effective energy density u∗

r (T ) of a Kerr
nonlinear blackbody is larger than the energy density un(T )
of a normal blackbody but near transition temperature Tc(γ ),
u∗

r (T ) becomes smaller than un(T ).
In this paragraph, the entropy density sr (T ) of a Kerr

nonlinear blackbody is compared with the entropy density
sn(T ) of a normal blackbody. sn(T ) and sr (T ) are given by
Eqs. (15) and (45), respectively. The variation of sr (T ) and
sn(T ) with reduced temperature x = kBT /h̄ωR is shown in
Fig. 5, where for sr (T ) temperature T varies from zero to
transition temperature Tc(γ ) and for sn(T ) temperature T

varies from zero to transition temperature Tc(γ = 0.35). There
are three features: (1) sr (T ) and sn(T ) are monotonically
increasing functions of T ; (2) for fixed T , sr (T ) is a monoton-
ically decreasing function of γ ; and (3) near zero temperature
the entropy density sr (T ) of a Kerr nonlinear blackbody is
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FIG. 5. (Color online) For three values of γ , variation of entropy
density sr with reduced temperature x = kBT /h̄ωR , where tempera-
ture T varies from zero to transition temperature Tc. sn denotes the
entropy density of a normal blackbody.

larger than the entropy density sn(T ) of a normal blackbody
but near transition temperature Tc(γ ), sr (T ) becomes smaller
than sn(T ).

Finally, the constant-volume specific heat capacity c(r)
v of

a Kerr nonlinear blackbody is compared with the constant-
volume specific heat capacity c(n)

v of a normal blackbody.
c(n)
v and c(r)

v are given by Eqs. (14) and (33), respectively.
The variation of c(r)

v and c(n)
v with reduced temperature x =

kBT /h̄ωR is shown in Fig. 6, where for c(r)
v temperature

T varies from zero to transition temperature Tc(γ ) and for
c(n)
v temperature T varies from zero to transition temperature

Tc(γ = 0.35). There are three features: (1) c(r)
v and c(n)

v are
monotonically increasing functions of T ; (2) for fixed T , c(r)

v
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FIG. 6. (Color online) For three values of γ , variation of
constant-volume specific heat capacity c(r)

v with reduced temperature
x = kBT /h̄ωR , where temperature T varies from zero to transition
temperature Tc. c(n)

v denotes the constant-volume specific heat
capacity of a normal blackbody.

is a monotonically decreasing function of γ ; and (3) near zero
temperature the constant-volume specific heat capacity c(r)

v of
a Kerr nonlinear blackbody is larger than the constant-volume
specific heat capacity c(n)

v of a normal blackbody but near
transition temperature Tc(γ ), c(r)

v becomes smaller than c(n)
v .

B. First-order phase transition

The thermodynamics of phase transitions is to describe
phase transitions in terms of macroscopic variables. At phase
transitions the Gibbs free energy of the two phases must be
continuous. However, phase transitions can be divided into
two classes according to the behavior of derivatives of the
Gibbs free energy. Phase transitions which are accompanied
by discontinuous first derivatives of the Gibbs free energy are
called first-order phase transitions. Phase transitions which are
accompanied by discontinuous second derivatives of the Gibbs
free energy are called second-order phase transitions.

Generally, the Gibbs free energy G is a function of the
temperature T , the pressure P , and the particle number N ,
namely, G = G(T ,P,N ). The entropy S is related to the first
derivative of G,

S = −
(

∂G

∂T

)
P,N

. (52)

Therefore, at first-order phase transitions the entropy of two
phases a and b is discontinuous, Sa 	= Sb. The latent heat L

for a transition between two phases a and b is given by L =
T (Sa − Sb). A first-order phase transition has two important
characteristics: at the transition there is a latent heat, and there
is a jump in the entropy. The transitions from gas to liquid
phase, from liquid to solid phase, and from gas to solid phase
are all first-order transitions. The heat capacity at constant P

and N CP,N is related to the second derivative of G,

CP,N = −T

(
∂2G

∂T 2

)
P,N

. (53)

Therefore, at second-order phase transitions the heat capacity
of two phases a and b is discontinuous, Ca 	= Cb. A second-
order phase transition has two important characteristics: (i) at
the transition there is no latent heat and (ii) there is a jump
in the heat capacity. In the absence of any magnetic field, the
superconducting-normal transition of a metal is a second-order
phase transition.

Now let us begin to describe the transition properties of
a Kerr-nonlinear blackbody. As we know, the Gibbs free
energy of normal and superfluid states is identically equal
to zero. Therefore, at the transition temperature, the Gibbs
free energy of the two phases is continuous, Gn = Gr = 0.
As seen in Fig. 5, near the transition temperature, the entropy
density of the superfluid state becomes smaller than that of
the normal state, so the superfluid state is stable. At the
transition temperature, the entropy density of the two phases
is discontinuous, sn 	= sr . Hence, at transition temperature
Tc, there is a jump in the entropy density and this leads to
a latent heat density l = T (sn − sr ). This latent heat arises
because at transition temperature Tc the entropy of the normal
state is greater than that of the superfluid state, so heat
must be supplied if the transition is to take place at Tc.
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Consequently, the transition between normal and superfluid
states is a first-order phase transition.

Between the entropy density and the constant-volume
specific heat capacity, there are the following relations: sn =
1
3c(n)

v and sr = 1
3c(r)

v . As a result, the latent heat density can be
rewritten as

l = T (sn − sr ) = 1
3T

(
c(n)
v − c(r)

v

)
. (54)

First, we give a numerical impression of latent heat density
l at transition temperature Tc. As we know, the transition
temperature Tc is a monotonically decreasing function of the
dimensionless Kerr nonlinear coefficient γ . At γ = 0.35, 0.6,
0.9, Tc = 1962.7, 1026.8, 464.9 K, respectively. Consequently,
at Tc = 1962.7, 1026.8, 464.9 K, l = 4.8008 × 1014,2.9872 ×
1013,8.6567 × 1011 J m−3, respectively. It is seen that the latent
heat density l at Tc is a monotonically decreasing function of
γ . As shown in Fig. 6, at the transition temperature there is a
jump in the constant-volume specific heat capacity. The jump
δ in heat capacity is defined by

δ = c(n)
v − c(r)

v

c
(n)
v

. (55)

Next we give a numerical impression of δ at Tc. At Tc =
1962.7, 1026.8, 464.9 K, δ = 0.3575,0.3024,0.1969, respec-
tively. It is seen that the jump δ in heat capacity at Tc is a
monotonically decreasing function of γ .

VI. DISCUSSION

Our basic point in this paper is that the photon system
in a Kerr-nonlinear blackbody undergoes a first-order phase
transition from the normal to the superfluid state. We expose
the thermodynamic properties of a Kerr nonlinear blackbody.
We find that the Gibbs free energy of normal and superfluid
states is identically equal to zero. Therefore, at the transition
temperature, the Gibbs free energy of the two phases is
continuous. Near the transition temperature, the entropy
density of the superfluid state becomes smaller than that of
the normal state, so the superfluid state is stable. At the
transition temperature, the entropy density of the two phases
is discontinuous, sn 	= sr . Hence, at transition temperature Tc,
there is a jump in the entropy density and this leads to a latent
heat density l = T (sn − sr ). This latent heat arises because
at transition temperature Tc the entropy of the normal state
is greater than that of the superfluid state, so heat must be
supplied if the transition is to take place at Tc. It is easy to
understand why at Tc there is a jump in the constant-volume
specific heat capacity. Our theory shows that at Tc there is
a jump in the entropy density. According to Eq. (54), this
jump in the entropy density accounts for the rapid jump in the
constant-volume specific heat capacity at Tc.

It would be valuable to have some indication of location
of the phase transition. In Sec. III, we have introduced a
dimensionless constant γ . The constant γ represents the
interaction strength between bare photons. In Ref. [7], the
constant γ is given by

γ = h̄

2c3�n0

[P(0)ωR

4πε0

]2

, (56)

where � is the cell volume. Here P(q) is defined by Eq. (21)
in Ref. [7]. Further, in Ref. [7], the pair interaction parameter
V0 is given by

V0 = 1

2
N

[ P(0)

2V ε0n
2
0ωR

]2

, (57)

where N is the number of primitive cells. In terms of the
dimensionless interaction constant γ , the pair interaction
parameter can be rewritten as

V0 = 4π2(c/n0)2

h̄ω4
R

γ
c/n0

V
. (58)

In the optical Kerr effect, the medium possesses an intensity-
dependent refractive index: n = n0 + n2I , where n2 is the
second-order nonlinear refractive index and I is the intensity
of the light traveling through the medium. We consider a
self-defocusing Kerr nonlinearity where n2 < 0. By use of the
second-order nonlinear refractive index n2, the pair interaction
parameter can also be rewritten as

V0 =
(

mec
2

h̄ωR

)2

|n2|c/n0

V
, (59)

where me is the rest mass of electron. In the integration
over photon frequencies ω, the upper limit of the integral is
chosen as infinity. In fact, the maximum frequency of photon is
mec

2/h̄. The prefactor in Eq. (59) accounts for this correction.
On comparing Eq. (58) with Eq. (59), the dimensionless
interaction constant is immediately acquired as

γ = h̄ω4
R

4π2(c/n0)2

(
mec

2

h̄ωR

)2

|n2|. (60)

The zero-wave-vector frequency of the Raman-active mode of
the diamond crystal is ωR = 2.51 × 1014 s−1 [11]. The linear
and nonlinear refractive indices of the diamond crystal are
as follows [13]: n0 = 2.42 and |n2| = 1.3 × 10−19 m2 W−1.
From Eq. (60) the dimensionless interaction constant is
calculated as γ = 0.8592. According to Eq. (58) in Ref. [7],
the transition temperature Tc is a monotonically decreasing
function of γ . At γ = 0.8592 we find that Tc = 536.8 K.
Because the diamond crystal has the highest melting point
(3820 K), Tc = 536.8 K is meaningful.

The superconducting theory of solids established by
Bardeen, Cooper, and Schrieffer is a striking success of the
quantum field theory of solids [14,15]. The basic physical
mechanism is that the electron-electron Coulomb repulsion is
overcome by the attractive interaction via acoustic phonons,
leading to massive electron pairs known as Cooper pairs,
which incorporate the acoustic phonons and, hence, propagate
without phonon scattering. Many important concepts in this
theory have a certain generality and are certain to be applicable
to quantum optics. In the present theory, the photon superfluid
state is generated by the formation of bare photon pairs.
However, there are the following contrasts between the
electronic superconducting state and the photon superfluid
state. (i) The transition of the electron system from the normal
to the superconducting state is connected with a change in the
gauge symmetry of the system’s state, while the transition
of the photon system from the normal to the superfluid
state is connected with a change in the phase symmetry
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of the system’s state. (ii) In the absence of any magnetic
field, the superconducting-normal transition of a metal is
a second-order phase transition, but the superfluid-normal
transition of a Kerr nonlinear blackbody is a first-order phase
transition,

To sum up, we have investigated the thermodynamic
properties for a blackbody whose interior is filled by a Kerr
nonlinear crystal. Below the transition temperature, the photon
system in a Kerr nonlinear blackbody is in a superfluid state.
We find that the Gibbs free energy of normal and superfluid
states is identically equal to zero. Therefore, at the transition
temperature, the Gibbs free energy of the two phases is
continuous. At the transition temperature, the entropy density
of the two phases is discontinuous. Hence, there is a jump in

the entropy density and this leads to a latent heat density. The
photon system undergoes a first-order phase transition from
the normal to the superfluid state. The transition temperature
is characteristic of a concrete crystal. The entropy density and
specific heat capacity are monotonically increasing functions
of the temperature but are monotonically decreasing functions
of the Kerr nonlinear coefficient. The predicted properties
might be verified in present-day physics laboratories.
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