
RAPID COMMUNICATIONS

PHYSICAL REVIEW E 86, 050103(R) (2012)

Multicanonical distribution: Statistical equilibrium of multiscale systems
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A multicanonical formalism is introduced to describe the statistical equilibrium of complex systems exhibiting
a hierarchy of time and length scales, where the hierarchical structure is described as a set of nested “internal heat
reservoirs” with fluctuating “temperatures.” The probability distribution of states at small scales is written
as an appropriate averaging of the large-scale distribution (the Boltzmann-Gibbs distribution) over these
effective internal degrees of freedom. For a large class of systems the multicanonical distribution is given
explicitly in terms of generalized hypergeometric functions. As a concrete example, it is shown that generalized
hypergeometric distributions describe remarkably well the statistics of acceleration measurements in Lagrangian
turbulence.
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In this Rapid Communication we introduce a general
formalism to describe the statistical equilibrium of complex
systems with multiple time and length scales. We adopt a
viewpoint akin to the canonical ensemble perspective—only
slightly augmented—in which the system is given a certain
temperature by being placed in an infinite heat bath of the
proper temperature [1]. The specific question we wish to
address here is how a small subsystem within the main
system comes into thermal equilibrium with the heat bath
and what is the resulting probability distribution of states for
such a subsystem. In the standard canonical treatment [1], the
small subsystem and its large surroundings are assumed to be
independent and are thus described by the same distribution
law—the Boltzmann-Gibbs (BG) distribution. There are, how-
ever, many physical systems, such as highly turbulent flows [2],
where, owing to the existence of a hierarchy of dynamical
structures, the relevant distributions depend on the scale at
which the measurements are made. In such cases, the canonical
hypothesis must be modified accordingly to take into account
the more complex process of energy exchange between
the subsystem and the heat bath, which will be mediated
by the intervening hierarchical structure.

Here we give an effective description of the dynamical
hierarchy in terms of a set of nested “internal heat reservoirs,”
where the innermost reservoir surrounds the subsystem of
interest while the outermost one is in contact with the external
heat bath. The complex (intermittent) energy flow between
adjacent hierarchical levels is then modeled by allowing the
“temperatures” of such internal reservoirs to fluctuate accord-
ing to a stochastic dynamics described by a deterministic
term, given by the usual Newton’s law of cooling, plus a
multiplicative noise. (Without the stochastic term the system
would, of course, relax to the usual Gibbsian equilibrium.)
In such a scenario, it turns out that for a large class of
systems the equilibrium distribution can be written explicitly
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in terms of certain generalized hypergeometric functions. This
family of generalized hypergeometric (GHG) distributions
includes, as its first two members, the BG distribution and
the q-exponential distribution, also known as the Tsallis
distribution, which has been much studied in the context of the
so-called nonextensive thermodynamics [3]. It is thus argued
that GHG distributions of higher order should naturally appear
in complex systems having more than two distinct time scales.
As a concrete example, we show that the GHG distribution
of seventh order describes remarkably well the statistics of
acceleration measurements in Lagrangian turbulence [4].

We consider a system of size L in contact with an external
heat reservoir at a fixed temperature T0. We assume that
the system possesses a hierarchy of dynamical structures
of characteristic sizes �j , where for definiteness we take
�j = L/2j , for j = 0,1,...,n. It is also supposed that there is a
wide separation of time scales, with smaller structures having
faster dynamics. We focus our attention on a small subsystem
of size r < �n. (One can think of this small subsystem as the
measurement volume.) In the standard canonical formalism,
the large subsystem surrounding the small subsystem can be
viewed either as a heat bath or as a large collection (ensemble)
of small subsystems essentially identical to the subsystem in
focus. Owing to the presence of multiple scales, neither one
of these two viewpoints is however applicable in our case. We
shall instead regard the large subsystem as consisting of a set
of nested “internal heat reservoirs,” where each such reservoir
is characterized by its own effective “temperature” Tj , with
j = 0,1, . . . ,n. The temperature Tj represents a measure of
the average energy (at a given time) in the structures of
characteristic size �j and as such will be treated as a fluctuating
quantity, whose probability density function (PDF) will be
denoted by f (Tj ).

Our aim here is to obtain the probability Pr (εi) of finding
a small subsystem of size r in a given state of energy εi . By
assumption, the subsystem has a dynamics that is much faster
than that of the temperature Tn of its immediate surroundings.
It is therefore reasonable to suppose that before Tn changes
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appreciably the subsystem will reach a quasiequilibrium state
described by the BG distribution at temperature Tn:

Pr (εi |Tn) = 1

Z0(Tn)
exp

(
− εi

kTn

)
, (1)

where k is Boltzmann’s constant and

Z0(T ) =
∑

i

exp

(
− εi

kT

)
=

∫ ∞

0
g(E) exp

(
− E

kT

)
dE.

(2)

Here the energy E is regarded as a continuous variable and
g(E) denotes the density of states. The marginal distribution
Pr (εi) is then given by

Pr (εi) =
∫ ∞

0

1

Z0(Tn)
exp

(
− εi

kTn

)
f (Tn)dTn. (3)

Notice that at the largest scale (i.e., n = 0), Eq. (3) reduces
to the canonical distribution, since the external heat bath
is assumed to have a constant temperature: f (T ) = δ(T −
T0). The distribution Pr (ε) above generalizes the canonical
distribution for systems with multiple scales, and hence it
will be called multicanonical [5]. The idea expressed in
Eq. (3) of writing the distribution law at small scales as a
mixture of large-scale distributions has been extensively used
in turbulence with various mixing distributions [6–10]. More
recently, this idea has also been applied in the context of the
so-called superstatistics [11,12] of nonequilibrium systems
and in other related approaches [13,14]. The fundamental
difference in our formalism is that we do not prescribe a
priori the mixing distribution f (Tn), but rather derive it from
a general dynamical model for the energy exchange between
the different scales in the system, as shown next.

Recall that any large subsystem characterized by a tem-
perature Tj is in contact with an even larger reservoir at
temperature Tj−1. Since these temperatures differ, “heat” will
flow between the two subsystems in accordance with Newton’s
law of cooling, so as to try to bring Tj close to Tj−1. In addition,
there will be fluctuations in Tj of a random nature owing to the
intermittency of the energy flow. Furthermore, the equations
governing the temperature fluctuations must be invariant by
a change, T → λT , in temperature scale and ensure that the
temperatures remain non-negative. It then follows from these
requirements that the temperature dynamics is given by the
following set of stochastic differential equations (SDEs):

dTj

dt
= −μj (Tj − Tj−1) + gj (Tj ,Tj−1)ξj (t), (4)

for j = 1, . . . ,n, where the parameters μ−1
j correspond to

the characteristic times of the problem, the functions gj

describe the noise amplitudes, and ξj (t) denote mutually
independent Gaussian white noises. Physically, the stochastic
term in Eq. (4) represents an effective coupling with the
large-scale structures which accounts for intermittency [15].
The specific form of the function gj may depend on the system
considered (see below), but it must possess the following
general properties: (i) gj (λTj ,λTj−1,) = λgj (Tj ,Tj−1), on
account of the invariance under the change of temperature
scale, and (ii) gj (0,Tj−1) = 0, so as to ensure that the
temperatures remain positive for all times (if they are initially

positive). To see this, notice that if Tj = 0 at some time, then
Eq. (4) implies that dTj/dt = μjTj−1 > 0 and so Tj never
becomes negative. It is also important to note that, irrespective
of the form of gj , Eq. (4) implies that the internal reservoirs all
have the same average temperature in the stationary regime,
i.e., limt→∞〈Tj 〉 = T0, for all j , as can be readily verified.

We shall assume here that gj is a linear function of Tj , in
which case Eq. (4) becomes

dTj

dt
= −μj (Tj − Tj−1) + σjTj ξj (t), (5)

where σj is a positive constant. This choice is not as restrictive
as it seems, describing a rather general class of systems,
as indicated below. Next we make use of the separation of
time scales, i.e., μ−1

n � μ−1
n−1 � · · · � μ−1

1 , in Eq. (5) to
obtain the equilibrium distribution f (Tn) of temperature in
the innermost reservoir. In light of the time-scale separation,
it is safe to assume that over the characteristic time that it
takes for the temperature Tn−1 of the surrounding reservoir
to change appreciably, the temperature Tn will relax to a
quasistationary regime described by a conditional distribution,
f (Tn|Tn−1), obtained from Eq. (5) for j = n with Tn−1 fixed.
The marginal distribution for Tn can then be written as a
superposition of distributions f (Tn|Tn−1) with different values
of Tn−1: f (Tn) = ∫ ∞

0 f (Tn|Tn−1)f (Tn−1)dTn−1. Implement-
ing this procedure recursively up to the outermost internal
reservoir, one obtains

f (Tn) =
∫ ∞

0
· · ·

∫ ∞

0

n∏
j=1

f (Tj |Tj−1)dT1 · · · dTn−1. (6)

The distribution f (Tj |Tj−1), for a given j , can be found
easily by solving the stationary Fokker-Planck equation
[16,17] associated with Eq. (5), holding Tj−1 fixed. This yields
an inverse gamma distribution

f (Tj |Tj−1) = 1

Tj�(αj + 1)

(
αjTj−1

Tj

)αj +1

× exp

(
−αjTj−1

Tj

)
, (7)

where

αj = 2μj

σ 2
j

. (8)

If the system displays scale invariance, one has αj = α, so
that the distribution f (Tj |Tj−1) is identical across scales.
That the parameter αj may become independent of scale is
physically reasonable given that both μj and σj increase
with j . (The latter follows from the fact that intermittency
is stronger at smaller scales.) For scale invariant systems these
two dependencies cancel out.

With f (Tn) thus determined, let us now return to Eq. (3).
To make further progress one needs to know the large-scale
partition function Z0(T ) in order to carry out the integration
over the variable Tn. Let us consider the rather general case
where the density of states g(E) is a homogeneous function,
that is,

g(E) ∝ Eγ−1, γ > 0, (9)
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which implies that

Z0(T ) ∝ (kT )γ . (10)

This relation describes several important classes of systems,
such as (i) nonrelativistic ideal gases, where γ = f/2, with f

being the number of degrees of freedom of the system, and
(ii) systems where the energy is quadratic in the momenta and
coordinates, in which case γ = f .

Substituting Eq. (10) into Eq. (3) yields

Pr (εi) ∝
∫ ∞

0

(
1

kTn

)γ

exp

(
− εi

kTn

)
f (Tn)dTn. (11)

After inserting Eqs. (6) and (7) into Eq. (11), and performing a
sequence of changes of variables of the type xn = αnTn−1/Tn,
one can show that the resulting multidimensional integral
can be expressed in terms of known higher transcendental
functions:

Pr (εi) = 1

Zn(T0)
nF0(α1 + γ + 1, . . . ,αn + γ + 1; −βnεi),

(12)

where nF0(α1, . . . ,αn; −z) is the generalized hypergeometric
function of order (n,0) [18], whose integral representation is
given by

nF0(α1, . . . ,αn; −z)

=
∫ ∞

0
· · ·

∫ ∞

0
e−x1···xnzdλα1 (x1) · · · dλαn

(xn), (13)

with dλα(x) denoting the so-called Euler measure [19]:

dλα(x) = 1

�(α)
e−xxα−1dx. (14)

In Eq. (12) the parameter βn is

βn = β0∏n
i=1 αi

(15)

and the small-scale partition function Zn is given by

Zn(T0) = Z0(T0)
n∏

i=1

α
γ

i �(αi + 1)

�(αi + γ + 1)
. (16)

The generalized hypergeometric (GHG) distribution
given in Eq. (12) has several interesting properties that
are worth summarizing here. First, note that 〈E〉r ≡∫ ∞

0 EPr (E)g(E)dE = γ kT0. (This relation follows from the
fact that 〈E〉r = γ k〈Tn〉 and 〈Tn〉 = T0.) Thus, the equiparti-
tion theorem continues to hold on all scales in our multicanoni-
cal formalism. In this sense, the subsystems at different scales
can be said to be in thermal equilibrium with one another
at temperature T0, even though the distribution law at small
scales (i.e., for n � 1) differs from the usual BG distribution.
Higher moments of the GHG distribution can also be readily
computed: 〈Ep〉r = (kT0)p �(p+γ )

�(γ )

∏n
i=1

∏p−1
j=1 ( αi

αi−j
). One then

sees that, contrary to the canonical case, the multicanonical
distribution Pn(E) is not completely specified by its mean,
which determines only the temperature T0. Knowledge of
the higher moments is necessary to determine the parameters
αi . If the system displays scale invariance, i.e., αi = α, the

value of α is determined by the second moment, 〈E2〉r =
γ (γ + 1)(kT0)2 [α/(α − 1)]n.

Another important property of the GHG distribution is that
it exhibits power-law tails of the form Pr (ε) ∝ ε−(α+γ+1),
for ε → ∞, as follows from the asymptotic expansion [20]
of the function nF0(α1, . . . ,αn; −x) for αi = α. It is also
worth pointing out that the first two members of the family
nF0 yield elementary functions, namely, 0F0(x) = exp(x) and
1F0(1/(q − 1),x) = expq [x/(q − 1)], where expq(x) is the
q exponential, expq(x) = [1 + (1 − q)x]1/(1−q). The GHG
distribution with n = 0 thus recovers the BG distribution,
whereas for n = 1 it gives the q exponential or Tsallis
distribution [3]. For complex systems with more than two
characteristic time scales GHG distributions of higher order
are required.

The multiscale formalism presented above can be readily
extended to describe (statistically stationary) fluctuations in
highly driven dissipative systems, such as fully developed tur-
bulence [2]. Although turbulent flows are out-of-equilibrium
systems, the small-scale turbulence at high Reynolds numbers
can be described in terms of an equilibrium theory, as first
pointed out by Kolmogorov [21]. This means that the small
eddies in the range r � L, where L is the integral scale at
which energy is injected, quickly adjust to the local conditions
of the mean flow and are therefore in approximate statistical
equilibrium [22,23]. Furthermore, in the inertial subrange (i.e.,
for η � r � L, where η is the Kolmogorov scale at which
viscous effects become relevant), energy is transferred from
large eddies to smaller ones with essentially no dissipation. In
our formalism, the local-equilibrium condition is contained in
Eqs. (3) and (6), whereas energy conservation corresponds to
the fact that 〈Tj 〉 = T0 in the stationary regime. Note, however,
that in order to access the equilibrium state we formulate our
model in terms of nonequilibrium processes, as expressed by
the system of SDEs shown in Eq. (5).

Now we wish to apply our multiscale formalism to
Lagrangian turbulence, where one is concerned with the dy-
namical properties of individual fluid particles. In Lagrangian
turbulence, intermittency manifests itself as a change in shape
of the PDF of velocity time increments with the time lag.
Let us then consider time increments, δτ v = v(t + τ ) − v(t),
of one component v of the Lagrangian velocity. Here we take
τ = TL/2n, where TL is the integral time scale which is related
to the large-eddy turnover time. The fluctuations in the velocity
increments can be modeled [10] by a Langevin equation of the
type

d(δτ v)

dt
= −�δτv + �ξ (t), (17)

where the “friction coefficient” � is assumed to be constant,
but the noise amplitude � is allowed to fluctuate in a slow time
scale as compared to the relaxation time �−1, which is of the
same order of magnitude as the Kolmogorov time τη. It then
follows that over short time scales the velocity fluctuations
reach a quasiequilibrium described by a Gaussian distribution,

P
(
δτ v|σ 2

τ

) = 1√
2πσ 2

τ

exp

(
− (δτ v)2

2σ 2
τ

)
, (18)
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FIG. 1. Distribution of accelerations on turbulent water flow at
Rλ = 690 (circles) and theoretical curve (solid line) for a GHG
distribution with n = 7 and α = 2.67.

with variance σ 2
τ = �2/�, which is assumed to be propor-

tional to the fluctuating energy dissipation rate ε times the time
lag τ [10,24]. In the context of our multicanonical formalism,
σ 2

τ plays the role of the fluctuating temperature Tn [compare
Eqs. (1) and (18)], so that the marginal distribution P (δτ v) of
velocity time increments can be written in a form equivalent to
Eq. (12), only replacing ε with (δτ v)2 and setting γ = 1/2
(corresponding to one degree of freedom, since only one
velocity component of the Lagrangian particle is considered).
One then obtains that P (δτ v), normalized to unit variance, is
given by the following GHG distribution:

P (δτ v) = 1√
2π

[
�(α + 3/2)

α1/2 �(α + 1)

]n

× nF0

(
α + 3/2, . . . ,α + 3/2; − (δτ v)2

2αn

)
, (19)

where we have set αi = α. An earlier derivation of the
distribution (19) was given in Ref. [25] in the context of
Eulerian turbulence, where, starting from the scale-by-scale
energy budget equation [2] obtained from the Navier-Stokes
equation, we proposed a set of SDEs similar to Eq. (5). As
noted above, this distribution is but a particular case of the
more general GHG distribution given in Eq. (12).

An application of the GHG distribution (19) to Lagrangian
turbulence is shown in Fig. 1. In this figure the circles represent
the PDF of acceleration measurements on a turbulent water
flow (Rλ = 690) performed in Bodenschatz’s group [4]; for
details about the experiments see Ref. [26]. Because the
acceleration a was computed from the position measurements
by a filtering procedure of width ∼τη [4], it is safe to assume
that a is proportional to δτ v for τ ≈ τη. The number n of scales
can then be estimated as n = log2(TL/τη) = log2(Rλ/

√
15).

Thus, for Rλ = 690 one finds n = 7. The parameter α, on
the other hand, can be estimated by matching the fourth
moment of the empirical distribution, which yields α = 2.67.
Superimposed with the experimental data in Fig. 1 is the plot of
the GHG distribution for n = 7 and α = 2.67. The agreement
between the theoretical curve and the data is remarkable.
The dependence of α on Rλ can be obtained by noting that
the acceleration flatness, F = 〈a4〉/〈a2〉2 = 3 [α/(α − 1)]n,
initially increases with Rλ but then seems to level off for
Rλ > 500 [26]. If this tendency holds for Rλ → ∞, one must
have α = C−1 log2 Rλ, where C is a constant, so that α ∝ n,
which then yields F = 3eC as n → ∞. In this limit, the GHG
distribution recovers [25] the log-normal model widely used
in turbulence [7], where it has been conjectured [27] that C is
a universal constant (C ≈ 3) for Rλ → ∞. Our results show,
however, that the log-normal model holds only asymptotically
as Rλ → ∞, whereas for finite Rλ the GHG distribution should
apply.

As a concluding remark, we note that the distribution (7) can
be derived from a maximum entropy principle by extending
the arguments used in Refs. [28,29] for the case n = 1. More
details will be published elsewhere; here it suffices to say that in
this approach the parameter α appears as a Lagrange multiplier
and the connection between Eqs. (7) and (9) becomes more
apparent. It is perhaps also worth noting that an alternative
derivation of Eq. (7) can be given on the basis of Bayesian
inference [30]. Other multiscale systems are currently under
investigation.
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