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Practical model for the self-diffusion coefficient in Yukawa one-component plasmas
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A practical physically motivated interpolation formula is presented for the self-diffusion coefficient in Yukawa
one-component plasmas that is valid for a wide range of inverse screening lengths and over the entire fluid region.
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We report a practical model to estimate the self-diffusion
coefficient D in Yukawa one-component plasmas (YOCPs)
over a wide range of inverse screening lengths (0 � κ � 4)
and across the entire fluid regime. The interpolation formula
was obtained by fitting a large body of accurate molecular-
dynamics (MD) data. The model was recently discussed in
Ref. [1] but was only illustrated for a few values of κ . Here,
the four fitting parameters of the model are made into simple
functions of κ in order to reproduce the self-diffusion D for
any value of κ in the 0 � κ � 4 range.

A YOCP consists of an infinite system of classical ions
(charge q and mass m) of particle density n at temperature T

and in mutual interaction through the Yukawa potential,

v(r) = q2e−κr/r.

The parameter κ mimics the screening effect on the bare
Coulomb interactions by the conducting electrons in the
plasma; it reduces to either the inverse Debye-Hückel law
or the inverse Thomas-Fermi distance in the limiting cases
of classical and degenerate electron fluids, respectively. At
equilibrium, a YOCP is fully characterized by two dimen-
sionless parameters only, namely, (i) the inverse screening
length κ and (ii) the coupling parameter � = q2/akBT , where
a = (4πn/3)−1/3 is the Wigner-Seitz radius. As � increases,
the Yukawa OCP changes from a nearly collisionless gaseous
regime for � � 1 through an increasingly correlated liquidlike
regime to the crystallization into a lattice at �m(κ). The values
of �m(κ) considered in the following are those reported in
Ref. [2].

To calculate the self-diffusion coefficient, we have per-
formed molecular-dynamics simulations for 10 values of κ

in the range of 0 � κ � 4 and, for a given κ , for 15 significant
values of � in the range of 0.1 � � � �m(κ). Our MD
simulations are based on a parallel implementation of the
particle-particle particle-mesh algorithm that simultaneously
treats long- and short-range encounters and allows us to
treat both small and large κ values (i.e., long- and short-
range interactions) with equal accuracy. The self-diffusion
coefficient is obtained using D = kBT

m

∫ ∞
0 Z(t), where Z(t) is

the normalized velocity autocorrelation function of the species
considered. The calculations are performed with enough
particles (5000 � N � 200 000) over long enough time scales
to ensure convergence with a statistical uncertainty of at most
∼5% at the smallest couplings (<1% elsewhere).
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The interpolation formula for D(κ,�) or, more specifically,
for the dimensionless quantity D∗ = D/a2ωp, was obtained
by least-squares fitting of the MD data. As discussed in detail
in Ref. [1], the model is made of two interpolating formulas
that are applicable at small and large couplings, respectively,
as follows. In the gaslike small coupling region � � �∗, the
model extends the popular Chapman-Spitzer (CS) result as
follows:

D∗(κ,�) =
√

π

3

1

α(κ)

1

�5/2 ln �(κ,�)
, (1)

in terms of the generalized Coulomb logarithm,

ln �(κ,�) = ln

(
1 + C(κ)

λD

rL

)
= ln

(
1 + C(κ)√

3�3/2

)
.

As discussed in Ref. [1], the factor α is a correction to
the fact that the CS result corresponds to a single Sonine
polynomial approximation in the Chapman-Enskog solution
of the plasma kinetic equation. The factor C is a correction
to the ratio of largest to smallest impact parameters, namely,
the Debye length λD =

√
4πq2n/kBT and the distance of

closest approach rL = q2/kBT , which are usually introduced
somewhat arbitrarily to cut off the divergent collision integrals
arising because of the long-range nature of the Coulomb
interaction. Here, α(κ) and C(κ) are fitting parameters,

α(κ) =
√

3

π

1

α0 + α1κα2
, C(κ) = c0 + c1erf(c2κ

c3 ),

with

α0 = 1.559 73, α1 = 1.109 41, α2 = 1.369 09,

and

c0 = 2.206 89, c1 = 1.351 594,

c2 = 1.571 38, c3 = 3.341 87.

As discussed in [1], the effective collision frequency is given
by

ν(κ,�)/ν0 = α(κ) ln

(
1 + C(κ)√

3�3/2

)
,

where ν0 = 4
3

√
π
m

nq4

(kBT )3/2 .
In the strongly coupled liquidlike regime, self-diffusion

is modeled in terms of thermally activated jumps between
equilibrium positions separated by an energy barrier (the so-
called cage model) and reads

D∗ = A(κ)

�
e−B(κ)�. (2)

047401-11539-3755/2012/86(4)/047401(2) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.86.047401


BRIEF REPORTS PHYSICAL REVIEW E 86, 047401 (2012)

FIG. 1. (Color online) Self-diffusion coefficient D∗ = D/a2ωp of the YOCP vs coupling � for various κ values as obtained from circles:
MD along with the interpolation formulas (1) and (2), respectively, shown by the dashed and solid lines.

As described in Ref. [1], A and B are related to the frequency
of jumps from cage to cage [A is related to the transmission
coefficient, and B is related to the depth (activation energy) of
the cage]. We propose the following parametrization:

A(κ) = a0 + a1κ
a2 , B(κ) = b0 exp(−b1κ

b2 ),

with

a0 = 1.525, a1 = 0.167, a2 = 2.256 36,

and

b0 = 0.0081, b1 = 0.292 124, b2 = 1.746 59.

Figure 1 shows our MD results for the self-diffusion coefficient
D with 0.075 � � � �m along with the model described.
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