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Impulsive correction to the elastic moduli obtained using the stress-fluctuation formalism in systems
with truncated pair potential
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The truncation of a pair potential at a distance rc is well known to imply, in general, an impulsive correction
to the pressure and other moments of the first derivatives of the potential. That, depending on rc, the truncation
may also be of relevance to higher derivatives is shown theoretically for the Born contributions to the elastic
moduli obtained using the stress-fluctuation formalism in d dimensions. Focusing on isotropic liquids for which
the shear modulus G must vanish by construction, the predicted corrections are tested numerically for binary
mixtures and polydisperse Lennard-Jones beads in, respectively, d = 3 and 2 dimensions. Both models being
glass formers, we comment briefly on the temperature (T ) dependence of the (corrected) shear modulus G(T )
around the glass transition temperature Tg.
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I. INTRODUCTION

Background. It is common practice in computational
condensed matter physics [1–3] to truncate a pair interaction
potential U (r), with r being the distance between two particles
i and j , at a conveniently chosen cutoff rc. This allows
us to reduce the number of interactions to be computed,
and energy or force calculations become O(n) processes
where n denotes the particle number. However, the truncation
also introduces technical difficulties, e.g., instabilities in the
numerical solution of differential equations as well studied,
especially for the molecular dynamics (MD) method [1,4]. Let
us label the interaction between two particles i < j by an index
l. For simplicity of the presentation and without restricting
much in practice the generality of our results, we assume the
following:

(i) the potential U (r) is short ranged, i.e., that it decays
within a few particle diameters;

(ii) it scales as U (r) ≡ u(s) with the reduced dimensionless
distance s = r/σl , where σl characterizes the length scale of
the interaction l;

(iii) the same reduced cutoff sc = rc/σl is set for all
interactions l.
For instance, for monodisperse particles with constant diame-
ter σ , as for the standard Lennard-Jones (LJ) potential [1],

uLJ(s) = 4ε

(
1

s12
− 1

s6

)
, (1)

the scaling variable becomes s = r/σ and the reduced cutoff
sc = rc/σ . The effect of introducing sc is to replace u(s) by
the truncated potential

ut(s) = u(s)H (sc − s), (2)

with H (s) being the Heaviside function [5]. Even if Eq. (2) is
taken by definition as the new system Hamiltonian, it is well
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known that impulsive corrections at the cutoff have to be taken
into account in general for the pressure P and other moments
of the first derivatives of the potential [2]. These corrections
can be avoided by considering a properly shifted potential [2]

us(s) = [u(s) − u(sc)] H (sc − s) (3)

as emphasized also in Sec. II A.
Goal of presented work. In this paper, we wish to examine

the consequences of Eq. (3) on quantities involving second
(and higher) derivatives of the potential. For these quantities,
the standard shifting of a truncated potential is shown to
be insufficient in general to avoid impulsive corrections.
We demonstrate here that this is particulary the case for the
Born contribution C

αβγ δ

B (defined in the following) to the
elastic moduli computed using the stress-fluctuation formalism
described in detail in the literature [6–19]. This should be
of importance for the precise localization of the transition
between different thermodynamic phases by means of the
elastic moduli, especially for liquid/sol (G = 0) to solid (G >

0) transitions in network forming systems where the shear
modulus G plays the role of an order parameter [20]. Examples
of current experimental and computational interest include the
glass transition of colloidal or polymer liquids [18,21–26],
colloidal gels [27], hyperbranched polymer chains with sticky
end groups [28], or bridged networks of telechelic polymers
in water-oil emulsions [29,30].

Outline. The paper is organized as follows: After recapit-
ulating in Sec. II A the known corrections for the pressure
and similar first derivatives of the potential, the impulsive
correction for the general Born contribution C

αβγ δ

B is given
in Sec. II B. We describe then in Sec. II C the corrections
on the compression modulus K and the shear modulus G in
isotropic systems. We comment on polydispersity effects and
mixed potentials in Sec. II D. Our results are reexpressed in
terms of the radial pair distribution function g(s) in Sec. II E,
which allows us to predict the asymptotic behavior for large sc.
Section III gives some technical details on the two numerical
model systems [17,31,32] in d = 3 and 2 dimensions used to
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test our predictions. This test is described in Sec. IV. We focus
there on the high-temperature liquid regime of both models
where the shear modulus G must vanish [6,33] since this
provides a clear reference point for verifying the predicted
corrections. Our main results are summarized in Sec. V A and
an outlook on related issues is given in Sec. V B. Since both
numerical models considered are well-known glass formers,
we comment briefly in Sec. V C on ongoing simulations
[34] investigating the shear modulus G(T ) as a function of
temperature T around the glass transition temperature Tg. Such
a characterization is of considerable current interest due to the
qualitatively different theoretical suggestions put forward by
mode-coupling theory (MCT) predicting a discontinuous jump
[21,23,25] and by replica theory [26] implying a continuous
transition [22,24].

II. THEORETICAL PREDICTIONS

A. Reminder

Truncated potential. As usual, for pairwise additive inter-
actions the mean pressure P = Pid + Pex may be obtained as
the sum of the ideal kinetic contribution Pid = kBTρ and the
excess pressure contribution [1,2]

Pex = 〈P̂ex〉 = − 1

dV

∑
l

〈slu
′
t(sl)〉 (4)

with ρ = n/V being the number density, n the particle number,
V the d-dimensional volume, P̂ex the instantaneous pressure,
and 〈. . .〉 indicating the thermal average over the configuration
ensemble. (A prime denotes a derivative of a function with
respect to its argument.) By taking the derivative of the
truncated potential

u′
t(s) = u′(s)H (sc − s) − u(s)δ(s − sc), (5)

the excess pressure may be written as the sum Pex =
P̃ex + 	Pex of an uncorrected (bare) contribution P̃ex and an
impulsive correction 	Pex. The latter correction is obtained
numerically from [2]

	Pex = lim
s→s−

c

h1(s)with

(6)

h1(s) ≡ 1

dV

∑
l

〈slu(sl) δ(sl − s)〉

being a weighted histogram. In practice, the proper limit s →
s−

c may be replaced by setting s = sc in h1(s).
Shifted potential. The impulsive correction related to first

derivatives of the truncated potential can be avoided by
considering the shifted potential us(s) [Eq. (3)] since u′

s(s) =
u′(s)H (sc − s). With this choice, no impulsive correction
arises either for similar observables such as, e.g., moments
of the instantaneous excess pressure tensor

P̂ αβ
ex = − 1

V

∑
l

sα
l

∂us(sl)

∂s
β

l

= − 1

V

∑
l

slu
′
s(sl) nα

l n
β

l , (7)

where sα
l stands for the spatial component α of the reduced

distance between the particles and nα
l = sα

l /sl for the corre-

sponding component of the normalized distance vector. Greek
letters are used for the spatial coordinates α,β,γ,δ = 1, . . . ,d.
(Note that P̂ex = Tr[P̂ αβ

ex ]/d.) Specifically, if the potential is
shifted, all impulsive corrections are avoided for the excess
pressure fluctuations

C
αβγ δ

F ≡ −βV
(〈
P̂ αβ

ex P̂ γ δ
ex

〉 − 〈
P̂ αβ

ex

〉 〈
P̂ γ δ

ex

〉)
(8)

(β ≡ 1/kBT being the inverse temperature), which give impor-
tant contributions, especially for polymer-type liquids [18,19]
and amorphous solids [13,16] to the elastic moduli computed
using the stress-fluctuation formalism [2,12]. Please note that
since the stress is a two-point correlation function between the
particles of the system, C

αβγ δ

F contains also in general three-
and four-point correlations.

B. Key point made

Correction to the Born term. Another important contribu-
tion to the elastic moduli is given by the Born term C

αβγ δ

B ,
already mentioned in the Introduction [35]. Being a moment
of the first and the second derivatives of the potential, it is
defined as [2,7,12,16,18,32]

C
αβγ δ

B = 1

V

∑
l

〈[
s2
l u

′′
s (sl) − slu

′
s(sl)

]
nα

l n
β

l n
γ

l nδ
l

〉
(9)

using the notations given above. For solids with well-defined
reference positions and displacement fields, the Born contri-
bution is known to describe the energy change due to an affine
response to an imposed homogeneous strain [12,13,16,32].
Assuming now a truncated and shifted potential, the impulsive
correction 	C

αβγ δ

B to C
αβγ δ

B = C̃
αβγ δ

B + 	C
αβγ δ

B is simply
obtained using

u′′
s (s) = u′′(s)H (sc − s) − u′(s)δ(s − sc), (10)

which yields

	C
αβγ δ

B = − lim
s→s−

c

h
αβγ δ

2 (s) with

(11)

h
αβγ δ

2 (s) ≡ 1

V

∑
l

〈
s2
l u

′(sl)n
α
l n

β

l n
γ

l nδ
l δ(sl − s)

〉
.

General impulsive corrections. More generally, one might
consider a property

A = 1

V

∑
l

〈f (sl)u
(n)
s (sl)〉 (12)

with f (s) being a specified function and (n) denoting the nth
derivative of the shifted potential us(s). Let us further suppose
that all potential derivatives up to the (n − 2)th one do vanish
at the cutoff sc. It thus follows that A = Ã + 	A takes an
impulsive correction

	A = − lim
s→s−

c

hn(s)with

(13)

hn(s) ≡ 1

V

∑
l

〈f (sl)u
(n−1)(sl) δ(sl − s)〉

being the relevant histogram.
Generalized shifting. Obviously, the original potential can

not only be shifted by a constant u(sc), but by a polynomial
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of s to make the first and arbitrarily high derivatives of the
potential vanish at s = sc. In this way, all impulsive corrections
could be avoided in principle. Since discontinuous forces at
the cutoff may cause problems in MD simulations, a number
of studies use, e.g., a “shifted-force potential” where a linear
term is added to the potential [1,4]. The difference between
the original potential and the generalized shifted potential
removing the cutoff discontinuities means, of course, that
the computed properties deviate to some extent from the
original model. Only if the generalized shifting is weak, one
may recover the correct thermodynamic properties using a
first-order perturbation scheme [1]. Since the (simply) shifted
potential us(s) [Eq. (3)] is anyway the most common choice in
simulations [8–10,13–19,31,32], we restrict the presentation
on this case and demonstrate how the impulsive correction
associated to the nonvanishing u′

s(s
−
c ) can be computed.

C. Isotropic systems

Lamé coefficients. In order to show that the above men-
tioned impulsive corrections may be of relevance computa-
tionally, we focus now on homogeneous and isotropic systems.
It is assumed that not only the material properties, but also
the external load is isotropic, i.e., the mean imposed pressure
tensor is given by [36]〈

P̂ αβ
ex

〉 = P δαβ. (14)

The two elastic Lamé coefficients λ and μ [7] characterizing
their elastic properties may then be computed numerically
using [18,19]

λ = λF + λB,
(15)

μ − Pid = μF + μB,

where the only contribution due to the kinetic energy of the
particles is contained by the ideal gas pressure Pid indicated for
μ [37]. The first contributions indicated on the right-hand side
of Eq. (15) are the excess pressure fluctuation contributions
λF and μF, which may be obtained from the general C

αβγ δ

F
by setting, e.g., α = β = 1 and γ = δ = 2 for λF and α =
γ = 1 and β = δ = 2 for μF characterizing the shear stress
fluctuations. The “Born-Lamé coefficients” [18]

λB ≡ μB ≡ 1

d(d + 2)V

∑
l

〈
s2
l u

′′(sl) − slu
′(sl)

〉
(16)

may be obtained from the general Born terms C
αβγ δ

B by
setting, e.g., α = γ = 1 and β = δ = 2. The d-dependent
prefactor stems from the assumed isotropy of the system and
the mathematical formula [5]

〈(
nα

l n
β

l

)2〉 = 1

d(d + 2)
(1 + 2δαβ) (17)

(δαβ being the Kronecker symbol [5]) for the components of a
unit vector in d dimensions pointing into arbitrary directions.
Equation (11) implies then an impulsive correction

	λB = 	μB = − lim
s→s−

c

h2(s)with

(18)

h2(s) ≡ 1

d(d + 2)V

∑
l

〈
s2
l u

′(sl) δ(sl − s)
〉
.

The histogram h2(s) is called below the “weighted (radial) pair
distribution function” since it is related to the standard radial
pair distribution function g(r) [33], as further discussed in
Sec. II E.

Compression and shear modulus. Instead of using the Lamé
coefficients it is from the experimental point of view more
natural to characterize isotropic bodies using the compression
modulus K and the shear modulus G. The latter moduli may
be expressed as [7]

K = (λ + P ) + 2

d
G, (19)

G = μ − P = μB + μF − Pex (20)

with P = Pid + Pex being the total imposed mean pressure. We
follow here the notation of Ref. [18] to emphasize the explicit
pressure dependence, which is often (incorrectly) omitted as
clearly pointed out by Birch [38] and Wallace [7]. Using
symmetry considerations, Eq. (19) can be reformulated to a
numerically more straightforward expression first stated (to
our knowledge) by Rowlinson [1,6]:

K = P + ηB − ηF. (21)

Here, the second term ηB stands for the so-called
“hypervirial” [1]

ηB ≡ λB + 2

d
(μB − Pex) (22)

= 1

d2V

∑
l

〈
s2
l u

′′
s (sl) + slu

′
s(sl)

〉
(23)

in agreement with Eqs. (4) and (16). The last term

ηF ≡ (−λF) + 2

d
(−μF) (24)

= βV
(〈
P̂ 2

ex

〉 − 〈P̂ex〉2
)

(25)

characterizes the fluctuation of the excess pressure P̂ex. As
one expects, kinetic elastic contributions terms do not enter
explicitly for the shear modulus G in Eq. (20). (An ideal gas
does not have a finite shear modulus.) Since only the Born
contributions λB = μB or ηB require a cutoff correction, this
implies K = K̃ + 	K and G = G̃ + 	G with K̃ and G̃ being
the uncorrected (bare) moduli and

	K = 	λB + 2

d
	μB = 2 + d

d
	μB, (26)

	G = 	μB (27)

being the impulsive corrections. We shall test these predictions
numerically in Sec. IV.

D. Polydispersity and mixed potentials

As stated in the Introduction, we assume throughout this
work the scaling U (r) ≡ u(s) of the pair potential in terms
of the reduced distance s = r/σl . This is done not only for
dimensional reasons but, more importantly, to describe a broad
range of model systems for mixtures and polydisperse systems
where σl may differ for each interaction l. Moreover, the type
and/or the parameter set of the pair potential may vary for
different interactions. For such mixed potentials u(s), ut(s)
and us(s) and their derivatives take in principle an explicit
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H. XU, J. P. WITTMER, P. POLIŃSKA, AND J. BASCHNAGEL PHYSICAL REVIEW E 86, 046705 (2012)

index l, i.e., one should write ul(s), ut,l(s), us,l(s), and so on.
This is not done here to keep a concise notation. For example,
one might wish to consider the following:

(i) a generic polymer bead-spring model where some
interactions l describe the bonding between monomers along
the chain (which are normally not truncated and need not to
be corrected) and the truncated excluded volume interactions
between the monomers [19];

(ii) the generalization of the monodisperse LJ potential
[Eq. (1)] to a mixture or polydisperse system with

ul(s) = 4εl(s
−12 − s−6) with s = r/σl, (28)

where εl and σl are fixed for each interaction l. In practice,
each particle i may be characterized by an energy scale Ei

and a “diameter” Di . The interaction parameters εl(Ei,Ej )
and σl(Di,Dj ) are then given in terms of specified functions
of these properties [32];

(iii) the extensively studied Kob-Andersen (KA) model for
binary mixtures of beads of types A and B [31], a particular
case of Eq. (28) with fixed interaction ranges σAA, σBB, and
σAB and energy parameters εAA, εBB, and εAB characterizing,
respectively, AA, BB, and AB contacts;

(iv) a network forming emulsion of oil droplets in water
bridged by telechelic polymers where the oil droplets are
modeled as big LJ spheres, the telechelic polymers by a
bead-spring model with a soluble “spacer” in the middle of the
chain, and insoluble end groups (“stickers”) strongly attracted
by the oil droplets [29,30]. Assuming sufficiently strong (in
strength, number, and lifetime) sticker-oil interactions, such a
system behaves as a soft solid with a finite shear modulus G (at
least for a fixed finite sampling time), which may be probed,
at least in principle, using Eq. (20).

The impulsive corrections given in Eq. (6) for the pressure
P , in Eq. (11) for the general Born term C

αβγ δ

B , and in
Eq. (18) for the Born-Lamé coefficients λB = μB have been
stated in terms of, respectively, the weighted histograms
h1(s), h

αβγ δ

2 (s), and h2(s). These expressions remain valid
for explicitly l-dependent potentials and, from the numerical
point of view, this is all that is needed. The direct computation
of these histograms remains in all cases straightforward, as
illustrated in Sec. IV A.

E. Radial pair distribution function g(r)

Notations. For isotropic systems, it is common practice to
reexpress correlations and histograms in terms of the radial pair
distribution function g(r) [6,33]. This is also of interest here
since for large cutoff distances, the pair distribution function
must drop out, g(rc) → 1, allowing us thus to predict the
corrections in this limit. Let us remind first that, using the
Gamma function (x) [5], the (d − 1)-dimensional surface of
a d sphere of radius r is given by

A(r) = 2πd/2

(d/2)
rd−1 for d = 2,3, . . . (29)

and similarly for the (dimensionless) surface A(s) using the
reduced distance s.

Monodisperse interactions. For strictly monodisperse par-
ticles and similar interactions of constant interaction range σ ,

it is seen that Eq. (6) for the pressure correction becomes

	Pex = 1

2

1

d
ρ2σdA(sc)scu(sc)g(sc), (30)

where the factor 1/2 assures that every interaction is only
counted once. For the LJ potential [Eq. (1)], this leads to

	Pex = − 4πd/2

(d/2)d
(ρσd )2 ε

σ d
sd−6

c

(
1 − s−6

c

)
g(sc). (31)

Please note that Eq. (3.2.7) given in Ref. [2] is recovered by
setting d = 3 and assuming g(sc) ≈ 1. Similarly, one obtains
from Eq. (18) the correction

	μB = −1

2

1

d(d + 2)
ρ2σdA(sc)s2

c u
′(sc)g(sc) (32)

for the Born-Lamé coefficient. For a LJ potential, this becomes

	μB = − 24πd/2

d(d + 2)(d/2)
(ρσd )2 ε

σ d
fLJ(sc)g(sc), (33)

where we have defined

fLJ(s) ≡ [1 − (s0/s)6]/s6−d (34)

with s0 = 21/6 being the minimum of the potential. Note
that 	μB vanishes for s → s0. For sufficiently large cutoff
distances where g(sc) ≈ 1, the correction decays as

	μB ∼ −A(sc)s2
c u

′(sc), (35)

e.g., 	μB ∼ −1/s6−d
c for a LJ potential. (Only for d < 6 the

cutoff correction vanishes in the large-s limit.) This asymptotic
behavior also holds for the more complicated cases discussed
in the following.

Mixtures. Many experimentally relevant systems have
mixed potentials, such as the KA model for binary mixtures
sketched above. In general, the interaction potential Uab(r) =
uab(s) between beads of two species a and b takes different
energy parameters, which causes different weights at the
cutoff depending on which particles interact. The impulsive
corrections of such mixtures are readily obtained by linear
superposition of Eq. (32) for different contributions (a,b).
Let ca = ρa/ρ denote the mole fraction of species a, σab the
interaction range between a bead of type a and a bead of type
b, and gab(s) the respective radial pair distribution function.
The impulsive correction to the Born-Lamé coefficient thus
becomes

	μB = −1

2

1

d(d + 2)
ρ2A(sc)s2

c

×
∑

a

∑
b

cacbσ
d
abu

′
ab(sc) gab(sc), (36)

where we have used that for all types of interaction, we have
the same reduced cutoff sc.

Let us now assume a mixture described by the generalized
LJ potential uab(s) = 4εab(1/s12 − 1/s6) with s = r/σab. A
reference energy εref and a reference interaction range σref may
arbitrarily be defined using, say, the interaction of two beads
of type a = b = 1, i.e., εref ≡ ε11 and σref ≡ σ11. Defining the
dimensionless ratios wab ≡ εab/εref and vab = (σab/σref)d , we
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may thus rewrite the general Eq. (36) as

	μB = − 24πd/2

d(d + 2)(d/2)

(
ρσd

ref

)2 εref

σd
ref

fLJ(sc)

×
∑

a

∑
b

cacbvabwab gab(sc). (37)

Since gab(sc) → 1 for large sc, the function fLJ(sc) determines
the scaling as already stated above [Eq. (35)].

Continuous polydispersity. We turn now to systems with a
continuous polydispersity as in the second model investigated
numerically below. Let us assume that each bead is charac-
terized by a bead diameter D which is distributed according
to a well-defined normalized distribution ct with t = D/σref

being a reduced bead diameter with respect to some reference
length σref . To be specific, we shall assume a generalized LJ
potential [Eq. (28)], where the interaction range σtt ′ and the
energy scale εtt ′ between two beads are uniquely specified by
the two reduced diameters t and t ′. Defining wtt ′ = εtt ′/εref ,
vtt ′ = (σtt ′/σref)d and using the radial pair distribution function
gtt ′(s) for two beads of reduced diameter t and t ′, the double
sum in Eq. (37) can be rewritten as the double integral

	μB = − 24πd/2

d(d + 2)(d/2)

(
ρσd

ref

)2 εref

σd
ref

fLJ(sc)

×
∫

dt

∫
dt ′ ctct ′vtt ′wtt ′ gtt ′(sc). (38)

In order to determine 	μB from Eq. (38), one needs to
prescribe the laws for ct , σtt ′ , and εtt ′ . In the large-sc limit,
the double integral becomes in any case constant, i.e., we have
again 	μB ∼ −fLJ(sc) ∼ −1/s6−d

c .

III. COMPUTATIONAL ISSUES

To illustrate the above predictions, we present computa-
tional data using two extremely well-studied models of simple
liquids at high temperatures, which are described in detail
elsewhere [17,31,32]:

(i) The already mentioned KA model [31] for binary
mixtures of LJ beads in d = 3 has been investigated by
means of Langevin MD simulation [2] imposing a temperature
T = 0.8 for n = nA + nB = 6912 beads per simulation box,
a total density ρ = 1.0, and molar fractions ca = nA/n = 0.8
and cb = nB/n = 0.2 for both types of beads A and B. As in
Ref. [31], we set σAA = 1.0σ , σBB = 0.88σ , and σAB = 0.8σ

for the interaction range and εAA = 1.0ε, εBB = 0.5ε, and
εAB = 1.5ε for the LJ energy scales. Only data for the usual
cutoff sc = 2.5 are presented.

(ii) Using Monte Carlo (MC) simulations [1,2], we have
computed in d = 2 dimensions a specific case of the general-
ized LJ potential [Eq. (28)], where all interaction energies
are identical, εl = ε, and the interaction range is set by
the Lorentz rule σl = (Di + Dj )/2 [33] with Di and Dj

being the diameters of the interacting particles. Following
Ref. [32], the bead diameters of this polydisperse LJ (pLJ)
model are uniformly distributed between 0.8σ and 1.2σ . For
the examples reported in Sec. IV, we have used a temperature
T = 1.0, n = 10 000 beads per box, and a density ρ ≈ 0.72.

We use LJ units throughout this work, and Boltzmann’s
constant kB is set to unity. For the indicated parame-

TABLE I. Some properties of pLJ beads at temperature T = 1
and density ρ ≈ 0.72 for several computed values of the reduced
cutoff distance sc/s0 with s0 = 21/6 being the minimum of the
potential: energy per bead e, total pressure P = Pid + Pex, uncor-
rected compression modulus K̃ , corrected compression modulus
K = K̃ + 2	μB, bare shear modulus G̃, and impulsive correction
	μB obtained from the histogram h2(s) at s = sc. The corrected
shear modulus G = G̃ + 	G vanishes as it should. The last column
refers to the compression modulus K obtained using Eq. (39) for
isobaric ensembles kept at the same pressure P (third column).

sc/s0 eβ Pβ/ρ K̃β/ρ Kβ/ρ G̃β/ρ 	μBβ/ρ Kβ/ρ

0.9 0.255 5.08 −20.4 17.7 −18.95 19.05 17.4
1.0 0.523 6.01 22.5 22.5 0.03 0.03 22.4
1.1 0.176 5.46 24.2 20.4 1.97 −1.92 20.6
1.5 −1.79 3.61 17.6 16.7 0.36 −0.43 16.8
2.0 −2.43 3.17 16.7 16.1 0.31 −0.32 16.0
2.5 −2.64 3.01 15.8 15.6 0.08 −0.10 15.7
3.0 −2.72 2.95 15.6 15.5 0.08 −0.06 15.5
3.5 −2.75 2.93 15.6 15.5 0.02 −0.03 15.3
4.0 −2.77 2.92 15.7 15.7 0.03 −0.02 15.5

ter choices, both systems correspond to isotropic liquids.
Table I summarizes various properties of the pLJ model for
different reduced cutoff distances sc/s0. Considering thermo-
dynamic properties per particle (rather than per volume), we
have made the data dimensionless by rescaling with inverse
temperature β and density ρ. While we keep the temperature
T constant for each model in Sec. IV, temperature effects are
briefly commented on in Sec. V C given at the end of the paper.

IV. COMPUTATIONAL RESULTS

A. Weighted pair distribution function h2(s)

The weighted radial pair distribution function h2(s)
[Eq. (18)] is presented in Fig. 1. Several cutoff distances sc

are given for the pLJ model, but for clarity only for distances
s � sc. For the KA model, only one cutoff is given, but this
also for s > sc. Note that albeit different sc for each model
correspond strictly speaking to different state points, as better
seen from the energies per particle e or total pressures P

indicated in Table I, the histograms vary only weakly with
sc. Strong differences become only apparent for very small
sc as shown for sc = 0.9s0 in the inset. One can thus use
the histogram obtained for one sc to anticipate the impulsive
correction for a different cutoff. Note that for large distances
corresponding to an attractive interaction, we have h2(s) > 0
(main panel). Obviously, h2(s) vanishes at the minimum of the
potential s = s0 and for very large distances s. Since g(s) ≈ 1
in the latter limit, the histogram h2(s) is given (up to a known
prefactor) by sd+1u′

s(s). As one expects, the decay is faster for
the d = 2 data than for the KA mixtures in d = 3 since the
phase volume at the cutoff is larger for the latter systems. Since
all histograms are rather smooth, one may simply set s = sc

for obtaining 	μB from h2(s) instead of properly taking the
limit s → s−

c .
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FIG. 1. (Color online) Weighted radial pair distribution function
h2(s)β/ρ with s = r/σl being the reduced distance between two
beads i and j . Main panel: KA mixtures in d = 3 (bold line) and pLJ
beads in d = 2 (open symbols) for large reduced distances s > s0

where the potential is attractive. The filled triangle corresponds to
the shear modulus G̃ computed using Eq. (20) for the KA system
not taking into account the impulsive correction. Inset: pLJ model for
s � s0 where h2(s) becomes strongly negative.

B. Compression modulus K

The compression modulus K may be obtained from Eq. (19)
or, equivalently, using the Rowlinson formula (21) [39]. All
our systems are highly incompressible, i.e., the compression
modulus K is large as usual in condensed matter systems, and it
is thus difficult to demonstrate the small correction predicted
by Eq. (26). For the KA model, we obtain, e.g., 	Kβ/ρ ≈
−(5/4) × 0.69 ≈ −1.2, which compared to the uncorrected
estimate K̃β/ρ ≈ 21.9 is small.

More importantly, it is not easy to obtain an independent
and precise K value for canonical ensembles of mixtures and
polydisperse systems using, e.g., the total particle structure
factor [19,33]. For the pLJ model, we have thus computed
K directly from the volume fluctuations δV in the isobaric
ensemble [1]

K = kBT
〈V 〉

〈δ2V 〉 , (39)

where we impose the same (mean) pressure P as for the
corresponding canonical ensemble. As described in Ref.
[1], proposed volume fluctuations of the simulation box are
accepted or rejected according to a METROPOLIS MC scheme.
As may be seen from the last column indicated in Table I,
this yields within statistical accuracy the same values as the
stress-fluctuation formula (19), if the impulsion correction is
taken into account. Unfortunately, for larger cutoffs, our error
bars (not shown) become too large to confirm the correction.
The most striking example, where Eq. (26) can be shown
to work, is the case of the small cutoff sc = 0.9s0: Using
Eq. (19), an impossible negative value K̃β/ρ ≈ −20.4 is
obtained. As may be seen from the inset in Fig. 1, one gets
	μBβ/ρ ≈ 19.1 from the weighted histogram h2(s). Taking
the correction (26) into account, this yields Kβ/ρ ≈ 17.7,
which is consistent with the value 17.4 obtained using the
strain fluctuation formula (39).
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FIG. 2. (Color online) Shear modulus G and impulsive correction
−	μB for the pLJ model vs the reduced cutoff distance sc/s0. The
uncorrected shear modulus G̃ (open squares) has been obtained using
the stress-fluctuation formula (20), and the correction term (spheres)
from the histogram h2(s), Eq. (18). The solid lines indicate Eq. (38)
where we have set gtt ′ (sc) = 1. Main panel: linear representation
showing that G = G̃ + 	μB (filled squares) vanishes as predicted
[Eq. (27)]. Inset: double-logarithmic representation emphasizing the
asymptotic power-law decay for large sc [Eq. (35)], as indicated by
the bold dashed line.

C. Shear modulus G

Asymptotic limit for large sampling times. Since all our
systems are liquids, the shear modulus G should of course
vanish, at least in the thermodynamic limit for a sufficiently
long sampling time. We have thus a clear reference and for
this reason G is highly suitable to test our predictions. As
can be seen from the solid triangle indicated in Fig. 1 for
the KA mixtures with sc = 2.5, we obtain G̃β/ρ ≈ 0.65 if
the impulsive correction for the Born term is not taken into
account. As also shown by the figure (thin line), this deviation
equals h2(sc = 2.5)β/ρ ≈ 0.69 as predicted.

The same behavior is seen from Fig. 2 for pLJ beads for a
broad range of cutoff distances sc where the open squares refer
to the uncorrected G̃ and the filled squares to G obtained using
Eq. (27). The solid lines indicated show Eq. (38). Focusing on
the scaling for large sc, we have set gtt ′(sc) = 1 in the double
integral which (under this assumption) is close to unity. Note
that the correction −	μB (open spheres) is obtained with
much higher numerical precision than it was possible for G̃.
The error bars (not indicated) become larger than the signal
below G̃β/ρ ≈ 0.05.

Sampling time dependence. Figure 3 gives additional
information on the shear modulus G(t) plotted as a function
of the number t of MC steps (MCS) for pLJ beads. Using time
series where instantaneous properties relevant for the moments
are written down every 10 MCS for total trajectories of length
107 MCS, all reported properties have been averaged using
standard gliding averages [1], i.e., we compute mean values
and fluctuations for a given time interval [t0,t1 = t0 + t] and
average over all possible intervals of length t . For sc = 0.9s0,
where 	μBβ/ρ ≈ 17.1, the uncorrected data is negative and
can not be represented. Note that G = G̃ for sc = 1.0s0 since
	μB = 0 for sc = 1.0s0 [Eq. (18)]. Since 	μB is very small
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FIG. 3. (Color online) Shear modulus G for pLJ beads in d = 2
for different sc as a function of the sampling time t given in units
of MC steps (MCS) of the local MC jumps used. The vertical axis
is made dimensionless by means of a factor β/ρ. Filled symbols
refer to the uncorrected G̃(t). The horizontal lines indicate −	μB

obtained from the histograms h2(s) for three cutoffs as indicated in the
Table I. The dashed slope characterizes the decay of (the corrected)
G(t) with time.

for sc = 4.0s0, only the corrected values are represented. The
filled symbols refer to the uncorrected shear modulus G̃(t)
for sc = 1.1s0, 1.5s0, and 2.5s0, which are seen to approach
for large times the predicted correction −	μB taken from the
Table I (horizontal lines). If corrected, all data sets vanish
properly with time. [The noise becomes again too large below
G(t)β/ρ ≈ 0.05.]

Interestingly, neither μB nor Pex do (essentially) depend
on the sampling time t , while the fluctuation contribution
−μF(t) approaches (the corrected) μB − Pex from below (not
shown). The corrected shear modulus G(t) thus decreases
monotonously with time. As can be seen from Fig. 3, G(t)
decays roughly as the power-law slope −1 indicated by the
dashed line. Exactly the same behavior has been observed for
the KA model in d = 3 (not shown). Apparently, G(t) decays
quite generally inversely as the mean-square displacement h(t)
of the beads in the free-diffusion limit h(t) ∼ t . We remind
that the same scaling G(t) ∼ 1/h(t) has also been reported for
a bead-spring polymer model without impulsive corrections
(sc = s0) [19].

V. DISCUSSION

A. Summary

Impulsive correction. We have emphasized in this study
that an impulsive correction to the Born contribution C

αβγ δ

B
of the elastic moduli must arise if the interaction potential
is truncated and shifted [Eq. (3)], with a nonvanishing first
derivative at the cutoff. To test our theoretical predictions, we
have computed the elastic moduli of isotropic liquids in d = 3
and 2 dimensions. Since for these systems the shear modulus
G must vanish by construction, this allows a precise numerical
verification for different reduced cutoff distances sc (Fig. 2).
It has been shown how the impulsive correction for mixtures
and polydisperse systems may be obtained from the weighted

histogram h2(s) which scales as h2(s) ∼ sd+1u′(s) for large
s. As one expects, the cutoff effect vanishes if sc is large
[Eq. (35)] or set to the minimum of the potential. It becomes
more important with increasing spatial dimension.

General validity of the stress-fluctuation formalism. It
should be reminded that the stress-fluctuation formula G =
μ − P = μB + μF − Pex and several other relations used
in this work for liquid systems were originally formulated
for solids assuming well-defined reference positions and
displacement fields [8,16]. By revisiting the derivation [6] for
the compression modulus K for simple liquids [Eq. (21)] for
general elastic moduli (as in fact already done by Lutsko [12]),
it can be seen that these assumptions can be relaxed and
especially Eq. (20) must hold quite generally for isotropic
systems [34]. One additional goal of the present paper was to
show numerically that the stress-fluctuation formalism yields
the right value (G = 0), once the impulsive correction has been
taken into account.

B. Further generalizations and related issues

The generalization of our results to
(i) other elastic moduli in anisotropic systems using the

more general impulsive correction [Eq. (11)];
(ii) observables related to even higher derivatives of the

potential [Eq. (13)];
(iii) local and inhomogeneous elastic moduli which have

been argued to be of relevance for the plastic failure under
external load [14,16,17];

(iv) more complicated interaction potentials, not necessarily
scaling simply with s = r/σl ;

(v) general nonpair interactions using the generalization
of the Born term derived by Ray [10] and studied, e.g.,
numerically by Yoshimoto et al. [15]
is straightforward and should be considered in the future [40].

C. Shear modulus near the glass transition

We are currently using the presented approach to char-
acterize as a function of temperature, imposed pressure,
and sampling time the elastic properties of the two models
presented here [34]. Preliminary results are shown in Fig. 4.
Following the procedure described in Ref. [18], the data have
been obtained for systems which are cooled through the glass
transition at constant pressure P , i.e., allowing first the volume
to fluctuate as in Sec. IV B [36,41]. The glass transition
temperature Tg of both systems is either known [31] or may be
determined, e.g., from the density ρ(T ) [18]. Imposing then
a constant (mean) temperature and a simulation box of fixed
volume and shape, the shear modulus is computed using the
stress-fluctuation formula (20) for the canonical ensemble. The
bare moduli G̃ (open squares and triangles) are clearly seen to
be finite for all T , while the corrected moduli G = G̃ + 	μB

vanish for all T > Tg. That this is indeed the case is better seen
from the half-logarithmic representation shown in the inset for
the KA model. Decreasing the temperature further below Tg,
the shear moduli are seen to increase rapidly for both models
[42]. As above for the compressibility K in Sec. IV B, we have
crosschecked the values obtained from the stress fluctuations in
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FIG. 4. (Color online) Shear modulus G as a function of tem-
perature T for the KA model (P ≈ 1, sc = 2.5, Tg ≈ 0.41) and the
pLJ model (P ≈ 2, sc = 2.0s0, Tg ≈ 0.27). The uncorrected values
are represented by open symbols, the corrected values by small filled
symbols. Main panel: the dashed line represents the shear modulus
obtained from the shear strain fluctuations in simulation boxes with
shape deformations, Eq. (40). Inset: half-logarithmic representation
for G(T ) for the KA model focusing on the behavior around Tg. The
transition becomes rather sharp if the impulsive correction is taken
into account as emphasized by the solid line indicating Eq. (41). Note
that −	μB (spheres) increases only weakly with decreasing T .

the canonical ensemble by directly measuring G from the shear
strain γ (in the xy plane) in deformable simulation boxes at
constant volume. As discussed in the literature [1,2,16], we use
a non-Euclidean metric tensor constructed from the so-called
h matrix describing the box shape, and change the shear strain
γ according to a METROPOLIS MC scheme [1] similar to the
changes of the box volume V in Sec. IV B. By imposing a zero
mean shear stress for the shear strain fluctuations, the modulus

G can be obtained from the thermodynamic formula

G = kBT /V

〈γ 2〉 − 〈γ 〉2
, (40)

which corresponds to Eq. (39) for volume fluctuations in the
isobaric ensemble [43]. As shown for the pLJ model by the
dashed line in the main panel of Fig. 4, this yields for all T , even
for deeply quenched glasses, within numerical accuracy the
same values as the stress-fluctuation formula if the impulsive
corrections are taken into account. As shown by the solid line
in the inset, the KA model is well fitted by a cusp singularity

G(T ) ≈ G0(1 − T/Tg)1/2forT < Tg (41)

with an empirical constant G0 ≈ 23. This suggests that the
transition is very sharp albeit continuous in agreement with
replica theory [22,24]. Note that the number of data points
close to Tg is, however, not sufficient to rule out completely
the additive offset suggested by MCT [21,25]. Thus, at present
we can not distinguish between different theoretical scenarios
proposed [21–25]. If a similar relation as Eq. (41) holds for
our two-dimensional model is currently also an open question.
(Especially, the latter systems need to be recomputed with
MD and sampling time effects have to be considered more
carefully.) In any case, it should be clear from Fig. 4 that
a high-precision numerical characterization of the scaling of
G(T ) around Tg necessitates the proper taking into account of
the impulsive corrections.
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[34] H. Xu, P. Polińska, J. Baschnagel, and J. P. Wittmer

(unpublished).
[35] Apart from the Born term C

αβγ δ

B and the stress-fluctuation term
C

αβγ δ

F , there is a kinetic contribution C
αβγ δ

K and in prestressed
systems (as in the systems considered numerically by us) an
explicit contribution from the applied stress to the experimen-
tally relevant elastic moduli resulting from an infinitesimal strain
applied to the reference state [2,7,18].

[36] For systems with finite mean shear stress, various stress-
fluctuation formulas must be changed and especially Eq. (20)
for the shear modulus G must be modified.

[37] The trivial kinetic energy contributions to the elastic moduli
are removed as far as possible from the presentation since MC
results are also considered here.

[38] F. Birch, J. Appl. Phys. 9, 279 (1938).
[39] If plotted as a function of the number of configurations sampled,

the compression modulus for both models is seen to decrease first
with sampling time t before leveling off at a finite value. Similar
behavior has been observed for polymeric systems [18,19].

[40] A similar, albeit very small, impulsive correction arises for
the “configurational temperature” being the ratio of the mean-
squared forces acting on the particles and the mean divergence
of these forces. See Eq. (7.2.11) of Ref. [33].

[41] For our low-temperature MC simulations, we use in addition
to the standard local jump moves both longitudinal and (more
importantly) transverse plane waves with wave vectors commen-
surate with the simulation box. The amplitudes of the collective
displacement fields for each wave vector are chosen as implied
by continuum theory. If such collective displacements are
included, the shear stress for one given quenched configuration
can be shown to be negligible as required [36].

[42] It is well known that two-point correlations, as measured by
the pair correlation function g(r), do barely change at the
glass transition [21]. Please note that the shear modulus G

computed according to Eq. (20) is a properly defined ther-
modynamic correlation function characterizing not only two-
point, but also three- and four-point correlations. Apparently,
these higher static correlations change qualitatively at the glass
transition.

[43] Since such a thermodynamic relation may be questioned for the
strongly frozen systems, we have also determined G using the
mechanical definition by linear regression from the observed
conjugated instantaneous shear strain and stress. This yields the
same values as Eq. (40).

046705-9

http://dx.doi.org/10.1103/PhysRevLett.105.015504
http://dx.doi.org/10.1103/PhysRevLett.107.105505
http://dx.doi.org/10.1063/1.4722343
http://dx.doi.org/10.1103/PhysRevLett.109.178301
http://dx.doi.org/10.1103/RevModPhys.82.789
http://dx.doi.org/10.1016/j.jnnfm.2007.06.007
http://dx.doi.org/10.1016/j.jnnfm.2007.06.007
http://dx.doi.org/10.1002/marc.201000473
http://dx.doi.org/10.1021/jp0113073
http://dx.doi.org/10.1103/PhysRevLett.91.015901
http://dx.doi.org/10.1103/PhysRevE.52.4134
http://dx.doi.org/10.1103/PhysRevB.66.174205
http://dx.doi.org/10.1103/PhysRevB.66.174205
http://dx.doi.org/10.1063/1.1710417



