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In this paper, a hybrid electrodynamics and kinetics numerical model based on the finite-difference time-domain
method and lattice Boltzmann method is presented for electromagnetic wave propagation in weakly ionized
hydrogen plasmas. In this framework, the multicomponent Bhatnagar-Gross-Krook collision model considering
both elastic and Coulomb collisions and the multicomponent force model based on the Guo model are introduced,
which supply a hyperfine description on the interaction between electromagnetic wave and weakly ionized
plasma. Cubic spline interpolation and mean filtering technique are separately introduced to solve the multiscalar
problem and enhance the physical quantities, which are polluted by numerical noise. Several simulations have
been implemented to validate our model. The numerical results are consistent with a simplified analytical model,
which demonstrates that this model can obtain satisfying numerical solutions successfully.
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I. INTRODUCTION

The complicated behavior of electromagnetic wave propa-
gation in weakly ionized plasma gas is becoming more and
more important because of the recent fast development of
plasma stealth technique (PST) [1,2]. As a kind of new concept
stealth technique, the PST uses magnetized or unmagnetized
cold plasma gas to avoid being detected by radar systems. The
PST has a series of advantages, such as wideband absorbing
ability, high absorbing efficiency, and low cost. In addition,
the shape of protected objects should not be modified. All
these advantages make the PST the focus of most researchers
in related areas. This situation will continue because of the
rapid development of practical PST [3,4]. As an essential
fundamental problem in PST, the basic physical process of
electromagnetic wave propagation in weakly ionized plasma
gas consists of many extremely complex transport phenomena,
such as electron-molecule or ion-molecule collisions, electron-
ion collisions, and interactions between self-consistent field
and charged particles, even more so when boundary conditions
and plasma configurations are so complex that analytical
solutions are out of the question [5–7]. For the purpose of PST
design and other complicated plasma science problems, several
different numerical methods have been implemented [8–12].

At the beginning of research on plasma physics, theoretical
analysis played an essential role as a large number of
important results had been acquired by the methods of single
charged particle dynamics, magnetohydrodynamics (MHD),
and Vlasov-Maxwell kinetics [5–7]. With the development
of plasma physics, however, problems were becoming more
and more complicated, containing complex collisions and
nonlinear coupling interactions with multiple degrees of
freedom, and raising a big challenge in theory to describe
the properties of the plasma phenomena. Since the mid-1900s,
experimental plasma physics has had continual development,
even when theoretical analysis encountered obstacles. Many
related fields, such as astrophysics, nuclear fusion technique,
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and laser acceleration technique, have been well served by
these significant plasma experiments [13,14]. Though the
experimental methods have achieved great success, they
cannot solve all problems in plasma physics and the costs
of most plasma experiments are too expensive. The huge
demands in experiments and many other fields require much
more interaction laws and accurate results for all kinds of
conditions. Numerical simulation, with the development of
computer technique and computational physics, supplies a
powerful and accurate tool in this regime. Using various
numerical simulation methods, a series of significant results
have been achieved [8,9].

Generally speaking, there are two kinds of methods that
seem to be most popular in plasma numerical simulation:
macroscopic methods based on the MHD and microscopic
methods based on the charged particle dynamics. In macro-
scopic simulation, plasmas are treated as continuum media
and the basic mathematic model consists of Navier-Stokes
equations and Maxwell equations [15,16]. Finite element
method (FEM), finite difference method (FDM), and finite
volume method (FVM) are three main numerical methods
for solving the partial differential equations [17]. With these
methods, the MHD simulation has been widely used, especial
in astrophysics and magnetic confinement fusion. In micro-
scopic simulation, the dynamics of single particle and the
statistical fluctuation are under consideration, and the basic
mathematic models are Hamiltonian canonical equations and
Maxwell equations. With microscopic results, macroscopic
physical quantities could be acquired by statistical analysis.
The most famous numerical method of microscopic simulation
is one called particle in cell (PIC), which is a kind of
simplified molecular dynamics. Using the PIC technique, a
large area of plasma problems have been simulated, including
nuclear fusion, gas discharge, and free electron laser [8–11].
Though the macroscopic and microscopic simulations have
been widely used in computational plasma physics, several
intrinsic disadvantages limit their further development in
more complicated problems, such as the continuum media
hypothesis in macroscopic model, computational resource
restraints, and limitation in multiscale simulations. As a
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combination of the macroscopic and microscopic methods
and the new development of physical kinetics theory, the
mesoscopic methods based on Boltzmann equation supply a
useful and accurate tool to explore new areas in computational
plasma physics.

Recently, an essential mesoscopic numerical method called
the lattice Boltzmann method (LBM) has been used as an
alternative for the simulation of partial differential equations
[18,19]. At first the LBM was designed for hydrodynamics
simulation based on kinetics model, then had been rapidly
and widely developed in almost all fields of physics, even in
chemistry, biology, geosciences, economics, and several other
extended fields, for its clear physical connotation, succinct
schemes, and efficient computational ability [18–41]. In fact,
at the beginning of the research, S. Succi et al. had introduced
the LBM into the MHD equations simulation [21]. In that simu-
lation, plasmas were described by macroscopic Navier-Stokes
equations and magnetic diffusion equations, and the LBM
as an efficient alternative for macroscopic hydrodynamics
simulation was proved successfully. Later on, several other
LBM models had been developed for MHD, such as the work
by D. O. Martinez et al. [24], one of the first three-dimensional
(3D) LBM models for MHD by Osborn [35], the 3D LBM
models for turbulent MHD by Fogaccia et al. [27], the vector
LBM model for MHD by Paul Dellar [32,33], and the 3D
LBM models for magnetic reconnection and electrodynamics
by M. Mendoza et al. [39,40]. All these models based on
Navier-Stokes equations and magnetic diffusion equations
have displayed the powerful simulation ability of LBM and
supplied many useful results of plasma physics, and will get
further development in future, though their mathematic model
is a macroscopic approximation of microscopic collective
dynamics of charged particles. From another point of view
the plasma LBM simulation can be done directly, based
on Boltzmann-Maxwell kinetics equations, because kinetics
description is a more intrinsic physical model. Checking this
model carefully, we find it is a multicomponent, multiscale
flow problem with complicated interactions between self-
consistent field and charged particles. For this purpose,
hyperfine collision and force models should be structured
and a suitable electromagnetic numerical method should be
introduced. Several collision models had been studied for
multicomponent flow, such as the initiating work by Flekkøy
[42], the pseudopotential model and its improvement by
X. Shan et al. [43], and the free energy model by M. R. Swift
et al. [44]. Among the many works on collision models for
multicomponent flow, a group called kinetics models deserves
special attention for the present work. They describe binary
mixture collisions directly from kinetics theory, which are
physical and universal. A kind of multicomponent collision
models based on Hamei kinetics for mixtures were developed
by P. Asinari and L. S. Luo [45,46]. Simple binary mixture
force models could be found in their papers as well. As a
modification, some finer force models designed for single-
component flow should be used in these multicomponent
models, such as the one proposed by X. He et al. [47] and
its equivalent form proposed by Z. Guo et al. [48]. When
it comes to electromagnetic numerical methods, choices are
abundant, as FEM, FVM, and method of moment (MoM)
are all popular in this regime. Considering the demand in

time-domain calculation and the compatibility with LBM, we
chose the finite-difference time-domain (FDTD) method for
self-consistent field simulation [49,50].

The first 2D hybrid LBM and FDTD method for plasmas
was developed by Huayu Li and Hyungson Ki [51–53].
They structured the framework of the model and proved
its veracity by numerical tests. Recently a modified model
had been proposed by them for laser plasma interaction
(LPI), which considered the impact ionization and three-body
recombination [53]. Their works were improved by other
researchers as well, such as the modified LPI model introduced
by X. Zhang et al. [54]. All these models only consider the
collisions between neutrals as an approximation and the force
terms could be improved for the multicomponent flow model.
In this paper, we present a FDTD-LBM model for electromag-
netic wave propagation in weakly ionized hydrogen plasmas,
which consists of elastic collision terms between molecules,
Coulomb collision terms between charged particles, kinetics
collision, and force models in multicomponent schemes and
multiscale lattice technique for matching FDTD to LBM. The
FDTD-LBM model has second-order accuracy and a large
stable range.

Section II describes the physical model, with the unified
three-component collision and force terms approximation
schemes, plus the formulations of elastic and Coulomb
collisions. The schemes of multicomponent local equilibrium
distribution functions are developed in Appendix A. Section III
describes the numerical model, including the distribution of
physical variables, stability condition, lattice interpolation
method, filtering techniques, and computational procedure.
The discretization schemes are developed in Appendix B.
In Sec. IV, a series of simulations have been implemented
to validate the model. The main results and discussions are
presented in this section.

II. PHYSICAL MODEL

A. Review of the Maxwell-Boltzmann equations

In this paper, two assumptions are used. First, the plasmas
considered consist of three components, which are electrons,
ions, and neutrals. Second, there are no elastic collisions, such
as ionization and recombination, in these dynamics.

Assuming the kinetics model, the evolution of the weakly
ionized plasma can be described by the Boltzmann-Maxwell
equations [5,16]

∂
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⇀∇ × ⇀

E = − ∂
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B (4)
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⇀∇ · ⇀
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∫
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∫
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⇀

V d
⇀
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⇀
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⇀
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⇀
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⇀

H. (11)

In the preceding equations, f (s)(
⇀

x,
⇀

V ,t) is the single-particle
distribution function in phase space, where s = e,i,n denotes
the type of particles and can take e,i,n for electrons, ions and

neutrals.
⇀

V s is the macroscopic velocity and ms is the mass of
different type of particle. Qe = −e is the charge of the electron

and Qi = Ze is the charge of the ion. σf and
⇀

J are free charge
density and transport electric current density in plasma area.

[ ∂
∂t

f (s)]ss ′ represents the change rate of f (s) caused by
collision interactions between the two types of components

of s and s ′. Qs

ms
(

⇀

E + ⇀

V s × ⇀

B) represents the acceleration of s

component driven by self-consistent field.
Equations (1)–(3) describe the transport movement of

plasma components. Equations (4)–(7) describe the evolution
of self-consistent field. The nonlinear coupled relation be-
tween field and particles is represented by Eqs. (8) and (9).

Equations (10) and (11) are electromagnetic constitutive
relationships.

B. Velocity discretization and Bhatnagar-Gross-Krook
approximation

A norm lattice Boltzmann model consist of three ele-
ments, which are discrete velocity model (DVM), equilibrium
distribution function, and evolution equation. Appropriative
distribution function is the key part of the model and its
embodiment depends on DVM.

The D2Q9 model is a widely used DVM proposed by Y. H.
Qian et al. [55]. In this model the local equilibrium distribution
function in subspaces is defined as the first approximation of
the Boltzmann distribution
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e
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)2
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− V 2
s

2θ2
s

]
. (12)

In Eq. (12), subscript α denote nine subspaces, which are
related to nine different velocities. ns is the number density

and θs is the sound velocity of s component. ωα and
⇀

e
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weight and velocity vector of the D2Q9 DVM.
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. (16)

In the preceding equations, cs
l is the lattice sound velocity of

the s component, which limits the lattice time step ratio.
The Bhatnagar-Gross-Krook (BGK) approximation is a

kind of simplified collision operator, which assumes that the
collision interaction that leads to equilibrium could be replaced
by a relaxation process [56]. The lattice Boltzmann equations
with BGK approximation are described as
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where τs , s = e,i,n is the collision relaxation time of s

component, which is the inverse of the collision frequency. F (e)
α

and F (i)
α are Lorentz force terms in subspaces. Equations (17)

are the basic evolution equations of the model.

C. Approximation model of the collision terms in weakly
ionized plasmas

The BGK approximation is originally designed for single-
component gas [56]. As an improved alternative for the
binary kinetics model, several kinetic schemes have been
introduced [42–44]. For the purpose of describing compli-
cated interactions in plasmas, we propose the multicompo-
nent collision terms for electron with BGK approximation
as
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]
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= −τeiτen + τeeτen + τeeτei

τeeτeiτen

×
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where f
(ee,eq)
α , f

(ei,eq)
α , and f

(en,eq)
α are partial local equi-

librium distribution functions of electron (for more details
see Appendix A). The terms τee, τei , and τen are partial
collision relaxation times of electron, which rest with different
collision types. To simplify Eq. (18), we can define some useful
parameters
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In the preceding equations, τe equals the collision relaxation
time of electron defined in Eq. (17) and f
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The multicomponent collision terms for ion and neutral
could be modeled in the same procedure. Then they are

described as[
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Equations (24)–(26) supply a hyperfine description for the
combined action of different types of collisions (for more
details see Appendix A).

D. Approximation model of the Lorentz force

The force term is another essential element of the LBM
model. Though there are more than ten kinds of force models
that have been developed, all of them are originally designed
for single-component flow. Among the many works, the one
introduced by Z. Guo et al. deserves special attention for the
present work, as this model has clear physical connotations and
is equal to the one introduced by He et al. to secondary-order
approximation, which is widely used [47,48].

Based on Eq. (23), the He model in multicomponent form
could be written as (take electron component for example)
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As an alternative for the preceding equation, the Guo model
in multicomponent form is obtained
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where ρs , s = e,i,n is the mass density of s component.
⇀

V ss ′ is

the centroidal velocity of s and s ′ component. Obviously
⇀

V ss ′

is equal to
⇀

V s ′s . δt is the time step of LBM.

In order to calculate the kinetics equations (17), the
macroscopic velocity of charged particle is defined as
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where
⇀

F
(e)

describes the external action caused by acceleration
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. Analyzing Eq. (29), the scheme of
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The multicomponent force term for ion could be modeled
in the same way. Then it is described as
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Using Eqs. (24)–(26), (29), and (36), kinetics equations (17)
could be updated step by step.

E. Physical quantities in the model

There are some physical parameters that should be given
before using the LBM model to simulate electromagnetic wave
propagation in weakly ionized plasmas. First of all, the initial
distribution functions could be defined as uniform and the
number densities are obtained by the Saha equation [51]

ni

nn

≈ 3.00 × 1027T 3/2
e

1

ni

exp

(
−Ui

Te

)
, (39)

where Ui is the first ionization energy of neutral and for
hydrogen it is 15.427 eV (Te in this equation is defined in eV).

In order to calculate collision terms, different collision
relaxation times are necessary parameters. The elastic collision
relaxation time is defined as [51]

τss ′ = 1

σss ′ns ′θs

(40)

σss ′ = π (rs + rs ′ )2 , (41)

where subscript ss ′ denotes the following five types: en, in,
ne, ni, and nn. The σss ′ is the collision cross section between
s and s ′ components, then the rs means particle radius of s

component.
The Coulomb collisions between charged particles are

active in a kind of long-distance interaction form, which is

different from the elastic collision. With Landau approxima-
tion, the ei and ii Coulomb collisions relaxation times are
described as [5]

τei = T
3/2
e

√
me

4πQ2
eQ2

i niLe

(42)

τii = T
3/2
i

√
mi

4πQ4
i niLi

, (43)

where Le and Li are Coulomb logarithms for electron and ion
and they are defined as [5]

Le = ln

(
T

3/2
e√

4πneQ2
eQi

)
(44)

Li = ln

(
T

3/2
i√

4πniQ2
i |Qe|

)
. (45)

With the same definition, τee and τie could be obtained.
Comparing them with τei and τii , we have the following
results [5]

τee ∼ τei (46)

τie � τii . (47)

Equations (46) and (47) are useful in approximation simula-
tion.

Coulomb collision frequencies are usually too low com-
pared with elastic collisions so that many models neglect
them to simplify the calculation. But as a complete theoretical
description, Coulomb collisions should be included in the
LBM model. Actually Coulomb collisions could have the same
strength with elastic collisions in some critical situations.

With the LBM simulation, some physical quantities could
be obtained and they are updated step by step, such as number
density, mass density, charge density, macroscopic velocity,
current density, and centroidal velocity, which are defined as

ns =
∑

α

f (s)
α (48)

ρs =
∑

α

msf
(s)
α (49)

σf =
∑
α,s

Qsf
(s)
α (50)

nn

⇀

V n =
∑

α

⇀

e
(n)

α f (n)
α (51)

⇀

J =
∑
α,s

Qs
⇀

e
(s)

α f (s)
α = Qene

⇀

V e + Qini

⇀

V i (52)

⇀

V ss ′ = ⇀

V s ′s = ρs

⇀

V s + ρs ′
⇀

V s ′

ρs + ρs ′
. (53)

In one part, Eqs. (48)–(53) describe the macroscopic state
of the plasmas, which are used for diagnosing. In another, they
are necessary for updating evolution equations. For instance,
Eq. (52) is used as the source term in the FDTD simulation.

F. Applicability of the model

The FDTD-LBM model presented in this paper is derived
from Maxwell-Boltzmann equations (also called Vlasov ki-
netics equations). Then there are some fundamental hurdles
we cannot avoid when LBM-like schemes are used for Vlasov
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description. In a Vlasov-type description, strong fields will
easily excite higher-order Hermite coefficients. However,
LBM-like schemes by definition truncate at finite order (and
very small too) Hermite coefficients. Thus, it is obvious
that LBM-like schemes can work only in the presence of
natural smallness parameters, such as Mach number. This
is the intrinsic limitation of the FDTD-LBM model, which
determines the applicability of the model.

Taking the strong laser field and plasma interaction for
example, we give further explanation for the preceding conclu-
sion. When the field density of incident laser is greater than a
certain threshold, obvious nonlinear parametric processes will
be observed and some abnormal electromagnetic relation’s
company with high-order modes is excited. The LBM-like
schemes cannot sufficiently describe these phenomena, for
they only consider low-order terms near equilibrium state. In
other words, the FDTD-LBM model cannot describe nonlinear
parametric processes sufficiently.

When it comes to PST, the field density of incident
electromagnetic waves is far lower than strong laser and the
collision absorption is the main physical mechanism, which
leads to equilibrium state. Then Mach number in this problem
is very small. As a result, The FDTD-LBM model presented
in this paper is suitable to describe electromagnetic wave
propagation in weakly ionized plasmas.

III. NUMERICAL MODEL

Once the parameters are selected, the FDTD-LBM model
can be used for electromagnetic wave weakly ionized plasma
interaction. Based on the physical model presented in Sec. II,
the numerical model is obtained. Figure 1 shows the simulation
domain.

In this study, the FDTD simulation domain for electro-
magnetic wave computation is discretized by a 500 × 250
uniform Yee grid, which is surrounded by a convolution
perfect matched layer (CPML) boundary in the X direction
to simulate free space [57–60]. The CPML thickness is 10
layers. The LBM simulation domain for the kinetics equation
computation is discretized by an 800 × 500 uniform lattice
whose scalar is half of the Yee grids. The mixed boundary
is used in the X direction for LBM computation. In order to
simulate infinite boundary, the periodic boundary is introduced
both for FDTD and LBM in the Y direction. Assuming that the
electromagnetic wave is in TM mode whose field quantities are

FIG. 1. Schematic of the simulation domain.

FIG. 2. Variables positions in the simulation domain.

Ex, Ey, and Hz, the total field scatter field (TF-SF) boundary
is used to introduce uniform incident wave.

To enhance computation accuracy and simplify sampling
procedure, subgrids are introduced in the public domain
(coincide with the uniform lattices), where FDTD variables
are interpolated into subgrids. Figure 2 shows all physical
variables distributions in the simulation domain.

The preceding schematic shows the distributions of all kinds
of physical variables in every area. The left area is the FDTD
domain. In this area the electric and magnetic field variables
are distributed according to the normal 2D Yee’s rule. The
right area is the public domain where the public subgrid scalar
is half of the Yee grid scalar in FDTD domain and all kinds
of variables are distributed on every node. It is obvious that
the physical variables in public domain cannot be obtained
directly. To obtain FDTD variables, the linear interpolation
technique is used, as subgrids are perfectly embedded in the
normal Yee grids (for more details see Appendix B). To obtain
LBM variables, the cubic spline interpolation technique is
introduced, as electromagnetic wave phase velocity is far grater
than lattice sound velocity so that subgrid scalar is far larger
than normal LBM lattice scalar. More details are discussed
later.

Numerical stability is an essential problem in all kinds of
numerical simulations. The stability of explicit FDTD scheme
is controlled by the Courant-Friedricks-Lewy (CFL) condition,
which is written as

1

�t
� c

√
1

�x2
+ 1

�y2
, (54)

where �t is the time step and c is the light velocity in
vacuum (c should be replaced by c′ if the wave propagates
in dielectric medium, where c′ is the wave phase velocity
in medium) [49]. To simplify the calculation, space step
�x = �y is usually considered as a basic assumption. Then
the subgrid scalar �x ′ = �y ′ = 0.5�x can be defined in
the public domain. Considering the numerical dispersion, the
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following conditions are usually used

�x � 0.1λmin, �x = 0.05λmin, �t � �x

2c′ , (55)

where λmin is the minimal wave length in simulation domain.
Although the CFL condition makes FDTD simulation is
stability, it is incompatible with normal LBM model, for
normal lattice is limited by

δx(s) = c
(s)
i δt (s), (56)

where lattice length δx(s) is defined by lattice time step δt (s),
which is associate with the physical emplastic of plasma [18]

υ = θ2
s (τs − 0.5δt (s)), (57)

where υ is decided by component temperature and collision
frequency. The preceding equation shows that δt (s) introduces
numerical emplastic. Considering the statistical fluctuation, υ

is allowed finite variational to extend the simulation. With this
assumption, non-negative is a basic limitation to υ, otherwise
the computation will be unstable. Once the physical emplastic
and lattice time step are decided, modified relaxation time for
LBM can be obtained. When the lattice time step δt (s) is far
smaller than physical relaxation time, the modification can be
ignored according to Eq. (57).

Based on preceding discussion, the problem that CFL con-
dition is incompatible with normal LBM needs to be solved.
For this purpose, two techniques should be considered. First,
the multi-time-step method is widely used in PIC simulation
to solve multicomponent problems. Second, the interpolation
method has been used in LBM model to simulate the high
Reynolds number problem. In this study, the second technique
is selected, as it is more suitable for large scalar simulation.
Then the following relations are defined to construct the
interpolation model

δt (s) = �t (58)

r (s)
x = r (s)

y = δx(s)

�x ′ . (59)

With Eqs. (58) and (59), cubic spline interpolation could be
introduced to update distribution functions

f
(s)t+ 3

2

α,i+δx(s) → f
(s)t+ 3

2
α,i . (60)

The cubic spline has a more smooth character than quadratic
polynomial interpolation described as

f
(s)t+ 3

2
α,i = f

(s)t+ 3
2

α,i+δx(s)−1

r (s)
x

(
1 + r (s)

x

)
2

+ f
(s)t+ 3

2

α,i+δx(s)

(
1 − r (s)

x

)
× (

1 + r (s)
x

) + f
(s)t+ 3

2

α,i+δx(s)+1

r (s)
x

(
r (s)
x − 1

)
2

. (61)

With the interpolation lattice scheme, considering the CFL
condition and physical emplastic conditions, a self-consistent
numerical method for 2D plasma electromagnetic wave inter-
action is developed.

The computational procedure is carried out step by step
from FDTD to LBM, which is shown in the following (Fig. 3).

In the preceding flow chart, the stop condition is that both
the electromagnetic wave and the plasma reach steady state.
If wave frequency is far lower than electron-neutral collision
frequency, the time step is far grater than physical relaxation

FIG. 3. Flow chart of the FDTD-LBM simulation.

time, and then relatively fewer steps can lead the system
to steady state. On the contrary, if wave frequency is far
greater than electron-neutral collision frequency, the time step
is far smaller than the physical relaxation time, then relatively
greater steps (about hundreds of times the physical relaxation
time) are needed to keep system in steady state. Based on the
procedure, discretization schemes for simulation are obtained
(for more details see Appendix B).

There is a detail that should be paid attention to. Physical
quantities obtained by interpolation from Yee grid to subgrid
are usually polluted by high-frequency numerical white noise.
In order to enhance computational accuracy, the mean filtering
technique is introduced in this study, which can denoise the
physical quantities effectively.

IV. RESULTS AND DISCUSSION

In order to validate our model, several simulations have
been implemented. For this purpose, we introduce a simplified
analytical model to test our numerical results. We compare the
numerical and approximate analytical propagation constants,
attenuation constants, and propagation wave forms at different
electromagnetic wave frequencies.

As a simplified model, the process of electromagnetic
wave propagation in cold weakly ionized plasma gas can be
described in fluid dynamics approximation. Due to the ion
mass being much greater than the electron mass, the electron
Langmuir frequency is much greater than the ion Langmuir
frequency. As a result, the relative permittivity of plasma can
be written as [5]

εr = 1 − ω2
p

ω (ω − jνen)
= 1 − ω2

p

ω2 + ν2
en

− j
νenω

2
p

ω
(
ω2 + ν2

en

) .

(62)
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In Eq. (62), ω is the angular frequency of incident wave, νen is
the electron-neutral collision frequency and ωp is the electron
Langmuir frequency, which is defined as [6]

ωp =
√

nee2

meε0
. (63)

With the preceding relative permittivity, we plug the plan
wave mode into Maxwell equations, then the frequency
dispersion relation could be obtained,

k2 = k2
0(ε′

r − jε′′
r ), (64)

where k is the mode of wave vector in plasma and k0 is the
wave number in vacuum. ε′

r and ε′′
r are real and imaginary

parts of εr in plasma.
The complex wave vector k can be rewritten as sum of real

part β and imaginary part α

k = β − jα, (65)

where α and β are called the attenuation constant and
propagation constant. After plugging Eq. (65) into Eq. (64),
we obtain the following schemas:

α = k0

√
1

2

[
ε′
r +

√
ε′ 2
r + ε′′ 2

r

] = k0

√√√√1

2

[
1 − ω2

p

ω2 + ν2
en

+
√(

1 − ω2
p

ω2 + ν2
en

)2

+
(

νenω2
p

ω
(
ω2 + ν2

en

))2]
(66)

β = k0

√
1

2

[−ε′
r +

√
ε′2
r + ε′′2

r

] = k0

√√√√1

2

[
ω2

p

ω2 + ν2
en

− 1 +
√(

1 − ω2
p

ω2 + ν2
en

)2

+
(

νenω2
p

ω
(
ω2 + ν2

en

))2]
. (67)

The preceding equations (66) and (67) indicate that colli-
sion plasma is a kind of complicated dissipative and dispersive
medium, for attenuation constant α and propagation constant
β depend on the frequency of the incident wave.

As the first validation, hydrogen plasma with a 9.5 ×
10−5 ionization degree is considered. In this simulation, the
temperature of electrons is 0.6 eV and the temperature of
ions and neutrals is 0.0253 eV as constants. The number
densities of three species are ne = ni = 1.0000 × 1020 m−3

and nn = 1.0522 × 1024 m−3 according to the Saha equa-
tion (39). The corresponding electron Langmuir frequency
and electron-neutral collision frequency are ωp = 5.6415 ×
1011 rad·s−1 and νen = 4.2831 × 1011 Hz according to
Eqs. (63) and (40). Using the preceding parameters we
can obtain the theoreticaldispersion relation of this plasma
according to Eqs. (64)–(67). Figure 4 shows the dispersion
curve of the plasma.

In the preceding curves, we can see that when the incident
wave frequency ω is higher than ωp, the propagation constant
ratio β/k0 ≈ 1 and the attenuation constant α is small. This
means that the plasma behaves like a low-loss dispersive
dielectric medium, which is important in the PST. On the
contrary, when incident wave frequency ω is far lower than
ωp and νen, the plasma behaves more like a perfect conductor,
which leads to strong loss and high reflection.

The incident wave frequencies in this simulation are
selected at 1 × 1011, 2 × 1011, 3 × 1011, 4 × 1011, 5 × 1011,
6 × 1011, and 7 × 1011. All these frequencies are measured
by Hz. The amplitude of incident wave is 100 V·m−1.
Figures 5–7 show the Ey, Hz, and Jy components sampled
at 3 × 1011 Hz when time is 280 17 steps (1000 times τe).

In the preceding images, components sampled at
3 × 1011 Hz show that the incident wave is attenuated in
the plasma area, and keep uniform in the Y direction. Once
the incident wave crosses the plasma-vacuum interface, it
will drive the charged particles. Then these particles will

depart from the equilibrium center and be accelerated by
the time-varying electric field. During this process, strong
elastic collisions and somewhat weaker Coulomb collisions
exist, which hold a prominently dominant position of the
dissipation mechanism. With these collisions, the macroscopic
kinetic energy of charged particles acquired from incident
electromagnetic wave transfer to thermal energy. This process
is usually called energy thermalization.

Figure 8 shows the Ey component sampled at 3 × 1011 Hz
along the propagation direction when time is 280 17 steps.
From this curve, we can obtain the propagation and attenuation
constants and then compare them with the approximate
analytical ones.

FIG. 4. (Color online) Theoretical dispersion curve of the plasma
(the frequencies are from 1 × 1011 to 1 × 1012 Hz).
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FIG. 5. (Color online) Ey component sampled at 3 × 1011 Hz
(t = 280 17 steps), which is measured by V·m−1.

As can be seen from the preceding figure, when the incident
wave enters the plasma area, its wave length is increased and its
amplitude exponential decays along the propagation direction.
These phenomena show that the propagation constant in
the plasma area is slightly lower than the vacuum wave
number and the attenuation constant is small. The simulations
at other frequencies are implemented also. Figure 9 shows
the comparison of the propagation and attenuation constants
between numerical and approximate analytical results.

The preceding curves show that the numerical propagation
and attenuation constants are consistent with the approximate
analytical ones, which demonstrates that the model is accurate
and can obtain satisfying numerical solutions successfully.
Slight deviations come from the numerical errors and the
simplification used in analytical model, asonly electron-neutral
collision is considered in analytical approximation. Different
from macroscopic methods, more parameters of the plasma can
be obtained from the distribution functions in this simulation.

FIG. 6. (Color online) Hz component sampled at 3 × 1011 Hz
(t = 280 17steps), which is measured by A·m−1.

FIG. 7. (Color online) Jy component sampled at 3 × 1011 Hz
(t = 280 17 steps), which is measured by A.

Finally, another simulation with hydrogen plasma with
9.1 × 10−4 ionization degree is implemented to support the
preceding conclusion. The temperature of electrons is 0.8 eV
and the temperature of ions and neutrals is 0.0253 eV as
constants. The number densities of three species are ne =
ni = 1.0000 × 1022 m−3, and ni = 1.1043 × 1025 m−3. The
corresponding electron Langmuir frequency and electron-
neutral collision frequency are ωp = 5.6415 × 1012 rad·s−1

and νen = 5.1905 × 1012 Hz. The incident wave frequencies
in this simulation are selected at 2 × 1012, 3 × 1012, 4 × 1012,
5 × 1012, 6 × 1012, 7 × 1012, 8 × 1012, and 9 × 1012. All
these frequencies are measured by Hz. Figure 10 shows
the comparison of the propagation and attenuation constants
between numerical and approximate analytical results.

The comparison between numerical and approximate ana-
lytical results shows that the preceding conclusion is valid and
the FDTD-LBM model can accurately simulate the physical

FIG. 8. Ey component sampled on 3 × 1011 Hz along the propa-
gation direction (t = 280 17 steps), plasma region is between the two
thick lines.
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FIG. 9. (Color online) propagation and attenuation constants:
numerical versus approximate analytical (νen = 4.2831 × 1011 Hz,
ωp = 5.6415 × 1011 rad·s−1).

phenomena that an electromagnetic wave propagation in
weakly ionized hydrogen plasmas.

V. CONCLUSION

In this work, a hybrid electrodynamics and kinetics
numerical model has been developed for electromagnetic
wave propagation in weakly ionized hydrogen plasmas.
The FDTD-LBM model is proved effective to simulate the
weakly ionized plasma problems. To our knowledge, the
multicomponent BGK collision model considering all kinds of
particles collisions (including elastic collisions and Coulomb
collisions) and multicomponent force model based on the
Guo model are introduced in the FDTD-LBM model, which
supplies a hyperfine description on the interactions between
electromagnetic wave and weakly ionized plasmas. Cubic

FIG. 10. (Color online) propagation and attenuation constants :
numerical versus approximate analytical (νen = 5.1905 × 1012 Hz,
ωp = 5.6415 × 1012 rad·s−1).

spline interpolation and mean filtering technique are separately
introduced to solve the multiscalar problem and enhance the
physical quantities, which are polluted by numerical noise.
Several simulations are implemented to validate the numerical
method. The numerical propagation and attenuation constants
at different frequencies with different plasma parameters
are consistent with the approximate analytical ones, which
demonstrate the accuracy of this model. The numerical results
show that the plasmas behave like a low-loss dispersive
dielectric medium when the incident wave frequencies are
higher than the electron Langmuir frequencies. All these
results indicate that the weakly ionized plasmas can be used
in anti-radar-stealth technique. Additionally, this work can be
extended as an effective tool in plasma stealth system design.
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APPENDIX A: LOCAL EQUILIBRIUM DISTRIBUTION
FUNCTIONS

Partial local equilibrium distribution functions are essential
quantities of the multicomponent LBM model established
in this study. In order to determine the formulations of this
distribution functions, we start by taking the Taylor expansion
of the Maxwell distribution function until second order, as
follows

f (ee,eq)
α = neωα

[
1 +

⇀

e
(e)

α · ⇀

V ee

θ2
e

+
(

⇀

e
(e)

α · ⇀

V ee

)2

2θ4
e

− V 2
ee

2θ2
e

]
(A1)

f (ei,eq)
α = neωα

[
1 +

⇀

e
(e)

α · ⇀

V ei

θ2
e

+
(

⇀

e
(e)

α · ⇀

V ei

)2

2θ4
e

− V 2
ei

2θ2
e

]
(A2)

f (en,eq)
α = neωα

[
1 +

⇀

e
(e)

α · ⇀

V en

θ2
e

+
(

⇀

e
(e)

α · ⇀

V en

)2

2θ4
e

− V 2
en

2θ2
e

]
(A3)

f (ie,eq)
α = niωα

[
1 +

⇀

e
(i)

α · ⇀

V ie

θ2
i

+
(

⇀

e
(i)

α · ⇀

V ie

)2

2θ4
i

− V 2
ie

2θ2
i

]
(A4)

f (ii,eq)
α = niωα

[
1 +

⇀

e
(i)

α · ⇀

V ii

θ2
i

+
(

⇀

e
(i)

α · ⇀

V ii

)2

2θ4
i

− V 2
ii

2θ2
i

]
(A5)

f (in,eq)
α = niωα

[
1 +

⇀

e
(i)

α · ⇀

V in

θ2
i

+
(

⇀

e
(i)

α · ⇀

V in

)2

2θ4
i

− V 2
in

2θ2
i

]
(A6)

f (ne,eq)
α = nnωα

[
1 +

⇀

e
(n)

α · ⇀

V ne

θ2
n

+
(

⇀

e
(n)

α · ⇀

V ne

)2

2θ4
n

− V 2
ne

2θ2
n

]
(A7)
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f (ni,eq)
α = nnωα

[
1 +

⇀

e
(n)

α · ⇀

V ni

θ2
n

+
(

⇀

e
(n)

α · ⇀

V ni

)2

2θ4
n

− V 2
ni

2θ2
n

]
(A8)

f (nn,eq)
α = nnωα

[
1 +

⇀

e
(n)

α · ⇀

V nn

θ2
n

+
(

⇀

e
(n)

α · ⇀

V nn

)2

2θ4
n

− V 2
nn

2θ2
n

]
.

(A9)

The preceding equations (A1)–(A9) represent the partial
equilibrium status of test component s in the background com-
ponent s ′. The weighted mean of Eqs. (A1)–(A3) determine
the equilibrium distribution function of electron as showed in
Eq. (23). With the same procedure, equilibrium distribution
functions of ion and neutral are obtained.

APPENDIX B: DISCRETIZATION SCHEMES

Figure 3 shows the computational procedure of the FDTD-
LBM model for plasma simulation. In order to carry out this
procedure, discretization schemes are developed, as follows

Et+1
xi+1/2,j = Et

xi+1/2,j + �t

ε0�y

(
H

t+1/2
zi+1/2,j+1/2 − H

t+1/2
zi+1/2,j−1/2

)
− �t

ε0
J

t+1/2
xi+1/2,j (B1)

Et+1
yi,j+1/2 = Et

yi,j+1/2 + �t

ε0�x

(
H

t+1/2
zi−1/2,j+1/2 − H

t+1/2
zi+1/2,j+1/2

)
− �t

ε0
J

t+1/2
yi,j+1/2 (B2)

H
t+3/2
zi+1/2,j+1/2

= H
t+1/2
zi+1/2,j+1/2 + �t

μ0�y

(
Et+1

xi+1/2,j+1 − Et+1
xi+1/2,j

)
+ �t

μ0�x

(
Et+1

yi,j+1/2 − Et+1
yi+1,j+1/2

)
. (B3)

Equations (B1)–(B3) are updating equations of TM mode
in Yee grid, where the source terms J

t+1/2
xi+1/2,j and J

t+1/2
yi,j+1/2 are

obtained by Eq. (52) after the LBM calculation.

E
t+1/2
xi+1/2,j = 1

2

(
Et+1

xi+1/2,j + Et
xi+1/2,j

)
(B4)

E
t+1/2
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4

(
E
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xi+1/2,j + E
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+E
t+1/2
xi−1/2,j + E
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)
(B5)

E
t+1/2
xi,j = 1

4

(
E
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xi+1/2,j + E
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xi−1/2,j

+E
t+1/2
xi,j+1/2 + E

t+1/2
xi,j−1/2

)
(B6)

E
t+1/2
xi+1/2,j+1/2 = 1

4

(
E

t+1/2
xi+1,j+1/2 + E

t+1/2
xi,j+1/2

+E
t+1/2
xi+1/2,j+1 + E

t+1/2
xi+1/2,j

)
. (B7)

Equations (B4)–(B7) describe the operation of interpolation
from Yee grid to subgrid (take Ex for example, the schemes
of Ey and Hz can be obtained with the same procedure). After
these operations,Et+1/2

xi ′,j ′ , E
t+1/2
yi ′,j ′ , and H

t+1/2
zi ′,j ′ on LBM lattice

nodes are obtained. As mentioned, mean filtering should be
done in this procedure.

a
(s)t+1/2
x i ′,j ′ = Qs

ms

(
E

t+1/2
xi ′,j ′ + μ0V

t+1/2
s,yi ′,j ′H

t+1/2
zi ′,j ′

)
(B8)

a
(s)t+1/2
y i ′,j ′ = Qs

ms

(
E

t+1/2
yi ′,j ′ − μ0V

t+1/2
s,x i ′,j ′H

t+1/2
zi ′,j ′

)
. (B9)

Equations (B8) and (B9) are discretization expansions of
the accelerations caused by Lorentz force, which are essential
terms in the LBM force model.

f
(s)t+3/2
α (i ′,j ′)+α(s)�t

=
(

1 − �t

τs

)
f

(s)t+1/2
α i ′,j ′ + �t

τs

f
(s,eq)t+1/2
α i ′,j ′

+F
(s)t+1/2
α i ′,j ′ �t. (B10)

The preceding equation describes the evolution procedure
of the distribution functions. After this operation, cubic spline
interpolation can be done to update the distribution functions.

Finally, Eqs. (B1)–(B3) and (B10) determine the evolution
of the self-consistent field and plasma. These are the discretiza-
tion equations of hybrid electrodynamics and kinetics.
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