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Numerical simulations of Hall-effect plasma accelerators on a magnetic-field-aligned mesh
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The ionized gas in Hall-effect plasma accelerators spans a wide range of spatial and temporal scales, and
exhibits diverse physics some of which remain elusive even after decades of research. Inside the acceleration
channel a quasiradial applied magnetic field impedes the current of electrons perpendicular to it in favor of a
significant component in the E × B direction. Ions are unmagnetized and, arguably, of wide collisional mean
free paths. Collisions between the atomic species are rare. This paper reports on a computational approach
that solves numerically the 2D axisymmetric vector form of Ohm’s law with no assumptions regarding the
resistance to classical electron transport in the parallel relative to the perpendicular direction. The numerical
challenges related to the large disparity of the transport coefficients in the two directions are met by solving
the equations on a computational mesh that is aligned with the applied magnetic field. This approach allows
for a large physical domain that extends more than five times the thruster channel length in the axial direction
and encompasses the cathode boundary where the lines of force can become nonisothermal. It also allows for
the self-consistent solution of the plasma conservation laws near the anode boundary, and for simulations in
accelerators with complex magnetic field topologies. Ions are treated as an isothermal, cold (relative to the
electrons) fluid, accounting for the ion drag in the momentum equation due to ion-neutral (charge-exchange)
and ion-ion collisions. The density of the atomic species is determined using an algorithm that eliminates the
statistical noise associated with discrete-particle methods. Numerical simulations are presented that illustrate the
impact of the above-mentioned features on our understanding of the plasma in these accelerators.
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I. INTRODUCTION

The numerical simulation of Hall-effect plasma acceler-
ators, commonly also referred to as Hall thrusters, spans
more than two decades. The first theoretical models of the
partially ionized gas in the stationary plasma thruster (SPT)
were reported in the 1970s by Morozov and colleagues [1–3].
Hirakawa and Arakawa [4] developed one of the first numerical
models of a SPT in three dimensions. Electrons and singly
charged ions were simulated using a particle-in-cell (PIC)
scheme that was combined with a Monte Carlo collision
model. The electric field was determined by solving Poisson’s
equation. A computational approach that has been used
extensively in the last two decades is to solve the fluid
(inertialess) momentum and energy conservation laws for
the electrons but use discrete-particle methods to track the
evolution of the heavy species. This “hybrid” approach allowed
for the capture of bulk plasma phenomena and ion kinetics in
the thruster within reasonable computational times and, as a
result, it gained considerable popularity. One of the first models
to follow this approach was developed by Fife [5]. The model,
dubbed “HPHall” (hybrid-PIC Hall), uses a PIC-direct simula-
tion Monte Carlo (DSMC) method for ions in two-dimensional
(2D) axisymmetric geometry and it appears that it was the
first to reproduce the so-called breathing mode oscillations
in Hall thrusters, in two dimensions. Interpretations of these
oscillations were provided around the same time by Fife
et al. using an idealized zero-dimensional (0D) model [6],
and by Boeuf and Garrigues [7] using a one-dimensional (1D)
time-dependent model with a hybrid treatment of electrons
and ions. A 1D generalization of Fife’s 0D solution was
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also derived later by Barral and Ahedo [8]. In Fife’s work
a model for anomalous electron mobility was employed in the
original SPT simulations that was based on Bohm’s scaling
[9] for the anomalous collision frequency, νB ∼ B/16. The
precise numerical value used in the simulations was guided
by experiments. Since the late 1990s HPHall has been used
to simulate several other thrusters and, naturally, its numerical
and physical models have undergone several improvements
and extensions. Recently the model was upgraded to HPHall(2)
by Parra and Ahedo [10]. A hybrid approach has been followed
also by Sommier et al. [11] and by Hagelaar et al. [12]. Instead
of Bohm diffusion Hagelaar used empirical parameters to
account for additional anomalous electron transport and energy
loss phenomena [13]. It is interesting to note that despite the
apparent popularity of the hybrid approach in recent years, the
earliest attempts to model the heavy species followed purely
hydrodynamic formalisms [14] (and references therein). A
hydrodynamic approach for the heavy species in the thruster
was also applied later by Keidar et al. [15], but only the ions
were solved for in two dimensions.

Because the fundamental principle behind the acceleration
of ions in the Hall thruster chamber is based on operation at
high electron Hall parameter (�e > 100), the resistance to the
transport of mass and heat in the electron flow in the direction
perpendicular to the magnetic field is much greater (by ∼
�2

e) than that in the parallel direction for most of the channel
region. This allows one to solve the full partial differential
transport equations only in a direction that is perpendicular
to the magnetic field; in the parallel direction the electron
equations are simplified by assuming constant temperature and
an algebraic equation for the plasma potential. Hereinafter
we shall call this simplification the “quasi-1D assumption.”
Numerically, the assumption allows for the discretization of
the electron equations in a quadrilateral computational cell that
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is bounded by two adjacent lines of force rather than one with
arbitrary dimensions. This is the approach followed in HPHall.

Modeling regions of the thruster with complex magnetic
field arrangements (such as those near eroded walls and
magnets) and/or reduced Hall parameter (such as those near
the anode and the cathode plume) challenge the applicability
of the quasi-1D assumption. In this article we present a
2D computational model of the partially ionized gas in a
Hall thruster that employs the full vector form of Ohm’s
law. No assumptions are made regarding the rate of electron
transport in the parallel and perpendicular directions of the
magnetic field. Excessive numerical diffusion due to the large
disparity of the transport coefficients in the two directions is
avoided by solving the equations on a computational mesh
that is aligned with the applied magnetic field. Employment
of magnetic field-aligned meshes (MFAM) is a long-standing
computational approach for simulating highly anisotropic
plasmas, and is widely used nowadays especially by the
sustained fusion energy community [16–19]. Field-aligned
meshing was also attempted in early versions of a 2D model of
the discharge chamber in an ion engine. It was found that the
complexity of the magnetic field near the ring cusps made the
mesh generation prohibitively sensitive to small changes in
the magnetic field strength or geometry. This made the
application of the model to realistic thruster arrangements
cumbersome, so the MFAM was eventually replaced with
a simpler orthogonal mesh [20]. Other non-MFAM ap-
proaches to overcome the numerical errors associated with
the extreme anisotropy of the electron transport have also
been reported. For example, Hagelaar [21] developed the
transverse-flux method, in which the electron-flux components
of the anisotropic drift-diffusion equation are calculated in
an iterative manner from the longitudinal gradients and the
transverse-flux component (rather than from the longitudinal
and transverse gradients) on a mesh that is not aligned with the
magnetic field. The method yielded accurate electron fluxes
and correct potential profiles in a wide range of numerical
experiments.

The computation model presented here also incorporates an
algorithm that solves for the density of the collisionless gas.
The algorithm is based on line-of-site formulations thereby
eliminating the inherent statistical fluctuations of conventional
particle methods [22]. Ions are modeled using a fully hydro-
dynamic approach that, in addition to the inelastic collision
terms associated with the ionization, retains in the momentum
equation the ion pressure and the ion drag force associated with
ion-neutral charge-exchange and ion-ion Coulomb collisions.
Hereinafter we shall call the newly developed model Hall2De
(with “2De” referring to electron flow in two dimensions,
parallel and perpendicular to the magnetic field).

The article is organized as follows. Section II provides
a brief description of the thruster’s operational principle
(Sec. II A), some relevant background regarding the computa-
tional approach (Sec. II B), and a description of the governing
physics laws and numerical methodologies for the ions
(Sec. II C), electrons (Sec. II D), and atomic species (Sec. II E).
Section III provides results from benchmark numerical sim-
ulations of a commercial Hall thruster [23]. The results are
compared with those from HPHall simulations [24] of the same
thruster.

II. GOVERNING PHYSICS LAWS AND NUMERICAL
METHODOLOGIES

A. Operational principle of the accelerator

Since its inception, detailed theoretical investigations by
Morozov between 1963 and 1969 and subsequent experimental
studies in the 1970s (see [1] and references therein), the
fundamental principle of operation of the Hall thruster, also
known as the “closed-drift accelerator,” remains unchanged
today. A schematic illustrating some of the basic components
and features in a SPT-type thruster is shown in Fig. 1. The dis-
tinctive principle of operation in these accelerators lies in the
applied magnetic field strength and low density of electrons in
the annulus which is typically called the acceleration channel.
A magnetic system, usually consisting of coils and magnetic
poles, produces a quasiradial magnetic field with such strength
that the radius of gyration, rg = m|u × B|/qB2, for electrons
is much smaller than the channel length L whereas the gyration
radius for ions is much larger than L, that is,

r̄e � 1 � r̄i , (1)

where r̄ ≡ rg/L and m, q, and u are the mass, charge, and drift
velocity of the particle respectively. B is the magnetic induction
vector field. Unless otherwise noted, throughout this article
subscripts e, i, and n will denote electrons, ions, and neutrals,
respectively. Electrons are supplied to the acceleration
channel by an electron source (usually a thermionic hollow
cathode) that is located at the side or at the center of the
thruster. If the density of electrons is low, collisions in the
azimuthal direction seldom impede their E × B drift resulting
in a significant flow of current—the Hall current—in this
direction. Operation under these conditions implies a high
value of the Hall parameter �e ≡ ωce/νe for the electrons:

�e � 1, (2)

where ωce and νe are the electron cyclotron and total collision
frequencies, respectively. As the Hall current crosses B the
induced electric field E is in a direction perpendicular to it.
According to Ohm’s law it is proportional to

E⊥ = β̂ × (E × β̂) ∼ β̂ ×
(

je∧ × B
qene

)
∼ η�2

eje⊥. (3)

This electric field serves as the main accelerating force on
the ions. In Eq. (3) subscript ⊥ denotes direction perpendicular
to B and ∧ is in the cross-field direction, where β̂ ≡ B/ |B|.
The electron current density, number density, and resistivity
are denoted by je, ne, and η, respectively. Implied in Eq. (3) is
that E∧ = 0.

Ions are generated largely by electron-impact ionization
of the propellant atoms. The propellant, usually xenon, is
supplied into the acceleration channel and to the cathode
through gas feeds as shown in Fig. 1. The electrons from
the cathode as well as those produced by ionization are
transported to the anode by a variety of classical and (arguably)
nonclassical mechanisms some of which continue to be the
subject of extensive research today. Hereafter, by “classical”
we shall refer to binary elastic and inelastic collisions between
particles whereas all other processes that may contribute
to the diffusion of electrons, including scattering by waves
and collisions with walls, shall be termed “nonclassical” or
“anomalous.”
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FIG. 1. Schematic of a Hall-effect plasma accelerator (SPT type) showing the basic processes that drive its fundamental principle of
operation.

B. Background and overall numerical approach

The high electron Hall parameter established in the thruster
chamber leads to the “equipotentialization” and “isother-
malization” of the lines of force [14]: Streamlines of the
magnetic vector field are, approximately, also lines of con-
stant “thermalized potential” φT ≡ φ − Te ln(ne) and constant
electron temperature Te. This may allow for a computational
simplification in configurations where the magnetic field lines
begin at one side of the thruster channel annulus and end at the
opposite side. Specifically, it may be possible to solve for the
plasma potential and electron temperature in a (quadrilateral)
computational cell that is bounded by two adjacent lines of
force rather than one with arbitrary dimensions, and then
interpolate the solution onto an arbitrary structured mesh.
This simplification formed the basis for the development of
a number of 2D computational models of Hall thrusters in
existence today, such as HPHall, which uses a set of quasi-
1D fluid equations for the electrons and a particle-tracking
Boltzmann solver for the heavy species in 2D axisymmetric
geometry. The code was developed by Fife in the late
1990s [5].

Recent work has shown that the applied magnetic field
may be designed in a way to shield the acceleration channel
surfaces (and in turn the magnetic poles) from significant ion
bombardment [25]. In such “magnetic shielding” topologies a
line of force may begin and end at the same surface rather than
traverse the channel annulus. Near these surfaces the above-
mentioned discretization approach used in HPHall cannot be
used to obtain the solution to the electron equations. Also,
near the hollow cathode the electron density can become high
enough such that the isothermalization of the lines is no longer
preserved. In both these cases a more generalized discretization
approach is needed. A main challenge with generalized

structured meshes, however, is excessive numerical diffusion
caused by the large disparity of the transport coefficients in
the parallel and perpendicular directions. This may be avoided
by discretizing the equations on a computational mesh that is
aligned with the magnetic field.

There are three main distinctive features of Hall2De, the
combination of which advances the state of the art on the
numerical simulation of Hall thrusters:

(a) Discretization of all conservation laws on a MFAM.
(b) Numerical solution of the conservation equations for

the heavy species without invoking discrete-particle methods:
(i) Multiple ion fluids can be included, each being

treated as an isothermal, cold (relative to the
electrons) fluid accounting for the ion drag forces
and ion pressure gradient.

(ii) The evolution of the neutral species is computed
using line-of-sight formulations that account for
ionization collisions and collisions with walls.

(c) Large computational domain that extends several times
the thruster channel length in the axial direction and encom-
passes the cathode boundary and the thruster axis of symmetry.

The first feature allows for the assessment of plasma and
erosion physics in regions with complex magnetic field topolo-
gies. In these regions of the thruster where isothermalization
and thermalized equipotentialization of the lines of force
persist, the main distinction between Hall2De and codes that
employ the quasi-1D discretization approach is that, in the
latter cases, a computational element is defined by two lines
of force and two boundary segments, and the solution is then
interpolated onto an arbitrary structured mesh. In Hall2De
such computational element is further divided into additional
elements using an orthogonal set of lines. The equations are
then solved on each one of these additional elements. The
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main advantage here is the ability to simulate regions of the
thruster where surfaces have disrupted the lines of force. The
MFAM also allows for the self-consistent simulation of
the plasma in the near-anode region. By contrast, in HPHall
the self-consistent numerical solution of the conservation laws
must be terminated at the magnetic field streamline nearest to
the anode boundary. In the region between this streamline and
the anode the HPHall solution is determined by extrapolation.

Feature (b) eliminates the inherent statistical fluctuations
typically caused by particle-based methods, and (c) allows for
the investigation of the large-scale behavior of electrons in the
plume while accounting for the cathode boundary conditions
(BCs) self-consistently. Due in part to the deviations from
the isothermal condition along lines of force, which occur
typically near the cathode, the extent of the computational
domain downstream of the channel exit plane in solvers that
incorporate the quasi-1D discretization approach is limited.
Shown in Fig. 2(a) is a schematic of a typical Hall2De
computational r-z domain with naming conventions of various
thruster components and boundaries to be cited throughout
this article. The length and height of the acceleration channel
are denoted by L and H , respectively. The figure shows also
computed gray-scale contours of the electron number density.
We note that in the particular configuration shown in Fig. 2 the
cathode is located at the thruster centerline (CL) which renders
it 2D axisymmetric. For illustrative purposes, Fig. 2(b) shows
a photograph of the corresponding laboratory Hall thruster
operating in a vacuum facility.

The conservation equations for all species are solved in
a time-split manner. Upon initialization, the plasma laws are
solved first followed by those for the neutrals. The plasma
solvers proceed with the solution for the ion number density
first, then for the ion velocity, electron temperature, and plasma
potential at the end.

C. Ions

1. Physics model

Because the treatment of ions, specifically the computa-
tional methods employed to determine their evolution inside
the acceleration channel, has been wide ranging due largely to

the assumptions made on their characteristic collision scales,
we outline here our estimates of the relevant characteristic
sizes for the ions in some detail. The two characteristic times
for relaxation to a fluid, τe for electrons and τi for ions, are

τe = 〈νei〉−1 = 3(2π )3/2ε2
0
√

me (kBTe)3/2

niZ2q4
e ln 


,

τi = 〈νii〉−1 = 12π3/2ε2
0
√

mi (kBTi)3/2

niZ4q4
e ln 


(4)

≈
(

2mi

me

)1/2(
Ti

Te

)3/2
τe

Z2
,

(with temperature expressed in K). In the remainder of this
article, our convention will exclude the brackets from mean
values of the collision frequency, that is ν ≡ 〈ν〉. In Eq. (4)
T is the temperature, Z is the charge state, kB is Boltzmann’s
constant, ε0 is the permittivity in vacuum, and ln 
 is the
Coulomb logarithm. When Ti � Te the (Spitzer) thermal
equilibration time between slow-moving singly charged ions
and electrons may be approximated by

τT
ei ≈ mi

2me

τe. (5)

Using representative values for a typical laboratory Hall
thruster operating at 6 kW [26] the ion transit time τu = L/ui

for a drift velocity ui can range approximately from (0.03 m)/
(2 × 104 m/s) = 1.5 μs for those ions that are accelerated
downstream of the channel to (0.01 m)/(5 × 102 m/s) = 10 μs
for those generated near the anode region and lost to the
walls. For comparison, the thermal equilibration time between
electrons and ions ranges 0.03–0.5 s inside the channel which
implies that the ions remain “cold” relative to the electrons.
The (thermal) mean free path (mfp) for ion-ion collisions λii =
uT iτi , with uT i = (2kBTi/mi)1/2 being the ion thermal speed,
is plotted in Fig. 3(a) along the middle of the acceleration
channel in two different Hall thrusters for various values of
the ion temperature. It is noted that although a case of 5000 K
ions has been plotted it is an extreme case since the channel
walls typically do not exceed 1000 K. It will be shown later that
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(a) (b)

FIG. 2. (Color online) (a) Typical computational domain of a Hall thruster showing naming conventions for various thruster components
and boundaries to be cited throughout this paper. (b) Photograph of a laboratory Hall thruster operating in a vacuum facility.
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FIG. 3. Ratio of mfp (λ) for collisions over the channel height H at the middle of the acceleration channel in two different thrusters, a 6-kW
laboratory thruster (1) and a SPT (2). (a) Ion-ion Coulomb collisions for different values of the ion temperature. (b) Ion-neutral collisions that
lead to the exchange of charge (assuming a constant cross section of 50 Å) and neutral-neutral collisions.

the ion density may in fact be substantially higher in the anode
region than the values predicted by these simulations, which
suggests even smaller collision mfps for ions in this region
than those plotted in Fig. 3(a). Also, laser-induced fluorescence
measurements of Xe+ inside this Hall thruster have shown that
ions follow very closely the equilibrium distribution function
[27], which further strengthens the continuum assumption for
the ions in this region.

Depicted in Fig. 3(b) is the charge-exchange collision mfp
for ions colliding with atoms of number density nn as estimated
by λin = (σinnn)−1. The mfp is plotted for two values of
the ion-neutral charge-exchange cross section σin, 50 Å2 and
100 Å2. Based on the measurements of Miller et al. [28], the
two values cover the range of typical ion energies attained in
the acceleration channel, <1 eV to 300 eV, with the highest
value of the cross section representing the lowest energy
ions. For comparison, the characteristic mfp for self-collisions
between neutrals λnn = (πnnD

2
√

2)−1 is also plotted in
Fig. 3(b) using a mean atomic diameter for xenon of D = 2.6 Å.
It is noted that the addition of charge-exchange collisions can
become increasingly important in the anode region since the
electric force can be negligibly small there [29].

Based on the estimates in Fig. 3 the model adopted in
Hall2De treats ions as a fluid and includes charge-exchange
collisions as a contribution to the (elastic) friction or “drag”
force in the fluid momentum equation. The ion temperature is
specified; thus an ion energy equation is not solved. Neutrals
are assumed to undergo no momentum-exchange collisions
with other heavy species. As it will be described later however,
collisions of neutrals that lead to loss of electron(s) and
collisions with walls are included. The approach for the
neutrals is described in Sec. II E. In this section we describe
the conservation laws and numerical approach for the ions.
Although all equations will be presented for a single ion fluid
that accounts for multiple charge states, Hall2De may in fact
account up to four distinct ion fluids. This multifluid capability
was implemented in recognition of the disparate equilibration
times that ions may possess, especially in the near-plume and
cathode regions of the thruster. Such disparity can lead to ion
populations with displaced Maxwellian distribution functions

relative to each other in which case multiple ion conservation
equations must be solved. All simulation results presented in
this article have been performed for a single ion fluid.

The formulations that lead to the ion momentum conserva-
tion law begin with Boltzmann’s equation for the distribution
function of ions fi(t,r,v):

∂fi

∂t
+ v · ∇rfi + Fi · ∇vfi = (ḟi)c, (6)

where Fi is the total specific force on the ions containing the
electric and Lorentz forces and t is time. The term on the right
expresses the rate of change of the distribution function as a
result of collisions between ions and species s and, in general, it
may be composed of both elastic and inelastic components. By
taking the product of Eq. (6) with the ion momentum mivi , and
integrating over velocity space, one obtains the conservation
law for the transport of momentum:

∂

∂t
(nm〈v〉)i + ∇r · (nm〈vv〉)i − nimi〈(F · ∇v)v〉i

=
∫

miv(ḟi)cdv, (7)

where v is the particle velocity with respect to the laboratory
frame of reference, u ≡ 〈v〉 = n−1

∫
vf dv is the mean particle

velocity, and c ≡ v − u is the particle thermal velocity.
The momentum conservation law for ions may therefore be
expressed in conservative form as follows:

∂

∂t
(nmu)i + ∇ · (nmuu)i = qiniE − ∇pi + Ri , (8)

where we have neglected the viscous terms in the pressure
tensor (pi ≡ nm〈cc〉) and have assumed that pi = piI with I
being the delta tensor. Because the magnetic induction field in
Hall thrusters is static the curl-free condition for the electric
E = −∇φ may be assumed. The drag force density Ri , defined
in terms of the collision term on the right in Eq. (7), may
be separated into two parts to distinguish the momentum
exchange between species by elastic collisions from that by
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inelastic collisions:

Ri =
∫

miv(ḟi)cdv

∣∣∣∣
elastic

+
∫

miv(ḟi)cdv

∣∣∣∣
inelastic

. (9)

Equation (8) may be combined with the equation of ion
continuity,

∂(nm)i
∂t

+ ∇ · (nm〈v〉)i =
∫

mi(ḟi)cdv, = miṅ, (10)

to yield the momentum equation in nonconservative form,

nimi

Dui

Dt
≈ qiniE −

∑
s �=i

nimiνis (ui − us) − ∇pi + � i .

(11)

In Eq. (10) ṅ represents the ion production rate. Since the
dynamics of the direct and inverse [30] elastic collisions are
the same, we have approximated in Eq. (11) the elastic term for
collisions with species s in terms of a mean collision frequency
νis between ions and other species s:∫

miv(ḟi)cdv

∣∣∣∣
elastic

≈ −
∑
s �=i

nimiνis(ui − us). (12)

The elastic drag force for a given population of ions accounts
for collisions with neutrals as well as Coulomb collisions with
ions of different charge states Z. The term � i includes all the
inelastic contributions to the transport of ion momentum:

� i ≡
∫

miv(ḟi)cdv − miui ṅ. (13)

It is noted that there are two terms in � i which are mathe-
matically distinct. The first appears as a direct consequence of
taking the first moment of Eq. (6) to obtain the conservative
form of the momentum equation (8). The second term appears
because Eqs. (8) and (10) were combined to obtain the
nonconservative form of the momentum equation (11). For
a quasineutral plasma with only singly charged ions and no
recombination, � i takes the simple form

� i = −miṅ (ui − un) . (14)

Quasineutrality is assumed in all formulations presented herein
except in those involving sheath BCs. The following ion-
production reactions are included:

e− + Xe → 2e− + Xe+, e− + Xe → 3e− + Xe++,

e− + Xe → 4e− + Xe+++, e− + Xe+ → 2e− + Xe++,

e− + Xe+ → 3e− + Xe+++, e− + Xe++ → 2e− + Xe+++,

Xe + Xe+ → Xe+ + Xe, Xe + Xe++ → Xe++ + Xe.

(15)

The ion conservation laws are closed with conditions
specified at all boundaries in Fig. 2. At electrical insulators,
namely the outer and inner channel walls and the thruster
front plate in Fig. 2, the hydrodynamic Bohm criterion ui �
(kBTe/mi)1/2 is imposed for the normal velocity component
of ions exiting the physical domain (i.e., at entry into the
sheath). The condition assumes cold monoenergetic ions
and Bolzmann-distributed electrons in the sheath, and fully
absorbing walls. This is a limiting condition when the ion
flow normal velocity is less than the ion acoustic speed, and

does not take into account contributions of low-energy ions in
the ion velocity distribution function [31]. When the normal
velocity exceeds the ion acoustic speed it is used as the value
at the boundary. At the anode, the BC for ions is implemented
in a way that ensures a continuous transition from the Bohm
condition for the ion velocity to zero velocity as the sheath
evolves from ion attracting to ion repelling. The model is
based on the formulations of Andrews and Varey [32] (see
also [33] for numerical implementation). Reflection boundary
conditions are set at the thruster CL (axis of symmetry). At
the outflow boundaries the ions are allowed to flow out of the
system freely (gradients of the two velocity components are set
to zero). The ion flux is specified at the cathode boundary based
on independent simulations of the hollow cathode plasma (e.g.,
see [34]).

2. Numerical approach

Equation (11) is solved using a centered upwind scheme
for the velocity field at the vertices of the MFAM. Referring to
the filled-circle vertex in Fig. 4, since the simulation domain
is composed of quadrilateral computational cells of arbitrary
shape the scheme accounts for the surrounding eight vertices
(open circles) to determine the upwind direction. Because all
the conservation laws in Hall2De are discretized using finite-
volume differencing, scalar variables S are computed at the cell
centers (filled squares) whereas scalar-gradient and drag force
vectors are computed at the cell faces and vertices respectively,
as shown in Fig. 4(b).

Specifically, Eq. (11) may be written in the following
general form:

∂u
∂t

+ (u · ∇) u = G (S) + R̃ (u) , (16)

where G represents the scalar-gradient specific forces and
is a function of scalar S. R̃ is the drag specific force and
depends linearly on the velocity u. It is therefore evaluated
at the vertices. In general, R̃ is also a function of the
collision frequency, which we approximate at the vertices by
bilinear interpolation of the surrounding cell-centered values
[Fig. 4(b)]. For illustrative purposes we refer to the 1D stencil
in Fig. 5 with an equal spatial increment �x between vertices

S
u

G

1

2

3

4
5 6

7

8

R
~

 

(a) (b)

FIG. 4. (Color online) Schematic of a set of four computational
cells showing centering of velocities and forces for the solution of the
ion momentum equation. The velocity field at the vertices is solved
for using an upwind scheme that takes into account the contributions
from a maximum of eight surrounding vertices (a). Scalars are defined
at cell centers and forces are defined at vertices and cell faces (b).
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FIG. 5. (Color online) Location of velocities, scalars, and forces
on a 1D stencil.

and cell centers, to express the discretized form of Eq. (16) as
follows:

ut+�t
k − ut

k

�t
+

(
ut

k + ut
k−1

)(
ut

k − ut
k−1

)
2�x

= 1

2

[
(Gϕ)tk + (Gϕ)tk−1

] + (Gp)tk + R̃
(
ut

k

)
, (17)

where x = k�x, k = 0,1,. . .,N. The scalar-gradient force is
approximated by

Gt
k =

St

k+ 1
2
− St

k− 1
2

�x
. (18)

In Eq. (17) we have expressed separately the plasma poten-
tial and ion pressure gradient forces Gφ and Gp to note that,
due to its dominance on the acceleration of ions, we implement
second-order spatial accuracy in Gφ ; all remaining terms are
first-order accurate. The continuity (10) and momentum (11)
equations are advanced explicitly with first-order accuracy in
time to yield at t + �t the ion number density and velocity
field, respectively.

D. Electrons

1. Physics model

The electron momentum equation in the absence of the
viscous terms is given by

neme

Due

Dt
= −qene (E + ue × B) − ∇pe + Re, (19)

where we have expressed the electron pressure as pe = peI.
As in the case for ions, the friction force Re/ne for electrons
is related to the integral of the collision term in the evolution
equation for the electron distribution function. For the case
of a near- (or “quasi-”) Maxwellian distribution function in an
anisotropic, classical plasma (i.e., with no random fluctuations
in the fields), and assuming ue � un, Re may be approximated
as follows:

Re ≈ −neme

[∑
i

νei (ue − ui) + νenue

]

= q−1
e me (ν̄ei + νen) je + (qeZ

∗)−1meν̄ei

∑
i

Zji , (20)

with the electron and ion current densities given by je =
−qeneue and ji = qiniui = qeZniui , respectively. The total
electron-ion (e-i) collision frequency is

ν̄ei = neZ
∗q4

e ln 


3 (2π )3/2 ε0
2√me (kBTe)3/2 , Z∗ ≡ n−1

e

∑
i

niZ
2.

(21)

Unless otherwise noted all references to “e-i collision
frequency” in the remainder of this article shall imply the
definition in Eq. (21). It has also been proposed that the
transport of electrons in Hall thrusters is enhanced in a
nonclassical manner, specifically by plasma turbulence [35,36]
and/or collisions with the channel walls [14,37]. In numerical
simulations of Hall thrusters these additional transport mech-
anisms are accounted for through the addition of nonclassical
collision frequency models the physics of which are beyond
the scope of this article. For simplicity but without loss of
generality we shall represent all nonclassical contributions to
the total electron collision frequency as να .

If the electron inertia can be neglected then one obtains the
vector form of Ohm’s law:

E = ηje + η�eje × β̂ − ∇pe

qene

+ ηei j̄i , (22)

where

η = meνe

qe
2ne

, ηei = meν̄ei

qe
2ne

, j̄i = 1

Z∗
∑

i

Zji . (23)

The total collision frequency of electrons has been ex-
pressed as the sum of the individual frequencies, νe ≡ ν̄ei +
νen + να . In the frame of reference of the magnetic field,
with ‖ and ⊥ denoting parallel and perpendicular components
respectively, the components of Eq. (22) may be written as

E|| = ηje|| − ∇||pe

qene

+ ηei j̄i||, (24a)

E⊥ = η
(
1 + �e

2)je⊥ − ∇⊥pe

qene

+ ηei j̄i⊥. (24b)

Equations (24) imply that there are sufficient collisions to
sustain the equilibrium distribution function for the electrons
in each direction relative to the magnetic field. Estimates of the
minimum collision mfp for electrons inside the acceleration
channel suggest that the collisionality of the species parallel to
the magnetic field may be insufficient to warrant the continuum
form of Ohm’s law as expressed by the expression on the left of
Eq. (24). Our simulations confirm, however, that the resistive
terms in the parallel direction are negligible compared to the
remaining terms. Then effectively we have E|| ≈ ∇||pe/qene,
which yields the expected dependence of the plasma potential
on the electron temperature and number density in the parallel
direction.

The electron energy conservation law is solved for the
electron temperature (expressed in eV) and is given by

3

2
qene

∂Te

∂t
= E · je + ∇ ·

(
5

2
Teje − Qe

)

−3

2
Te∇ · je −

∑
s

�s + QT
e , (25)

where, as in the case of the resistive terms, the thermal
conduction heat-flux tensor Qe is discretized on the MFAM
in terms of its parallel and perpendicular components: Qe|| =
−κe||∇||Te and Qe⊥ = −κe⊥∇⊥Te. The same arguments that
were made regarding the insignificance of the resistive terms
in the parallel direction apply also to Qe||, which implies that
the isothermalization of the lines is preserved. The last term
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on the right of Eq. (25) represents the energy exchange per
unit time between electrons and the heavy species [38] due
to deviations from thermal equilibrium, and is proportional
to ne(me/m)νei(Te − Ti) for ions and ne(me/m)νen(Te − Tn)
for neutrals. In Hall thrusters this term is usually a small
contribution to the total electron energy. Inelastic energy losses
associated with collisions of electrons with species s that
produce species s ′ (s → s ′) are accounted for by∑

s

�s = qe(φ′ − 1) (ṅζ )n→i

+qe

∑
s→s ′

[
(ṅζ )s→s ′ + 3

2
(Zs ′ − Zs) Te

]
, (26)

where

ϕ′ ≡ ϕ

ζn→i

= A0e
(A1ζn→i /Te) + A2, ṅs→s ′ ≡ nens〈σve〉s→s ′ .

(27)

Electron excitation losses are included in the first term of
Eq. (26) and account only for ground-state transitions. In
Eq. (27) ϕ represents the nondimensional excitation energy
loss, 〈σve〉 is the impact ionization rate, and ζ is the ionization
potential. The excitation loss rate is based on a fit to a solution
derived by Dugan and Sovie [39] with coefficients A0 = 0.6,
A1 = 0.304, and A2 = 1.

The plasma potential is determined by solving the equation
of current conservation:

∇ · j = 0, (28)

with the total current density given by j = je + ji . Equations
(24) are expressed in terms of the electron current density
and are then substituted into Eq. (28) which is solved in two
directions, parallel and perpendicular to the magnetic field.
The numerical approach for its solution is described in the
next section.

The equations for the electrons are closed with BCs at all
surfaces in Fig. 2. At the anode, sheath BCs are implemented
for the electron and ion current densities normal to the
boundary. The ion current density is prescribed based on the
Bohm criterion (Sec. II C 1). The electron current density is
given by

je · n̂ =
{−jT ee

−qe�ϕ/kBTe , �ϕ > 0,

−jT e, �ϕ � 0,
(29)

and the convective heat flux is

(jeTe) · n̂ = je · n̂ (2Te + �ϕ) , (30)

where �φ = φ − VA is the potential drop across the sheath
at the boundary and the electron thermal flux is jTe

=
ne (8kBTe/πme)1/2 /4. Typically in Hall thrusters the sheath
at the anode is electron repelling (�φ > 0). Equations (29)
and (30) are evaluated using the plasma potential value φ at
the center of the computational cell that is located adjacent
to the wall boundary, where n̂ is the unit vector normal
to the boundary. The conductive heat flux at the sheath is
set to zero, qe · n̂ = 0. At the cathode boundary the conditions
for the electrons are specified directly for the neutral particle
flux, plasma potential, and electron temperature. All such
conditions are guided by independent numerical simulations

of the partially ionized gas generated by the hollow cathode
(e.g., see [34]).

For all insulator wall boundaries a zero-current condition
is imposed: j·n̂ = 0. The conductive heat flux also is set to
zero. To account for the secondary electron emission from
these boundaries the convective heat loss [Eq. (30) above]
follows the formulations of Hobbs and Wesson (H&W) [40].
Specifically, given the electron temperature and plasma poten-
tial at the sheath-plasma edge, �φ is determined based on the
H&W solution to the 1D sheath equations, given the material-
dependent secondary electron yield function. Because outflow
boundaries are far from the channel exit Dirichlet conditions
are implemented for the electron temperature. Based on
direct measurements, at a distance that is several times the
channel length, the electron temperature varies typically in
most Hall thrusters between 1 and 4 eV. For the current
density at the plume boundaries the zero-current condition is
imposed.

2. Numerical approach

The large disparity (more than two orders of magnitude
in regions with high values of the magnetic field) that exists
in the electron transport equations between the perpendicular
and parallel directions requires special treatment. In this
section the general approach is outlined using Eq. (28) as
the example equation. The plasma potential is solved by
combining Eqs. (24) and (28) into one equation. Then,
referring to Fig. 6(b), for a single quadrilateral computational
cell with volume �V , consisting of four faces each identified
by index k = 1,. . .,4, and each having surface area �A, the
divergence theorem leads to the following discretization:

∫
V

∇ · jdV =
∮

A

j · dA ≈
4∑

k=1

(j · n̂�A)k. (31)

The current density may be expressed in terms of its
components parallel and perpendicular to the magnetic field:

4∑
k=1

(j · n̂�A)k =
4∑

k=1

[(j|| + j⊥) · n̂�A]k, (32)

where

j|| = (j · β̂)β̂, j⊥ = −β̂ × (β̂ × j). (33)

By using Eq. (24) to solve for the current density and
subsequently substituting into Eq. (32), the dot product in
Eq. (31) at cell face k may be expressed as

jt+�t
k · n̂k = (

Et+�t
k + εt

k

) · n̄t
k

ηt
k

(34)

at t + �t , where n̄ ≡ n̄r r̂ + n̄zẑ. With β̂ = βr r̂ + βzẑ the
components n̄r and n̄z may be simplified on the MFAM as
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(a) (b) (c)

FIG. 6. (Color online) (a) A set of lines of constant stream function ψ (streamlines of the magnetic field) overlaid by lines of constant
potential function χ , in the vicinity of the acceleration channel in a typical Hall thruster. (b) Each face of a computational cell in Hall2De is
closely aligned with either a χ line or a ψ line. (c) Corresponding MFAM computational mesh.
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In Eq. (34) the electric field is replaced by the plasma potential
gradient and the remaining terms involving the electron
pressure and the ion current terms are included in the term
ε. Numerical diffusion due to the disparity between the terms
with and without ωe is reduced by assuming that cell faces are
exactly either parallel or perpendicular to the magnetic field
lines. The accuracy of the solution is then dependent upon the
extent of the spatial deviations of the mesh from the true lines of
constant potential and stream functions χ and ψ . Here, χ and
ψ are the commonly used set of conjugate harmonic functions
satisfying the Cauchy-Riemann conditions for the radial and
axial components of the magnetic field. A set of such lines
in the vicinity of the acceleration channel of a typical Hall
thruster are shown in Fig. 6(a). The corresponding MFAM for
this thruster is shown in Fig. 6(c).

The treatment of the sheath BCs requires some discussion.
Referring to Fig. 6(b), if k = b is a boundary face with
conditions given by Eq. (29) then Eq. (31) may be expanded
as follows:

4∑
k �=b

Ct
k

(
ϕt+�t

ι0 − ϕt+�t
ιk

)

+
4∑

k �=b

ct
kε

t
k · n̄t

k + �Ab

(
jt+�t
eb + jtib

) · n̂b = 0, (36)

where C and c contain the transport and geometrical
coefficients. We note that the electron current density at
face b is implicit and nonlinear in φ due to the exponential
term in Eq. (29). Using a Taylor series expansion, for an
electron-repelling sheath the BC may be linearized as follows:

(je · n̂)t+�t
b = (jT e)tb exp

(
−qe�φt+�t

b

kBT t
eb

)

≈ (je · n̂)tb

[
1 − qe

kB

(
φt+�t − φt

T t
e

)
ι0

]
. (37)

As implied by Eq. (34), the current conservation law is
solved implicitly for the plasma potential whereas all other
terms are explicit.

The equation for the electron temperature is also solved in a
semi-implicit fashion. The thermal conduction term is implicit
whereas all other terms are evaluated at the previous time step:

3

2
qen

t
e

T t+�t
e − T t

e

�t
− ∇ · (κ t

e · ∇T t+�t
e

)
≈

[
E · je + ∇ ·

(
5

2
Teje

)
− 3

2
Te∇ · je −

∑
s

�s + QT
e

]t

.

(38)
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Magnetic field streamline (constant ψψ)
Line of constant electron temperature

 

FIG. 7. (Color online) Hall2De preserves the isothermal properties of the lines of force, a well-known feature in Hall thrusters. The plot
shows computed electron temperature contours overlaid by selected lines of constant stream function ψ (i.e., streamlines of the magnetic field).
The contoured plot for the electron temperature is overlaid by magnetic field streamlines to illustrate their isothermal properties in regions of
the thruster where �e � 1. Selected Te contours are illustrated by the solid lines without arrows. To allow for the self-consistent determination
of the electron temperature in regions (such as the cathode near-plume) where deviations from isothermal conditions may occur, Hall2De does
not specify a priori that the electron temperature remains fixed along magnetic field lines.

The solution to all implicit equations in Hall2De is obtained
using parallel sparse direct and multirecursive iterative linear
solvers (PARDISO). PARDISO is a high-performance, memory
efficient package for solving large sparse symmetric and
asymmetric linear systems of equations on shared-memory
and distributed-memory multiprocessors [41,42]. In Fig. 7 we
show computed electron temperature contours in the entire
computational region [Fig. 7(a)] and in the vicinity of the
acceleration channel [Fig. 7(b)] in a typical Hall thruster.
The contours are overlaid by streamlines of the magnetic field
to illustrate that in the majority of the computational domain
the isothermalization of the lines of force, a well-known
feature of conventional Hall thrusters, is preserved. Deviations
do occur, however, in the cathode region due to the high
collisionality of the plasma there.

E. Atoms

1. Physics model

Although collisions that lead to the ionization of an atom
can be frequent by comparison to its transit time inside the
channel, for most Hall thrusters, collisions between neutrals
are rare [see also Fig. 3(b)]. The conservation equation that
describes the evolution of the distribution function of the
atomic species fn(t,r,v) is the same as that for ions [Eq. (6)]
but with force F equal to zero:

∂fn

∂t
+ v · ∇rfn = (ḟn)c. (39)

We consider only ionization collisions and approximate the
rate of change of the distribution function due to such collisions
as

(ḟn)c = −νI
enfn, (40)

where νI
en is the electron-neutral ionization collision frequency.

The number density of neutrals is then determined by

integration over the velocity space v:

nn (t,r) =
∫

v
fn

(
t,r,v′) dv′. (41)

The algorithm to determine the neutral gas density was
developed by Katz and Mikellides and has been described
in detail in [22]. Here we only outline the basic concept.
The algorithm takes advantage of the long mfp of neutrals to
assume that all particles proceed along straight-line, constant-
velocity trajectories until they are either ionized, strike a wall,
or leave the physical domain. For neutrals emitted from a
boundary, fn(t,r,v) is taken to follow a cosine distribution that
remains unchanged except for a scale factor to reflect the loss
of neutrals by ionization. The emitted neutrals from any given
solid surface include thermally accommodated neutrals from
all other surfaces and ions from the plasma that recombined
with an electron at the surface. The sources of neutrals in
the thruster are gas inlets and solid boundaries. At the anode
propellant injection inlet the particle flux is specified based
on the operating flow rate of the thruster. At the cathode exit
the flux is specified based on independent simulations of the
hollow cathode flow through the orifice.

2. Numerical approach

A popular numerical method for simulating the flow
of particles undergoing rare collisions, such as neutrals in
Hall thrusters, is PIC [43] combined with DSMC [44] to
account for ionization collisions. An inherent disadvantage
of such methods is the numerical noise that is generated
due to the particle statistics. The noise may be reduced by
including more particles but at the expense of increased
computation time, and/or by careful tailoring of the weighting
and emission algorithms [10]. The approach followed here
aims at eliminating statistical noise. It is based on commonly
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FIG. 8. Definitions of the number densities and particle fluxes for
neutrals in a computational cell relative to a neutral-emitting surface.

used methods to model such problems as photon transport in
radiation heat transfer.

It is assumed that particles striking a surface are fully
accommodated and that the fraction of those particles that
is reemitted follows a cosine distribution. Referring to the
notation in Fig. 8, Katz and Mikellides [22] showed that
integration of Eq. (39) and subsequent discretization yields

nt+�t
ι0,� = nt

ι0,� + �t

[
4∑

k=1

�Ak

�Vι0

(
�t

ιk,�,k − �t
ι0,�,k

) − νt
ι0n

t
ι0,�

]
,

(42)

where the particle fluxes are given by

�t
ι0,�,k = nt

ι0,�Dι0,�,k

(
8kBT�

πm

)1/2

. (43)

Dιk,�,k is a geometric coefficient that is based on the view
factors between face k and surface �. Equation (42) has the
form of the fluid continuity equation except for the fact that
there are two fluxes at each face k: �ιk,�,k is associated with
gas particles entering computational cell ι0 from ιk, and �ι0,�,k

for particles leaving cell ι0. The corresponding two velocities
at each face are proportional to the average molecular speed
(8kBT /πm)1/2 where the temperature T of the neutrals is equal
to that of surface � and its values is specified a priori. We
note that Eq. (43) implies also that the particle fluxes are
upwind fluxes. For clarity on the numerical indices we have
dropped the subscripts n and en from the neutral gas density nn

and electron-neutral ionization frequency νI
en. Then, the total

neutral number density at the cell center is the contribution
from all emitting surfaces �:

nt+�t
ι0 =

∑
�

nt+�t
ι0,� . (44)

The main approximation in this algorithm is that neutral ve-
locities are independent of time. They are calculated only once
using the velocity distribution at the source and by assuming no
ionization. This implies also that changes in the velocity field
of the neutrals due to charge-exchange collisions are ignored.
We found the latter not to have a significant effect on the plasma
since the region where it is affected most by charge exchange
is near the anode where both ions and neutrals are slow.
Because particle trajectories are taken to be straight lines the
velocity at any given surface depends then on the view factor

FIG. 9. (Color online) 3D schematic showing the r-z computational domain and portions of the Hall thruster surfaces that contribute
neutrals to the domain by emission (a). The emitting surfaces are divided into triangles and the contribution of all triangles is summed to yield
the geometrical view factors at the r-z domain (b). Blocked rays do not contribute to the view factors.
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FIG. 10. (Color online) Axial slice plots from the benchmark numerical simulations of a commercial Hall thruster. The plots compare the
solution obtained along the channel CL by hybrid-PIC (HPHall) simulations with quasi-1D meshing with that obtained by the MFAM Hall2De.

between that surface and all other surfaces that emit neutrals.
Since the basis for computing particle distributions in a region
bounded by emission surfaces is the view factors the problem
then becomes essentially a problem in geometry. The view
factors can be computed at the initialization phase of the
simulation, thereby contributing an insignificant amount to the
total computation time. The determination of these velocities
on a computational mesh with cylindrical geometry proceeds
by first generating a surface of revolution for each emitting
surface �. The surface is then divided into triangles and for
each triangle a ray connects the center of the cell to that of
the triangle. If the ray intersects any boundary surface prior to
reaching the cell center the ray is considered blocked as shown
by the dashed line in Fig. 9. The discrete solid angles needed
for the determination of Dιk,�,k are found by summing the
view factors of the triangles with unblocked rays. The view
factor for each triangle is calculated using the algorithm of
Oosterom and Strackee [45]. An example of computed view
factors from two surfaces in a typical thruster are shown in
Fig. 9(b).

Currently, the algorithm uses approximately ten emitting
surfaces. As in the case of PIC where accuracy may be
improved by increasing the number of particles, the accuracy

of the present algorithm may be improved by increasing the
number of the discrete solid angles, i.e., by increasing the
number of emitting surfaces �. Regarding our assumption
that the speed distribution function of the neutrals does
not change by ionization collisions, numerical experiments
and comparisons with exact (1D) solutions showed that the
accuracy of the algorithm may be improved by dividing the
Maxwellian speed distribution into two or more velocity bins
[22]. We have found that with three velocity bins the error is
less than 20% within six ionization mean free paths. Finally,
benchmarking tests demonstrated that because the algorithm
does not depend on discrete-particle statistics it eliminates
completely statistical noise [22].

III. BENCHMARK NUMERICAL SIMULATIONS AND
NEAR-ANODE EFFECTS

We performed a series of Hall2De algorithm tests and
comparisons with existing results [24] obtained by HPHall
hybrid-PIC simulations of a commercial Hall thruster [23].
A summary of the comparisons is presented in this section.
Because nonclassical transport of electrons, arguably occur-
ring in the vicinity of the channel exit, is beyond the scope

046703-12



NUMERICAL SIMULATIONS OF HALL-EFFECT PLASMA . . . PHYSICAL REVIEW E 86, 046703 (2012)

φ (V)

Anode

Insulator

φ (V)

 

(a) (b)

FIG. 11. (Color online) Contour plots from the benchmark numerical simulations of a commercial Hall thruster. The plots compare the
solution obtained along the channel CL by hybrid-PIC (HPHall) simulations with quasi-1D meshing (a), with that obtained by the MFAM
Hall2De (b). The two filled-triangle symbols point to the maximum radial extent of the HPHall computational region. The electrical boundary
types of the channel are also shown. The cathode is located above the upper filled-triangle symbol.

of this article we employed the same collision frequency να

in the acceleration channel and near-plume regions as in the
hybrid-PIC simulations. This frequency includes the effects of
wall collisions.

Comparisons between Hall2De and hybrid-PIC simulations
for a variety of computed properties along the channel CL are
shown in Fig. 10. Figure 11 depicts 2D contours of the plasma
potential. In these comparisons we used Dirichlet BCs for
the electron temperature and plasma potential at the anode
instead of sheath BCs. Also, excitation losses were excluded
at first. Then we repeated the simulations with sheath BCs and
excitation losses to illustrate the impact of these physics on the
behavior of the near-anode plasma. This is discussed later in
the section. Also, the Hall2De results in these simulations were
produced using first-order accuracy on the force Gφ [Eq. (17)],
the neutral gas solver used only one bin for the velocity
distribution function, and the ion drag force due to interactions

with other heavy species accounted only for charge-exchange
collisions with neutrals; Coulomb collisions with ions of
different charge states were excluded. Subsequent simulations
have shown that although these Hall2De augmentations have
a noticeable impact on the plasma solution in the vicinity of
the channel exit and plume regions, they affect negligibly the
near-anode region.

The Dirichlet BC specified the electron temperature at
1 eV and the plasma potential at 300 V ( = VA) to duplicate the
HPHall result in this region. It is noted that due to the quasi-1D
assumption and associated discretization approach, the HPHall
solution near the anode is obtained by extrapolation of the
results from a region where the governing equations are solved
self-consistently. The two regions—one with extrapolated
solution and one with self-consistent solution—are joined
along a magnetic field line that serves, effectively, as the anode
boundary in HPHall. This is a good approximation in thrusters

1.E+16

1.E+17

1.E+18

1.E+19

1.E+20

1.E+21

100

150

200

250

300

350

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
z/L

phi (Hall 2De)
phi (HPHall)
ne (Hall 2De)
ne ( HPHall)
Ch. Exit

z/L

φ
(V

)

10 21

10 20

1019

1018

1017

1016

n
e (m

-3)

φ (Hall2De)
φ (Hybrid -PIC)

ne (Hall2De)

ne (Hybrid -PIC)

Ch. Exit

 

FIG. 12. (Color online) Comparison of terms in the ion momentum conservation law for singly charged ions [Eq. (45)] along the channel
CL. The profiles on the right identify the anode or “ion-diffusion” region (z/L � 0.3), the ionization region (0.3 < z/L < 0.6), and the
ion-acceleration region (z/L > 0.6).

046703-13



IOANNIS G. MIKELLIDES AND IRA KATZ PHYSICAL REVIEW E 86, 046703 (2012)

FIG. 13. (Color online) Effects of electron energy losses due to excitation and sheath BC for the convective electron heat flux at the anode.
A Dirichlet BC, φ = VA, is imposed for the anode potential. (a) Only ionization losses and Dirichlet BC for the electron temperature (set at
Te = 1 eV). (b) With excitation losses and sheath BC [Eq. (30)] at the anode. The contours and boxed values depict electron temperature in eV.

with magnetic field curvature that is not highly convex towards
the anode, as in SPTs, for example. In more advanced thrusters,
such as the commercial thruster simulated here, the near-anode
field lines are highly convex. In such cases the quasi-1D-based
meshing imposes the extrapolated solution to a significantly
larger portion of the near-anode region, thereby offering little
insight on the driving physics there.

The comparisons show similar solutions but with some
marked differences. The overall heating of electrons ap-
pears to be in close agreement between the two solutions,
which is expected since the peak electron temperature and
its spatial variation near this maximum are driven mainly
by resistive heating that is dominated by να; at z/L ≈
1, να exceeds the classical collision frequency by more
than one order of magnitude. Near the anode the electron
temperature in Hall2De is driven largely by the imposed
Dirichlet BC.

A notable distinction between the solutions for the electron
number density and plasma potential is evident in the anode
region, Fig. 10 (bottom). Hall2De yields a higher plasma
density in this region with values for z/L < 0.2 exceeding
by one order of magnitude those obtained by HPHall. A
comparison of the terms in Eq. (45) shows that the anode
region is dominated by ion diffusion since this is where the
electric field is negligible. It is noted that as part of the
inherent assumptions associated with the PIC simulation of
ions the ion drag terms [numbered as “IV” in Eq. (45)] are not
accounted for in HPHall. The ion pressure is also excluded in
HPHall and the Hall2De simulations confirm this to be a good
approximation for the assumed ion temperature of 500 ◦C.
The comparison of all the ion momentum terms in steady state
is shown in Fig. 12-right. In Eq. (45) νin is the ion-neutral
charge-exchange collision frequency and un is the average

drift velocity of neutrals.

∂ui

∂t
≈ qi

mi

E + (−ui · ∇) ui + −∇pi

nimi

+ (
νin + νI

en

)
(un − ui) .

(I) (II) (III) (IV) (45)

A related effect is associated with the variation of the
electric field in this region where measurements have sug-
gested little to no variation of the plasma potential (i.e.,
Ez ≈ 0) [46]. Similar comparisons as those performed for the
ion momentum may be carried out for the dominant terms
in Ohm’s law, namely between the resistive and electron
pressure terms. These comparisons suggest that the higher
plasma density reduces significantly the importance of these
terms in this region such that any differences between them
[the numerator in Eq. (46)], that would otherwise generate a
finite electric field, are reduced. The numerator in Eq. (46) is
reduced further by comparison to the HPHall solution since
the total classical collision frequency is higher (first term) and
the density gradient is lower (second term). The e-i collision
frequency (νei) is found to be higher in the near-plume regions
as well, in part due to the higher plasma density there but
largely as a result of accounting for the multiply charged ions
in Eq. (21) (through Z∗).

E⊥ ≈ η
(
1 + �2

e

)
je⊥ − ∇⊥pe

ene

∼ n−1
e [je⊥B2/me (νei + νen) − Te∇⊥ne]. (46)

Finally, two other effects are discussed here both associated
with the electron energy equation. With Dirichlet BCs at the
anode, specifying the electron temperature at 1 eV and the
plasma potential at VA = 300 V, we find that by not allowing
the excitation losses to affect directly the electron temperature

046703-14



NUMERICAL SIMULATIONS OF HALL-EFFECT PLASMA . . . PHYSICAL REVIEW E 86, 046703 (2012)

310

309

310

306

311

310
305

310

312

308

301

308

312

310

302

283

276

308

311

306

293

261

265

299

306

303

290

257

183

238

281

289

286

268

224

116
45

178

243

261

262

246

213

1

1

148

207

226

226

211

17

9

1

18

18

1

262

302
309

224

300

300

301

296

301

300
295

300

301

298

293

298

301

300

294

279

276

299

300

298

289

267

271

293

298

296

288

267

228

258

285

290

288

277

251

191

139

239

268

275

273

259

230

1

9

17

227

248

252

245

227

1

21

22

22

2

267

293
300

198

 

(a) (b)

FIG. 14. (Color online) Effects of the sheath BC for the electron current density at the anode. Sheath BCs are imposed for the convective
heat flux and excitation losses are included. (a) Dirichlet BC, φ = VA, imposed for the anode potential. (b) Sheath BC imposed for the electron
current density [Eq. (29)]. The contours and boxed values depict plasma potential in V.

(since Te is effectively held fixed by the imposed condition at
the boundary), the consequence is a reduction of the plasma
density. In reality, the presence of an electron-repelling sheath
at the anode requires suitable BCs for both the electron current
density [Eq. (29)] and the convective heat flux [Eq. (30)] that
allow both Te and φ to adjust self-consistently to flux losses
through the sheath. The result of imposing Eq. (30) is shown
in Fig. 13. We find that the plasma density remains relatively
unchanged compared to those plotted in Figs. 10 and 12 but
the electron temperature rises by ∼2–3 eV in response to
the reduction of convective heat loss by the electron-repelling
sheath. In other words, we find that the impact of the sheath on
the electron energy balance near the anode is more significant
than the excitation losses.

The above-mentioned results set the anode potential at VA.
The second effect discussed here is related to the sheath BC
for the electron current density, Eq. (29), and ultimately its
impact on the anode potential. We find that the application of
Eq. (29) leads to an increase in the plasma potential above the
anode voltage VA, which is to be expected since the electron
thermal current to the anode is significantly higher than the
electron current required by the discharge. In the hybrid-PIC
simulations, the significantly lower (more than one order of
magnitude) plasma density yields a proportionately lower jTe

which leads to φ � VA in this region. In the commercial
thruster simulations with Hall2De we find the increase of
the plasma potential to be �10 V as shown in Fig. 14. The
electron temperature decreases by about 1 eV because the
convective heat loss to the wall is now higher. This is because
the contribution of �φ = φ − VA in Eq. (30) is no longer zero.

Ultimately, compared to the Hall2De solution in Fig. 10, only
small differences in the plasma density near the anode are pro-
duced by the combined effects of sheath and excitation losses.

IV. CONCLUSION

This paper reports on the development of a 2D axisymmet-
ric computational model of the ionized gas in Hall thrusters
with the following main features: (1) resolution of electron
transport parallel and perpendicular to the magnetic field, made
possible by the discretization of the electron fluid equations
on a MFAM, (2) large computational region in the plume
that extends several times the channel size downstream of the
thruster exit, (3) implicit solution for the conduction of electron
current and heat, (4) solution of the hydrodynamic equations
of continuity and momentum for isothermal ions, accounting
for multiple charge states, charge-exchange collisions with
neutrals and collisions between ions of different charge states,
and (5) an algorithm for the neutrals that does not depend
on discrete particles. The first feature has been implemented
in part to permit channel erosion calculations in regions with
complex magnetic field topologies but it also allows for the
self-consistent solution of the near-anode plasma. Features
(1) and (2) permit the self-consistent determination of the
solution near the cathode. Our simulations have shown that
the electron flow exhibits characteristics in this region that are
purely two dimensional and cannot be resolved with a quasi-1D
electron model. For example, we found that the assumption of
isothermal lines of force is violated near the cathode. The
large computational domain permits also the investigation of
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large-scale effects associated with the transport of electrons
in the plume region of the accelerator. Larger time steps
may be taken with the implicitization of the conductive
terms. Features (4) and (5) yield “quiet” simulations of Hall
thrusters by eliminating the statistical noise that is inherent in
discrete-particle methods.

Results from benchmark simulations of a commercial Hall
thruster suggest that the anode region is dominated by ion
diffusion and the electric field is predicted to be negligibly
small there, which is in agreement with plasma measurements.
Mainly due to ion drag forces, the results show a significantly
higher plasma density in this region by comparison to the
hybrid-PIC simulation results of HPHall, which do not
account for such forces. The combination of anode sheath

boundary conditions, excitation electron energy losses, and
self-consistent determination of the plasma properties yields
approximately two to three times higher electron temperature
in the anode region. Because the plasma density in the anode
region is significantly higher than that predicted by PIC
simulations, the electron thermal current density is also higher.
Consequently, the Hall2De simulations yield plasma potential
values that exceed the anode voltage by a few percent.
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