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Influence of correlated collisions on Stark-broadened lines in plasmas
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An investigation of spectral line broadening in plasmas is carried out within a kinetic-theory approach,
based on the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy. The model employs a resummation
procedure to account for correlated emitter-perturber collisions. Applications to hydrogen lines indicate that such
collisions strongly affect the width and the shape in the core region. This argument is supported by comparisons
to numerical simulations. It is also shown that the usual collision operator models, based on a binary description
of emitter-perturber collisions, can be extremely inaccurate. The present model, in a better agreement with
numerical simulations, is suggested as an extension suitable for the design of fast and accurate numerical routines
for plasma diagnostics.
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I. INTRODUCTION

The Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY)
hierarchy provides a valuable approach to the study of dilute
medium such as gases or plasmas. The typical scheme for
obtaining a kinetic equation consists in writing a closure
relation based on suitable assumptions for the two-particle
correlation function and inserting this relation in the first
equation of the hierarchy. This approach has been successfully
used in the past for describing transport effects in plasmas (see
Ref. [1] for a review). In this work, we consider an adaptation
of the BBGKY formalism to the description of Stark line
shapes for plasma spectroscopy purposes, and we focus on an
extension devoted to retain correlated collisions between an
emitter and the surrounding perturbers. Plasma spectroscopy is
of general interest for diagnostics, given that the light naturally
emitted from the atomic species (including multicharged ions)
contains information on the plasma parameters (N , Te, etc.)
[2–5]. Detailed line shapes are also of interest for radiative
transfer simulations, where they serve in transport codes
as cross sections for the photon absorption and emission
processes [6,7]. It has been a long-standing challenge for
plasma spectroscopy to accurately describe Stark-broadened
line shapes [8]. The problem consists in a correct description
of the atomic dipole autocorrelation function in the presence
of the plasma microscopic electric field. The latter is created
by numerous charged particles, so that one is confronted with
a statistical time-dependent quantum problem that, even today,
has no general analytical solution. A basic description of a line
shape, sometimes referred to as the “standard model,” consists
in assuming the ions motionless during the dipole correlation
time (or time “of interest”) τdd and, at the same time, assuming
the electrons moving rapidly. This short-time assumption for
the electrons allows one to describe their contribution through
a non-Hermitian part in the Hamiltonian, usually referred
to as “collision operator.” This quantity can be calculated
using standard perturbation approaches, either semiclassical
[9] or fully quantum-mechanical [10], using a binary atom-
electron interaction model (impact approximation). The ionic
contribution is described for its part with a constant Stark effect
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term in the Hamiltonian, and a statistical average over the ionic
electric field is then performed using an appropriate probability
density function. As a rule, deviations to the standard model
are expected if the ordering τe � τdd � τi is not satisfied.
Here, τe and τi denote the electron and ion collision times,
estimated as r0/ve, r0/vi with ve, vi being the electron and
ion thermal velocities, respectively, and r0 = N−1/3 being the
characteristic scale for the mean interparticle distance. Ion
dynamics effects (that arise, for instance, if τi ∼ τdd ) have
been observed [11] and have been extensively investigated,
using numerical simulations [4,12–15] or ad hoc models based
on the statistical properties of the electric field (such as the
model microfield method “MMM” [16,17] or the frequency
fluctuation model “FFM” [18–20]). Incomplete electron col-
lisions (that are expected when τe � τdd is not satisfied)
have also been investigated, in particular by using refined
models for the collision operator, either based on kinetic
theory (such as the “unified theory” [21,22]) or semiempirical
procedures (e.g., using the Lewis cutoff [23]). Such models
reproduce the result of the impact approximation at the line
center (i.e., with the frequency detuning �ω = 0) and yield
an asymptotic behavior identical to that expected within the
quasistatic approximation. Several works in the past have been
devoted to generalizations of the collision operator models,
able to account for nonimpact effects, e.g., Refs. [24–26]. A
major issue concerns the modeling of correlated collisions
between the emitter and the charged particles surrounding it.
An interpretation of the correlated collisions is that an emitter
suffering a binary collision also “feels” the presence of the
other particles. They are important when the characteristic
collision frequency becomes of the same order as or larger than
the inverse correlation time of the emitter-perturber interaction
potential [27,28]. The latter is of the order of the inverse plasma
frequency ω−1

p , and the collision frequency can be estimated
as Nb2

Wv ln (λD/bW ), where N is the particle density, v is the
thermal velocity of the perturbers, λD is the Debye length, and
bW = h̄n2/mev is the so-called Weisskopf radius (here n is the
principal quantum number of the upper level). It determines an
effective cross section that corresponds to collisions yielding
coherence loss of the atomic wavefunction (strong collisions).
The usual binary models assume that there are no simultaneous
strong collisions, i.e., that the parameter g = Nb3

W is small
compared to unity. In general, correlated collisions concern
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both strong and weak collisions and, hence, may be important
even for small g. In this work, we address the problem of mod-
eling correlated collision effects on the line broadening with
a first-principles approach inspired from the unified theory.
The theoretical development makes extensive use of kinetic
equations of BBGKY-type and follows early works reported on
in the 1970s [27,28]. A preliminary attempt to retain correlated
collisions has been performed by using a generalization of
the Kirkwood truncature hypothesis to quantum operator [29].
Here, we follow a more rigorous approach based on a partial
resummation of the correlation terms that arise in the BBGKY
hierarchy. This procedure amounts to a renormalization of
the atomic energy levels involved in the collision operator,
accounting for their perturbation due to collisions. The method
is designed for regimes where g � 1 and is suitable either for
electron or ion collisions. We introduce the general formalism
in Sec. II and, for the sake of simplicity, we specify it
to one-component plasma in the weak coupling limit. This
assumption allows one to consider the perturbers as noninter-
acting quasiparticles evolving on straight lines (ideal gas) and
generating a Debye electric field. The resummation procedure
is presented in Sec. III. We show that the collision operator
is determined by a nonlinear equation and we examine an
iterative scheme for solving it numerically. In order to examine
the role of correlated collisions, we perform calculations in
ideal cases and compare the results to the unified theory
(Sec. IV). Comparisons with numerical simulations are also
made. Finally, Sec. V reports on applications to realistic cases
in the framework of magnetic fusion research.

II. FORMALISM

We give here a brief overview of the BBGKY approach
to the line broadening problem, following the early works
reported on in Refs. [21,27,28]. An atom immersed in a
set of N charged particles is considered. For simplicity, we
assume one-component plasma and we consider the particles
evolving along straight lines and generating a Debye electric
field. A generalization accounting for correlations between
the perturbers in a rigorous way can be developed following
Ref. [27]. A Stark line shape I (ω) is written as

I (ω) = 1

π
Re

∑
ε

〈〈d · ε|�̃0(−iω)|ρd · ε〉〉. (1)

Here, the double ket notation for Liouville space | . . . 〉〉 has
been used, ρ is the atomic density operator, d · ε is the dipole
projected onto the polarization vector ε, and �̃0(−iω) =∫ +∞

0 dteiωt�0(t) is the Laplace transform of the evolution
operator averaged over the perturber trajectories (classical
path assumption). The latter is obtained from the following
definition with p = 0

�p(1 . . . p; t) =
∫

d(p + 1) . . . dN

× fN (1 . . .N )U (1 . . .N ; t). (2)

Here, 1 . . .N stand for the phase space coordinates
(r1,v1 . . . rN ,vN ) of the perturbers, d1 . . . dN are the corre-
sponding volume elements, fN is the N -particle phase space
distribution, and U is the atomic evolution operator. It obeys

the Liouville equation⎧⎨
⎩ ∂

∂t
+ iL0 +

N∑
j=1

[
vj · ∂

∂rj

+ iV (j )

]⎫⎬
⎭U = 0, (3)

with the initial condition U (t = 0) = 1. All the quantities
present in Eq. (3) are operators acting in the atomic Liouville
space formed by the dyadics |ab〉〉 ≡ |a〉|b〉. The term L0

is the Liouvillian accounting for the atomic energy-level
structure and V (j ) = V (rj ) = −d · E(rj ) denotes the Stark
term resulting from the electric field due to the j th perturber.

Equation (2) provides generalizations of the reduced phase
space distributions, which account for the presence of the atom.
It is customary to introduce a cluster expansion (t is not written
explicitly)

�1(1) = f1(1)�0 + 
1(1)

�2(1,2) = f2(1,2)�0 + f1(1)
1(2) + f1(2)
1(1) + 
2(1,2)

�3(1,2,3) = f3(1,2,3)�0 + f2(1,2)
1(3) + f2(1,3)
1(2)

+ f2(2,3)
1(1) + f1(1)
2(2,3) + f1(2)
2(1,3)

+ f1(3)
2(1,2) + 
3(1,2,3)

. . . (4)

This decomposition allows one to write a hierarchy of
equations for the correlations⎧⎨

⎩ ∂

∂t
+ iL0 +

p∑
j=1

[
vj · ∂

∂rj

+ iV (j )

]⎫⎬
⎭
p(1 . . . p)

= −i

p∑
j=1

f1(j )V (j )
p−1(1 . . . j − 1,j + 1 . . . p) − iN

×
∫

d(p + 1)V (p + 1)
p+1(1 . . . p + 1), (5)

with the initial condition 
p(1 . . . p; t = 0) = 0 for p � 1. It
has been assumed that the phase space distributions are space
independent and factorize as fp(1 . . . p) = f1(1) . . . f1(p).
Also, the thermodynamic limit (N → ∞, V → ∞, N /V =
cst with V being the volume of the system) is assumed. In
Eq. (5), by convention 
0 ≡ �0 and 
−1 ≡ 0.

Originally, the unified theory was developed for applica-
tions in cases where the collisions are uncorrelated. The treat-
ment involves equations for �0 and 
1 only, setting 
2 ≡ 0:(

∂

∂t
+ iL0

)
�0 = −iN

∫
d1V (1)
1(1), (6)

and[
∂

∂t
+ iL0 + v1 · ∂

∂r1
+ iV (1)

]

1(1) = −if1(1)V (1)�0. (7)

Equation (7) can be solved formally by using the propagator
of the atom under the influence of one perturber, Q(1,t). It
obeys the following equation[

∂

∂t
+ iL0 + iV (r1 + v1t)

]
Q(1,t) = 0, (8)
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with the initial condition Q(1,t = 0) = 1, and it is proportional
to a time-ordered exponential (Dyson series)

Q(1,t) = e−iL0tT exp

[
−i

∫ t

0
dτeiL0τV (r1 + v1τ )e−iL0τ

]
,

(9)

T being the time-ordering operator. The correlation 
1 is
obtained from a convolution


1(1; t) = −if1(1)
∫ t

0
dτQ(r1 − v1τ,v1,τ )

×V (r1 − v1τ )�0(t − τ ). (10)

Inserting the solution Eq. (10) into the right-hand side of Eq. (6)
provides a closed, integrodifferential equation for the averaged
evolution operator �0(t). Its solution takes a simple form in
the Laplace space:

�̃0(s) = [s + iL0 + K(s)]−1 . (11)

Inserting this relation in Eq. (1) provides an analytical expres-
sion for the line shape. Decomposing the double bra and kets
onto an appropriate base of the Liouville space indicates that
the line shape can be written as a sum of generalized Lorentzian
functions, whose widths are frequency-dependent and given
by matrix elements of K(s = −iω). The latter quantity is a
collision operator that accounts for incomplete collisions. It is
completely determined in terms of the propagator Q and the
interaction term V :

K(s) = N
∫ ∞

0
dte−st

∫
d1V (r1 + v1t)Q(1,t)V (1)f1(1).

(12)

III. CORRELATED COLLISIONS

The assumption 
2 ≡ 0 considered in the unified theory is
not valid in regimes where correlated collisions are present.
Such correlations occur if, during the characteristic time for a
binary collision (estimated as λD/v ∼ ω−1

p ), another perturber
affects the atomic wavefunction. Such a perturbation occurs
at a time scale of the order of the inverse matrix elements
of the collision operator. A complete treatment of correlated
collisions involving the infinite hierarchy Eq. (5) seems out of
reach. To proceed further we propose a simplification that uses
the singular role of the p + 1th particle in the p + 1 correlation
present in the integral term of Eq. (5). The approach is inspired
from diagrammatic techniques used in kinetic theory (“ring
approximation,” e.g., Ref. [30]). For all p � 1, we assume
that p correlations are created or destroyed due to the pth
particle only. Therefore, the sums involving V in Eq. (5) are
replaced by their last term. The following evolution equation
is obtained⎡

⎣ ∂

∂t
+ iL0 +

p∑
j=1

vj · ∂

∂rj

+ iV (p)

⎤
⎦
p(1 . . . p)

= −if1(p)V (p)
p−1(1 . . . p − 1) − iN

×
∫

d(p + 1)V (p + 1)
p+1(1 . . . p + 1). (13)

To solve this system (p � 1), it is practical to use operator
techniques in the Laplace space. We define the resolvent

Gp(z) =
⎡
⎣z − L0 + i

p∑
j=1

vj · ∂

∂rj

− V (p)

⎤
⎦

−1

, (14)

the inversion being taken in the operator sense, and we
introduce two operators A and P acting on the correlations

(A
̃p−1)(1 . . . p) = Gp(is)f1(p)V (p)
̃p−1(1 . . . p − 1), (15)

(P 
̃p+1)(1 . . . p) = Gp(is)N
∫

d(p + 1)

×V (p + 1)
̃p+1(1 . . . p + 1). (16)

These operators can be interpreted as creating and destroying
correlations, respectively. The evolution Eq. (13) can be
written in the Laplace space in a compact form


̃p = A
̃p−1 + P 
̃p+1. (17)

We solve this equation using the ansatz P 
̃p+1 = C
̃p, where
C depends on A and P . This relation stems from the fact that
limp→+∞ 
p = 0 is assumed. A recurrence relation for 
̃p is
obtained:


̃p = (1 − C)−1A
̃p−1. (18)

This leads to a formal solution of Eq. (17):


̃p = [(1 − C)−1A]p�̃0. (19)

Here, we have again used the convention 
̃0 ≡ �̃0. The latter
quantity is obtained from Eq. (17) with p = 0, A
̃−1 ≡
iG0(is), using that P 
̃1 = C�̃0:

�̃0 = i(1 − C)−1G0(is). (20)

A closed relation for C is obtained from Eq. (18), multiplying
on the left by P and again using the ansatz (P 
̃p = C
̃p−1):

C = P (1 − C)−1A. (21)

This equation is transcendental because P is not invertible. A
resolution should, therefore, involve an iterative scheme.

The collision operator is obtained from Eq. (20), performing
algebraic manipulations and identifying with the terms in
Eq. (11):

K(s) = iG−1
0 (is)C0. (22)

Here, C0 denotes a restriction of C such that C�0 ≡ C0�0.
This quantity is determined using the recurrence relation
(p � 0)

Cp = Pp(1 − Cp+1)−1Ap+1, (23)

which stems from Eq. (21) and where Ap, Pp are restrictions
of A and P such that A
p ≡ Ap+1
p and P
p ≡ Pp−1
p.
We define a set of operators K0, K1, K2 . . . , generalizing the
collision operator in such a way that the following property is
satisfied:

Kp(1 . . . p; s) = iG−1
p (is)Cp. (24)

These operators obey the following recurrence relation (the
dependence on 1 . . . p,p + 1 is not written explicitly):

Kp(s) = iG−1
p (is)Pp[1 + iGp+1(is)Kp+1(s)]−1Ap+1, (25)
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or, using the explicit definition of Ap+1 and Pp and making
elementary algebra,

Kp(s) = iN
∫

d(p + 1)V (p + 1)
[
G−1

p+1(is) + iKp+1(s)
]−1

×V (p + 1)f1(p + 1). (26)

We simplify this relation by using the ansatz Kp(1 . . . p; s) =
K(s + ∑p

j=1 vj · ∂/∂rj ), which stems from the presence of
is + i

∑p

j=1 vj · ∂/∂rj in the denominator. Setting p ≡ 0 in
Eq. (26) yields a closed equation for the collision operator:

K(s) = iN
∫

d1V (1)Ḡ1(is)V (1)f1(1), (27)

where Ḡ1 is a modified resolvent

Ḡ1(z) =
[
z − L0 + iv1 · ∂

∂r1
− V (1)

+ iK

(
−iz + v1 · ∂

∂r1

)]−1

. (28)

The latter can be interpreted as a propagator involving energy
levels “dressed” by the presence of the other particles, through
the presence of the collision operator as a non-Hermitian part in
the Liouvillian L0. In the case where the correlated collisions
are neglected, Ḡ1 ≡ G1 and the collision operator reduces
to that obtained within the binary approximation, Eq. (12).
The set of Eqs. (27) and (28) is nonlinear. It is practical to
define an effective propagator Qeff(1,t), satisfying the dressed
one-particle Schrödinger equation:[

∂

∂t
+ iL0 + iV (r1 + v1t)

]
Qeff(1,t)

+
∫ t

0
dτM(τ )Qeff(1,t − τ ) = 0, (29)

with the initial condition Qeff(1,t = 0) = 1. Here, M(t)
is the inverse Laplace transform of the collision operator.
Equation (29) is interpretable as describing the evolution of
the atom under the influence of one collision represented by
the interaction term V , given a set of collisions occurring in its
past history. These collisions act accumulatively and are taken
into account by the kernel M(t). The absence of this term in
the unified theory [Eq. (8)] stems from the assumption 
2 ≡ 0.
The latter is valid provided the characteristic evolution time for
Qeff be much shorter than the time between two collisions. In
the case of weakly correlated plasma, the evolution time is of
the order of λD/v, so that a validity criterion is provided by the
relation λDγ/v � 1, where γ is a typical matrix element of the
collision operator, e.g., estimated as γ = Nb2

Wv ln (λD/bW ).
This result is in agreement with the analysis reported on in
Refs. [27,28] and it indicates that the present extension of the
unified theory allows one to explore regimes where correlated
collisions are present. In terms of the adimensional parameter
h = Nb2

WλD ln (λD/bW ), such regimes correspond to h � 1.
The collision operator accounting for correlated collisions can
be written in a fashion similar to that obtained within the
unified theory:

K(s) = N
∫ ∞

0
dte−st

∫
d1V (r1 + v1t)Qeff(1,t)V (1)f1(1).

(30)

The substitution of Q by Qeff denotes a renormalization of the
atomic energy levels induced by the correlated collisions. This
stems from the structure of the modified resolvent Eq. (28).
This is also illustrated by rewriting Eq. (29) in the Fourier and
Laplace domain:

˜̂Qeff(k1,v1,s)

= [s + iL0 + K(s)]−1

[
(2π )3δ(k1) − i

∫
d3k2

(2π )3
V̂ (k2)

× ˜̂Qeff(k1 − k2,v1,s − ik2 · v1)

]
. (31)

Here, the convention F̂ (k) = ∫
d3re−ik·rF (r) has been used

for any function of space F (r). As can be seen, the collision
operator appears in the denominator as a non-Hermitian con-
tribution to the Liouvillian. Equation (31) presents similarities
with the result of the resonance broadening theory used for
plasma turbulence [31,32], where the quasilinearized Vlasov
equation plays a role similar to Eq. (29). In this theory, the
coupling between the one-particle distribution function and
the plasma’s electric field is described through a diffusion
coefficient in the velocity space and the latter obeys a nonlinear
equation as does our collision operator. Resonance broadening
models have also been used in solid state physics for the
calculation of dielectric functions (e.g., Ref. [33]).

In practice, a calculation of the collision operator from
Eq. (30) should be done by iterations. A simplification,
practical for numerical applications, is provided by assuming
K(s) 	 K(−iω0) ≡ K0 (with ω0 being the central frequency
of the line under consideration) in Eq. (31), using that the
collision operator is governed by the values of ˜̂Qeff near the
resonance. This amounts to setting M(t) ≡ K0δ(t) in Eq. (29),
and it leads to a simple expression for Qeff , with a structure
similar to that in the binary case Eq. (9):

Qeff(1,t) = e(−iL0−K0)tT

× exp

[
−i

∫ t

0
dτeiL0τV (r1 + v1τ )e−iL0τ

]
. (32)

A simple expression of the collision operator for hydrogen
Lyman lines, suitable for small r0/λD , is derived in
Appendix A. Figure 1 shows the convergence of the iterations

FIG. 1. Diagonal matrix element of K0 for Ly-α in terms of the
number of iterations for r0/λD = 0.1, assuming bW/r0 = 0.5. The
calculation converges after only a few iterations.
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in a specific case. The diagonal element of the collision
operator for Ly-α is plotted in terms of the number of iterations
for r0/λD = 0.1, assuming bW/r0 = 0.5. These conditions
correspond to h 	 7.5, i.e., a regime such that correlated col-
lisions are present. As can be seen, the calculation converges
after only a few iterations.

IV. COMPARISONS

We have applied the collision operator formula Eq. (30)
to calculations of hydrogen line shapes in ideal cases. The
effective propagator has been estimated from Eq. (32) and
the simplification presented in Appendix A [Eq. (A4)] has
been used. Figure 2 presents a plot of the Lyman-α line
(n = 2 → 1) broadened due to ions at r0/λD = 0.1, assuming
bW/r0 = 0.2 (a) and 0.5 (b), obtained using the unified theory
(binary approximation) and compared to that obtained within
the renormalized model. These cases correspond to h 	 1.6
and 7.5, respectively. A numerical result from an ab initio
simulation code is also shown in the figure. This code uses
the “collision-time technique,” which has been developed and
designed in the past so as to provide correct statistics at regimes
where bW/r0 � 1 [34] (in particular, it avoids the bias induced
by some prescribed boundary conditions). The technique
assumes particles moving along straight lines, in agreement
with the quasiparticle model used in the collision operator
model. As can be seen, the binary model overestimates the
width and predicts a different shape structure, with a dip at the
center that increases with bW/r0. This dip is a consequence
of the inadequacy of the binary model. Correlated collisions
are important in this region because they govern the average
atomic evolution operator at long times, hence, by virtue of the

FIG. 2. Profile of Ly-α at bW/r0 = 0.2 (a) and 0.5 (b), i.e., when
correlated collisions are present. The binary model overestimates the
width and predicts a different shape, with a dip at the center that
increases with bW/r0. The renormalized model gives a much better
result, with no dip and with an overestimate of the width no larger
than 10% at bW/r0 = 0.5.

Laplace transform, at small frequency detuning. The typical
range for the dip corresponds to frequencies smaller than the
matrix elements of K (see discussion in Appendix B). The
renormalized model gives a much better result, with no dip
and with an overestimate of the width no larger than 10%
at bW/r0 = 0.5. Practically, this better result stems from the
presence of K into the denominator in Eq. (31). The small
discrepancy remaining at the center is due to the part of the
correlations that is not retained in the resummation procedure.
This discrepancy increases with the ratio bW/r0.

V. APPLICATION TO REALISTIC CASES

We consider an application of the model to realistic cases
in the framework of magnetic fusion research. Observations
of spectral lines with a high upper principal quantum number
(typically n > 7, and up to n = 20 in some cases) have been
reported on in experiments involving recombining plasmas,
in Alcator C-Mod [35–38], in ASDEX Upgrade [39], in
NAGDIS-II [40–42], in JET [43], and in NSTX [44,45]. For
such lines, the ratio bW/r0 for the electrons can be as high
as 0.5 and the h parameter can be of the order of unity.
This makes the binary approximation questionable. We have
calculated the profile of the Ly20 transition (n = 20 → 1)
at Ne = 4 × 1013 cm−3 and Te = Ti = 0.2 eV (typical con-
ditions of divertor recombining plasmas), using the binary
approximation and the renormalized model (Fig. 3). The ionic
contribution has been retained through statistical average over
the microscopic electric field (quasistatic model). Practically,
this amounts to making the formal substitution

L0 → L0 − d · Ei ≡ L0 − dzEi, (33)

I (ω) → I (ω,Ei), (34)

and to calculate the total line shape from the following integral

Itot(ω) =
∫ ∞

0
dEiW (Ei)I (ω,Ei), (35)

where W (Ei) is the probability density function of the
ionic electric field. For the latter, we have used the Hooper
model [46], which is suitable for moderately coupled plasmas
such as those of magnetic fusion experiments. The profile

FIG. 3. Profile of Ly20 in recombining divertor plasma conditions.
The dip present at the center stems from the neglect of correlated
collisions. No dip is present if the renormalized model is used.
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FIG. 4. Profile of Ly-α, without Doppler broadening, in plasma
conditions relevant to the ITER divertor. Only the central Zeeman
component is shown here. The binary model again overestimates the
width and predicts a different shape.

obtained within the binary approximation again differs from
that obtained within the renormalized model. The dip present
at the center stems from the neglect of correlated collisions.
The typical frequency range is given by the matrix elements of
−iK − dzE0 (with E0 being the Holtsmark microfield). In a
diagnostic context, this means that the use of the binary unified
theory could lead to significant errors in the interpretation of
spectra. We have also applied the model to the ion broadening
of Ly-α in the atom’s frame of reference (i.e., without Doppler
broadening), motivated by opacity calculations for ITER
modeling (e.g., Refs. [47,48]). The plasma conditions expected
in the ITER divertor are such that the ions are in a “near impact”
regime, with bW/r0 � 0.5 [49]. The typical magnetic field is so
strong that the Zeeman effect splits the line into well separated
components. Figure 4 shows a plot of the central component
obtained with the two models at Ne = 2 × 1015 cm−3 and Te =
Ti = 1 eV. Here again, the use of the binary approximation
yields an incorrect result with a dip at the center. The influence
of correlated collisions on Stark broadening is not specific to
Lyman lines. We have applied the model to the H-α transition
(n = 3 → 2), a line in the visible range. Figure 5 shows a
plot of the spectral profile in the atom’s frame of reference at

FIG. 5. The renormalized model can also be applied to Balmer
lines. Here, plot of the 3d-2p transition with no Doppler broadening
and no magnetic field.

Ne = 1015 cm−3 and Te = Ti = 1 eV. Only the transition 3d →
2p is presented in the figure, and no magnetic field is retained.
The profile has been compared to numerical simulations. As
can be seen, the binary theory strongly overestimates the width
and again provides a dip. The renormalized model is in a much
better agreement, with a discrepancy not larger than 10%.

VI. CONCLUSION

We have investigated the role of correlated collisions on
Stark-broadened line shapes in plasmas using a kinetic-theory
approach. Correlated collisions occur if the collision frequency
becomes of the same order as or larger than the plasma fre-
quency. In the model, the average atomic evolution operator is
obtained from a hierarchy of equations similar to BBGKY. The
presence of correlated collisions results in a renormalization
of the atomic energy levels considered in a binary model. The
results of the present model are in a very good agreement with
numerical simulations. In contrast, the use of a binary model at
conditions such that correlated collisions are present yields an
erroneous line shape structure, with a dip present at the center.
The method presented in this work provides an important
correction to the usual models based on collision operators.
The renormalization gives a structure of the new collision
operator convenient for physical interpretation and suitable
for numerical calculations, in particular for an implementation
in line shape codes that use a binary collision operator (e.g.,
Refs. [20,50]). The model can be applied either to ions or elec-
trons, and it can be generalized to isolated lines. Also, the ki-
netic theory treatment is transposable to quantum plasma [51].
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APPENDIX A

We derive here a simplification of the collision operator
formula applicable to the hydrogen Lyman lines in the limit
of small r0/λD . We assume that collisions with a small impact
parameter (strong collisions) give no significant contribution
to the integrals in Eq. (30). On the other hand, we consider that
the atomic wavefunction is not sensitive to perturbers located
at large distance. In this framwork, an approximation for the
evolution operator is provided by

Q(1,t) 	
{

0 if r1 < rm

e−iL0t otherwise
, (A1)

where rm is a characteristic radius that remains to be
determined. A possible approach consists in estimating the
matrix elements of the integral

∫ t

0 dτeiL0τV (r1 + v1τ )e−iL0τ

that appears in the Dyson series and comparing them
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to unity [52]. Such a procedure yields the following
relation:

rm =
{

bW1 if bW1 < v1t√
bW1v1t otherwise

, (A2)

where bW1 = h̄n2/mev1 is the Weisskopf radius specific to
velocity v1. This relation exhibits the separation between the
short and long time regimes, which correspond to incomplete

and complete collisions, respectively. The interaction term has
been estimated as V (r1 + v1τ ) ∼ H (rm/v1 − τ )bW1v1/r2

m,
H being the Heaviside function. From the approximation
Eq. (A1), the space integral in Eq. (30) can be calculated
analytically, in a fashion similar to what is done for the electric
field autocorrelation function (e.g., Ref. [53]). We assume a
Coulomb field and retain Debye screening through a cut-off at
λD . Hence,

∫
d3r1V (r1 + v1t)Qeff(1,t)V (1) = 4π (bW1v1)2

3(n2ea0/h̄)2
d · e(−iL0−K0)td ×

⎧⎨
⎩

(1/rm − 1/λD) if v1t � rm � λD

(1/v1t − 1/λD) if rm � v1t � λD

0 otherwise
. (A3)

The time integral in Eq. (30) can be evaluated analytically. The matrix element γ (s) = 〈n10|K(s)|n10〉, which provides the line
width and shift of Lyman lines, is given by

γ (s) = 4πN (bWv)2

3(n2ea0)2

∑
lm

|〈n10|d|nlm〉|2
{[

erf

(
bW

λD

)
− 2√

π

bW

λD

e−(bW /λD)2

][√
π

s ′bWv
erf

(√
λ2

Ds ′

bWv

)
− 1 − e−λ2

Ds ′/bW v

λDs ′

]

+
∫ ∞

bW v/λD

dv1F (v1)

[√
π

s ′bWv
erf

(√
s ′bWv

v1

)
+ 1

v1
E1

(
s ′bWv

v2
1

)
− 1

v1
E1

(
λDs ′

v1

)
− 1 − e−λDs ′/v1

λDs ′

]}
, (A4)

where bW is the Weisskopf radius evaluated at the
thermal velocity v = √

2kBT /μ (μ is the reduced
mass of the emitter-perturber system), s ′ = −i�ω +
〈nlm|K0|nlm〉 with �ω being the frequency detuning,
F (v1) = 4(v1/v)2 exp [−(v1/v)2]/(v

√
π ) is the Maxwellian

velocity distribution function, and erf, E1 are the error and
first exponential integral functions, respectively. The Hilbert
space formalism is used here; i.e., the bras, kets, and operators
refer to atomic states instead of dyadics in the Liouville space.
Equation (A4) is suitable for numerical calculations. The
binary approximation (“usual” unified theory) corresponds to
setting s ′ ≡ −i�ω, and the complete collision approximation
(“impact” theory) corresponds to setting s ′ → 0. An explicit
calculation for bW � λD yields

γ (s) 	 4
√

πNb2
Wv

3(n2ea0)2

∑
lm

|〈n10|d|nlm〉|2

×
{

2 + E1

[(
bW

λD

)2]}
, (A5)

which corresponds to the standard result for hydrogen [9].
In the case where a static electric field is present (Sec. V),
the substitution Eq. (33) leads to the presence of a static
Stark effect term in the Liouvillian in Eq. (A3). This term
can be accounted for in the formula Eq. (A4) by using a
decomposition onto the parabolic base. This procedure yields
the following substitutions∑

lm

· · · →
∑
lmn1

|〈nlm|n1n2m〉|2 × · · · (A6)

s ′ → s ′ − i〈n1n2m|dzE|n1n2m〉/h̄, (A7)

where n1, n2 are the parabolic quantum numbers. A similar
procedure can be applied to the other matrix elements of the

collision operator, which are required if a static Stark effect
term is present.

APPENDIX B

An analysis of the failure of the binary model when
correlated collisions are present can be performed from
an estimate using a simplification of the collision operator
formula Eq. (A4). We ignore the velocity average, so that F (v1)
can be replaced by δ(v1 − v), and we assume b′

W � λD . We
also ignore the imaginary part and we focus on frequencies
much smaller than v/bW and larger than v/λD , in such a
way to investigate a region dominated by incomplete weak
collisions. With these orderings the diagonal matrix elements
of the binary collision operator can be evaluated as follows:

γ (�ω) 	 γ0 ln

(
v

bW�ω

)
, (B1)

γ0 = 4πNb2
Wv

3(n2ea0)2

∑
lm

|〈n10|d|nlm〉|2. (B2)

This expression is similar to the Lewis model [23]. The line
shape is given by

I (�ω) = C
γ (�ω)

π

1

�ω2 + γ (�ω)2
, (B3)

where C is a normalization constant. A dip occurs if the line
shape has extrema at a finite value for �ω, larger than v/λD .
The resolution of the equation dI (�ω)/d�ω = 0 shows that
this occurs for �ω = γ (�ω)/

√
[1 + 2 ln (v/bW�ω)]. The

right-hand side of this expression can be estimated taking a
constant value � of the order of unity for the logarithm. This
provides a position for the local maximum of the line shape
and a criterion for the presence of a dip. If � is estimated
such that �/

√
(1 + 2�) = ln (λD/bW ), this criterion reduces

to h � 1, where h is the parameter introduced in the main text.
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