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We study the problem of electron-ion temperature equilibration in plasmas. We consider pure H at various
densities and temperatures and Ar-doped H at temperatures high enough so that the Ar is fully ionized. Two
theoretical approaches are used: classical molecular dynamics (MD) with statistical two-body potentials and a
generalized Lenard-Balescu (GLB) theory capable of treating multicomponent weakly coupled plasmas. The GLB
is used in two modes: (1) with the quantum dielectric response in the random-phase approximation (RPA) together
with the pure Coulomb interaction and (2) with the classical (h̄ −→ 0) dielectric response (both with and without
local-field corrections) together with the statistical potentials. We find that the MD results are described very
well by classical GLB including the statistical potentials and without local-field corrections (RPA only); worse
agreement is found when static local-field effects are included, in contradiction to the classical pure-Coulomb
case with like charges. The results of the various approaches are all in excellent agreement with pure-Coulomb
quantum GLB when the temperature is high enough. In addition, we show that classical calculations with statistical
potentials derived from the exact quantum two-body density matrix produce results in far better agreement with
pure-Coulomb quantum GLB than classical calculations performed with older existing statistical potentials.
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I. INTRODUCTION

The problem of electron-ion temperature equilibration has
enjoyed renewed interest over the past 5 or so years due to
the increased excitement resulting from the completion of
the National Ignition Facility and a general growing interest
in inertial confinement fusion (ICF) [1]. Because of the
asymmetric manner in which the α-particle fusion products
deposit energy to the electrons and ions, together with the short
time scales of the ICF implosion experiment, it is generally
believed that significant portions of the thermonuclear burn
process will occur in situations where the electrons and ions
are out of equilibrium. Since the fusion burn rate depends very
sensitively on the ion temperature [2], a precise knowledge
of the rate at which the individual species temperatures are
driven back to equilibrium (together with an equally precise
knowledge of the plasma heating and cooling rates) is desired.

Most if not all integrated simulations of thermonuclear burn
[2,3] make use of theoretical equilibration rates of the Landau-
Spitzer (LS) variety [4]. In LS theory, an equilibration rate
is derived from a Fokker-Plank equation assuming a simple
two-body electron-ion collision operator. The result is
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where 1/τei is the rate at which the electron temperature, Te,
changes given an ion temperature, Ti , according to (assuming
a single species of ions),

dTe

dt
= Ti − Te

τei

. (2)

Electron and ion masses are me and mi , number densities
are ne and ni , and Zi is the ion charge. The factor ln λei is
the so-called Coulomb logarithm, arising from the (divergent)

integral of the Rutherford scattering cross section over impact
parameter. In a standard treatment the logarithmic divergence
is eliminated by setting ln λei equal to the logarithm of a ratio
of maximum to minimum impact parameters, ln(bmax/bmin).
Landau [4] argued that bmax should be chosen to be a Debye
screening length, since if the impact parameter is larger than
this, an effective two-body collision will not occur. Since he
considered classical plasmas, he chose bmin to be the classical
turning point distance (now termed the “Landau length”),
which for a representative collision between electrons and
ions at a temperature T is approximately b0 = Ze2/kBT .
This assumes that the electron is a pointlike particle which
undergoes classical motion. For a quantum plasma, another
natural choice for bmin is the thermal de Broglie wavelength,
λth [4]. Since λth ∝ 1/

√
T while b0 ∝ 1/T , λth is sure to be

larger than b0 for high T , indicating that the close electron-ion
collisions will involve a spread-out electron wave packet rather
than a classical pointlike electron. If Z = 1, λth > b0 for
keV plasmas in the fusion-burning regime. Thus, LS theory
shows that the short-ranged part of the electron-ion energy
transfer can be dominated by quantum diffraction even when
the electron occupation numbers are completely Maxwellian.

The LS solution to the electron-ion temperature equili-
bration problem suffers from two serious deficiencies. (1)
It is only applicable for weak plasma coupling, that is,
�ei = Zie

2n1/3/T � 1 [5]. Indeed, if �ei is large, b0 and/or
λth can exceed the screening length, which means that both
ln λei and the resulting transition rate become negative. (2)
As Landau himself admitted, his theory produces predictions
of “logarithmic accuracy.” If, say, a factor of two or better
accuracy is desired (as for the ICF application), LS is likely
insufficient even for weakly coupled plasmas.

The desire to go beyond LS has prompted numerous
researchers to address this problem using other theoretical
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and computational means. Those most closely related to the
LS treatment involve kinetic and many-body theories in which
plasma screening and quantum effects are explicitly taken into
account [6]. In this way, the collision integral is computed
without the need for ad hoc, albeit physically motivated,
cutoffs as in the Coulomb logarithm of LS. These include the
many-body Green’s function approach of Dharma-Wardana
and Perrot [7], the kinetic theory + dimensional regularization
work of Brown, Preston, and Singleton (BPS) [8], the T -matrix
theory of Gericke et al. [9], and the quantum Lenard-Balescu
treatments of Daligault and Dimonte [10] and Vorberger
et al. [11]. Though these approaches have produced much
in the way of insight, precise numerical predictions of τei

have been essentially confined to plasmas exhibiting weak
electron-ion coupling, particularly for the physically relevant
case of opposite charges, since the quantitative inclusion of
bound-state effects is still quite challenging at present. Indeed,
with the exception of an excellent recent work involving like
charges (proton-positron) [10], it is not known how weakly
coupled the plasma must be for the above approaches to
be predictive. This problem is exacerbated by the complete
absence of high-accuracy experimental data of τei for plasmas
in the fusion-burning regime.

Another approach, capable of including arbitrarily complex
many-body correlations for a classical plasma, is molecular
dynamics (MD). Since the work of Hansen and McDonald in
the 1980s [12], researchers have attempted to compute τei in
cases where bound states are either unimportant (like-charge
or sufficiently high T ) or are largely ignored (by positing fixed,
time-independent Zi). The major problem here, of course, is
that real plasmas are not classical. As we stated above, for
the fusion-burning plasmas which are our interest, quantum
diffraction is expected to be essential to include if a reasonable
τei is to be obtained. In fact, there is an even more basic
practical problem: Any plasma composed of opposite charges
is necessarily quantum mechanical, in that the problem of
mutually interacting classical electrons and protons is funda-
mentally ill posed; in a classical simulation, an electron will,
through multiparticle energy exchange processes, eventually
be forced infinitesimally close to a proton even if they are
forbidden to radiate. Indeed, it is the very quantum nature of
the electrons which gives rise to the stability of matter [13].

Methods for simulating quantum systems do indeed exist,
but none are easily applied to the problem of electron-ion
equilibration. Self-consistent electronic structure-based MD,
such as that based on various approximations within density
functional theory [14], typically invokes Born-Oppenheimer-
like assumptions, whereby the electron and ion dynamics
are decoupled. This prevents irreversible work from being
performed by one subsystem on the other, preventing heat
transfer. Quantum Monte Carlo methods have also reached
a mature stage [15], but these approaches are generally
limited to computing time-independent thermal averages in
equilibrium, not nonequlilibrium properties such as energy
exchange. True time-dependent Schrödinger dynamics is also
coming to fruition, but only for few-body systems [16].

To wit, researchers studying temperature equilibration in
plasmas have used classical MD in two varieties: (1) Like-
charge MD, in which a truly classical plasma is studied. This
has much merit, since for the weakly coupled plasmas (i.e.,

spatially homogeneous, no bound states) for which LS and
related approaches are intended, the like-charge and opposite-
charge predictions are exactly the same [4]. Dimonte and
Daligault [10,17] have used this approach and have identified
a flavor of kinetic theory which reproduces their like-charge
MD results strikingly well up to moderate plasma couplings.
(2) Opposite-charge MD with two-body statistical potentials
(SPs) is the other variety. Here, classical effective potentials
are derived which reproduce the correct static structure factors
of the quantum plasma; they look essentially like the bare
Coulomb interaction at long range and a softened (e.g., finite)
potential within the de Broglie wavelength at short range
[18–20]. This fixes the opposite-charge classical instability
problem, and it is hoped that the softening of the electron-ion
potential at short range embodies the salient features of
quantum diffraction present for true quantum plasmas. Work in
this area includes the original Hansen-McDonald contribution
[12], together with more recent work exhibiting far better
statistical accuracy: Jeon et al. [21], Glosli et al. [22], both
addressing pure hydrogen, and Benedict et al. [23] addressing
an idealization of an SF6 plasma exhibiting weak electron-ion
coupling but strong ion-ion coupling.

Both like-charge and opposite-charge MD simulations have
verified that LS-type approaches work well for hydrogen plas-
mas as long as �ei is not too large (so, high T and low n), though
all have shown that leading-order corrections to LS supplied
by, for instance, the BPS theory, are important to include
even for �ei ∼ 0.1 or less [17,21,22]. For stronger coupling,
they clearly show a breakdown of the weak-coupling theories,
manifested in the effective Coulomb-log, ln λeff

ei , approaching
zero slowly from above as �ei is increased [17,22]. Fits to the
T -matrix results of Ref. [9] have been shown to reproduce
the MD performed with SPs quite nicely for H, in a regime
for which �ei is fairly large but T is still high enough to
prevent bound-state formation [22]. The MD work on the SF6

plasma exhibited the effects of strong ion-ion coupling but
relatively weak electron-ion coupling [23]. In particular, it
was seen that the final equilibrated temperature was notably
different from what LS (or indeed most of the aforementioned
theories) would predict, a result of the screened ions storing
potential energy when the ion temperature is low and the
ions are strongly correlated. This potential energy contribution
to the temperature equilibration problem had been discussed
before [24] and has now been modeled in detail by Vorberger
et al. [11]. It should be stressed that plasmas for which at
least some of the ions are strongly coupled are quite probably
of the greatest interest at present, since (1) pure H or DT
plasmas in the fusion-burning regime (n ∼ 1025/cc and T ∼
a few keV) are probably weakly coupled enough for existing
quantum-kinetic treatments to apply, and (2) the admixture of
high-Z dopants from the ablator of an ICF capsule into the DT
fuel is a very real concern [1].

In this work, we present the results of classical MD
simulations, most of which use the SPs, for two systems:
pure H, and Ar-doped H for fully ionized Ar (Z = 18). For
the chosen systems, n varies between 1022/cc and 1026/cc,
with the bulk of the simulations concentrated around 1025/cc.
Temperatures are between 100 eV and 10s of keV (for the
Ar-doped H). These conditions are chosen to coincide with
those for DT fusion. While some of the conditions relevant for
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fusion include regimes in which the electrons are degenerate
[25], we focus largely on those in which the electrons are
Maxwellian; this is appropriate for the classical MD studies
reported here. The few cases we include that venture into
the degenerate regime are considered primarily to afford
comparisons between our classical simulations and associated
theories (mentioned below).

In addition to presenting MD results for τei which are far
more accurate than our earlier MD predictions for H [22],
we also use a multispecies version of the generalized Lenard-
Balescu (GLB) theory, such as that presented in Refs. [10,11],
to better understand our MD data. We use the GLB method in
two distinct ways: (1) in its quantum variety along with the bare
Coulomb potential, and (2) in its classical variety (h̄ −→ 0)
with the SPs. By doing (1), we endeavor to learn nature’s
true answer, at least for the weakly coupled cases where GLB
should be accurate. With (2), we address various concerns that
arose in our earlier MD work on H [22]. Both (1) and (2) taken
together allow us to see the extent to which we should expect
classical MD simulations of τei to reflect quantum reality. We
show that for low-Z plasmas in the fusion-burning regime,
classical MD with previously available SPs [18,19] should
produce values for τei which are within 10%–20% or so of
the quantum results. In addition, we use computations of the
exact quantum pair density matrix to construct improved SPs
for which the agreement is better than this by at least a factor
of four, verifying the efficacy of earlier attempts to construct
potentials in this manner [20]. While direct comparisons such
as these can be done only for weak-coupling (since one is
only sure of GLB’s validity in such situations), we suspect
that some of our conclusions will inform future and ongoing
MD studies of strongly coupled quantum plasmas.

II. MOLECULAR DYNAMICS SIMULATIONS

Temperature relaxation simulations are performed with the
ddcMD molecular dynamics code [26]. Two-body forces are
evaluated with a particle-particle-particle mesh method [27]
designed for long-ranged Coulomb and related interactions.
Recent optimization of ddcMD allows us to increase the
numbers of particles in each simulation by factors of 103–104

relative to our earlier plasma studies [22,23], with correspond-
ing improvements in statistical uncertainties. Our main goal for
these MD studies is to provide guidance for the discrimination
between, or development of, theories of electron-ion relaxation
for plasmas. In addition, we seek to detect differences in the
simulations resulting from the use of different models for the
electron-ion interaction. Thus, a fairly high level of statistical
accuracy is needed.

The simulations all involve classical many-particle dynam-
ics. In some, we use repulsive 1/r potentials, and in others
we use quantum SPs [18–20]. The latter are designed to
reproduce the equilibrium quantum pair Coulomb correlations
by sampling a classical equilibrium distribution with the model
potential; they account for quantum mechanical diffraction at
short distances in some thermally averaged sense. Both types
of potential have been used to compute nonequilibrium plasma
properties before [10,12,21–23]. Previous simulations suggest
that the temperature relaxation due to Coulomb and SPs differ
by 10% or less at moderate coupling for hydrogen [22], so

we seek to limit our uncertainties to much less than this.
Because our MD code scales well, we use large systems
(1 024 000 particles for H) to minimize statistical errors instead
of many independent, small replicas. In a few cases, we
compare the results from statistically uncorrelated replicas
to quantify the uncertainties for these large simulations. In
the following discussion, we describe the details of our
hydrogen simulations, though similar approaches are used for
the Ar-doped H plasma simulations we also present below.

We prepare nonequilibrium, two-temperature hydrogen
plasmas so as to minimize initial transient behavior during
the temperature relaxation runs. The particles are started in
a perfect ionic lattice in the CsCl structure. This artificial
placement ensures that long wavelength charge fluctuations
are initially zero. The longest wavelength acoustic modes relax
slowly for large systems, and it is preferable to begin with a
well-characterized density not far from the expected thermal
distribution. In contrast, our prior use (in small systems)
of a random mixture at quasiuniform density [22,23] can
introduce spurious, athermal charge density fluctuations that
must then be annealed from the system. No attempt has been
made to seed the CsCl structure with density fluctuations
appropriate to the temperature and compressibility of the
system, although this could be done in the future. The initial
particle velocities are drawn randomly from separate Maxwell-
Boltzmann distributions. We add separate, weak Langevin
thermostats to the electrons and protons,

mαv̇dt = −mαv

τα

dt +
√

2kT mα

τα

dξ, (3)

during the MD sample preparation. Here, dξ is white noise
and α ∈ {e,i} for electrons and ions. Typically, the species-
dependent velocity decay time, τα , is adjusted to exceed the
plasmon (for electrons) or ion acoustic wave (for ions) period,
or density oscillations are overdamped and their evolution
can be delayed. In order to quickly approach a stationary
state, we initially scale the proton masses to mp � me.
An MD simulation is performed over multiple oscillation
periods until the distribution of amplitudes for the longest-
wavelength modes appears to be stationary. The disparate
species temperatures equilibrate rapidly for mp � me; this
causes departures from the two-temperature profile and alters
the nonequilibrium pair correlations. Afterwards, the proton
masses are rescaled logarithmically towards their physical
values, and all particle velocities are rescaled to recover the
desired species’ temperatures. The system is then annealed
for a similar interval as before. The subsequent temperature
equilibration is slower due to the increased adiabatic separation
of ions and electrons, and the final configuration is closer to
the desired two-temperature limit. In particular, the density
fluctuation spectrum and total potential energy more closely
approximate that for the nonequilibrium temperature relax-
ation problem. The sequence (mass-scaling, velocity-scaling,
and thermostated MD) is repeated three times, until the final
proton mass is obtained.

The physical electron mass is used in all simulations, but
the proton mass has been taken for the most part to be 1824me

here, rather than its true physical mass (∼1836me). This is
simply because of an error in defining the proton mass in the
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MD code which was not caught until later; the closeness of
the chosen value to the true value allows us to assert that
the physical value of any computed temperature relaxation
time can be recovered by appealing to Eq. (1) and scaling the
reported relaxation times (computed with mp = 1824me) by
the factor 1.0066.

The as-prepared system has quasi-Maxwell-Boltzmann
distributions near the desired temperatures, and density fluc-
tuations that approximate a stationary, but nonequilibrium
distribution. In some cases, independent samples are obtained
by repeating this procedure, starting from the stationary
configuration just described. The initial mass scaling, mp �
me, quickly reaches a state that is uncorrelated to the starting
configuration.

Temperature relaxation rates are obtained by microcanon-
ical MD simulations of the as-prepared nonequilibrium sys-
tems. Simulation durations range from <1% to substantial
fractions of τei , and �T = Te(t) − Tp(t) relaxes by as little
as 0.1% for weak-coupling cases and up to 50% for strong
coupling. We perform a nonlinear least squares fit of a
relaxation function F (C(t − t0)) to �T (t) over the entire
simulation interval, in terms of a rate C and time offset t0. The
relaxation time τ−1

ei = Cdln(F )/dt . Different analytic results
for F (t) have been used in the past [10]; here the fitting function
is a numerical solution to

dF

dt
= −

(
Fe + Fp

1824

)−3/2

ln
(
F 1/2

e

)
F, (4)

where Fe = F/2 + T∞ represents the fit electron temperature
in a LS-like expression, Fp = −F/2 + T∞, and T∞ is some
average (Te + Tp)/2, an estimate for the asymptotic, equi-
librium temperature in the weak-coupling limit, and mp/me

is here assumed to be 1824. This is adjusted accordingly
in the few cases where a reduced proton mass is used in
the temperature relaxation simulations. Equation (4) includes
leading deviations from constant linear relaxation. However, it
does not account for strong-coupling cases where equilibration
Teq 
= T∞ due to changing potential energy contributions
[23,24]. An example of the raw MD data, together with the
aforementioned fit, appears in Fig. 1 for a hydrogen plasma at
n = 1025/cc (discussed in Sec. IV A).

The numerical uncertainty in τei cannot be estimated from
the fit to a single short simulation because fluctuations in
relative temperature occur over times characteristic of τei . A
lower bound to the error can be obtained by considering the
equilibrium situation. When two systems are in thermal equi-
librium with an external bath, their internal energies fluctuate:

(δE)2 = E2 − (E)2 = kBT 2Cv (5)

(Ref. [28], 6.5.5. and 7.2.13). The heat capacity for the
kinetic energy of the electrons or protons is just the ideal gas
Cv = 3

2NkB . If the bath is removed, the temperatures of the
two species will still fluctuate, each serving as a (finite) bath
for the other. This implies(

3
2NkBδT

)2 = 3
2N (kBT )2 (6)

and a relative uncertainty in the temperature of δT /T �
(3N )−1/2, about 0.1% for the simulations considered here.
The autocorrelation time for these fluctuations is related to

FIG. 1. (Color online) Raw data (black dots) for the simulation
of temperature equilibration in a hydrogen plasma with n = 1025/cc
and initial electron and proton temperatures of 1000 and 800 eV,
respectively. Dunn-Broyles + Deutch SPs were used in the MD
simulation. Solid blue and red curves show the fit to the data which
is used to extract the value of τei .

τei . For example, an equilibrium simulation of hydrogen at
ρ = 1022/cc Te = Tp = 30 eV, using the Dunn-Broyles and
Deutsch potentials [18,19] for the interparticle interactions
predicts τei � 1450 fs. This is obtained from the first 70 fs
of the 〈�T (t)�T (0)〉 autocorrelation function from a 400-fs
simulation. In comparison, two independent, 150-fs, non-
equilibrium simulations with Tp = 60 eV, Te = 30 eV give
τei � 1545 fs from the direct numerical fit to �T (see
Table I). If multiple short (e.g., duration 0.01τei), statistically
independent, equilibrium simulations are performed, the slope
d�T/dt will average to zero, with an uncertainty of order
δT /τei or 0.1%. A comparable error will apply to the d�T/dt

and the rate constant derived from short nonequilibrium tem-
perature relaxation runs. Finally, the nonequilibrium tempera-
ture relaxation runs are compatible with these estimates. The
residual or difference between the simulated Ti − Te and the
fitted function fluctuates with an amplitude that is consistent
with the near equilibrium conditions of the simulation.

There are additional contributions to the uncertainty
between independent simulations. The isothermal sample
preparation described above gives an ensemble of systems
with different internal energies; Te+Ti

2 may differ at the 0.1%
level, resulting in slightly different expected τei throughout the
simulations. However, an explicit sampling of independent
calculations with 5 × 105 hydrogen suggest that τei differs
by 1%–2%. Larger errors occur because kinetic energy is
also exchanged with the potential energy of the system. The
heat capacity due to the potential energy is proportionately
small in the weak coupling limit, but the relevant correlation
time constant can be shorter than τei . Thus, the influence
of potential energy fluctuations is magnified by a short
simulation. There may also be residual transient relaxations
from the sample preparation. In practice, our demonstrated
numerical accuracy is sufficient to distinguish between some
theories of electron-ion equilibration in interesting regimes,
and at least some different models for electron-proton (ep)
interactions, regardless of the sources of error.
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TABLE I. MD simulation results for τei (in fs) for hydrogen at n = 1022/cc. The electron temperatures are the
values used in computing the numerical relaxation rate; they lie within the range of temperatures spanned by the simul-
ation. Proton temperatures are calculated from T∞ and so vary slightly for different sample realizations. The target
temperature is shown here. The relaxation columns are in fs and are labeled by potential type (all simulations used a
Deutsch form for the Pauli term) and particle types (ep, electron-proton; pp, positron/proton). For all but the last τei

reported (�ei = 0.005 case), two independent MD runs were performed; the results here indicate the average.

Tp (eV) Te (eV) �ei Dunn-Broyles (ep) Dunn-Broyles (pp) Coulomb (pp)

59.5 30.5 0.167 1517 1542 1333
199.5 100.5 0.050 5708 5204 4295
599.4 300.5 0.017 21 833 18 939 15 522
1996 1002 0.005 95 226

MD plasma simulations are most challenging in the weak
coupling limit; relaxation times are large here, so long
simulations are required. The high thermal velocities also
demand small time steps to resolve trajectories for small
impact parameter collisions. The 1/r Coulomb potential poses
the most stringent time step requirements; the use of SPs to
include quantum diffraction effects greatly ameliorates this
trend. Numerical errors manifest most prominently as a failure
of energy conservation, but it is essential to note that good
energy conservation is by no means a sufficient condition to
ensure that the temperature equilibration rate is converged. We
maintain a high degree of energy conservation, typically parts
in 103–104 over a simulation in which temperature differences
may relax by anywhere from 10% to 0.1%. Explicit checks that
τei itself is converged with respect to dt are complicated by
the computational difficulties of running multiple simulations
with sufficiently large numbers of particles and for the required
long run times. One such convergence test appears in Fig. 2.
For each dt chosen, multiple statistically independent 2 − T

replicas are run long enough to obtain τei . It is apparent in this
case that for the numbers of particles used (5 × 105 electrons
and protons), the statistical spread in the resulting relaxation
times limits the assessment of time step convergence. This

FIG. 2. Values of τei extracted from MD runs for a hydro-
gen plasma (n = 1025/cc, Te = 1000 eV, Tp = 800 eV, Dunn-
Broyles + Deutch potentials) as a function of the MD time step. The
multiple points for each time step indicate statistically independent
replicas.

problem only gets worse as T is increased at fixed particle
density. Nevertheless, we find that for the SPs we use in most of
our study, and for hydrogen densities of 1025/cc (this isochore
is discussed extensively below), sufficiently small time steps
range from 10−5 fs for T ∼ few hundred eV to 10−7 fs for T ∼
many keV. For this reason, we are not able to study extremely
weakly coupled cases with this approach.

Finally, we consider four models for electron-ion scattering.
The classical Coulomb potential is only considered for like-
sign charges (a proton-positron gas) in order to eliminate
(singular) classical bound states. Three SPs are also compared;
they (when attractive) include bound states in generating the
correct equilibrium pair correlations g(r). Most simulations
are performed with the Dunn and Broyles diffractive correction
to the Coulomb potential [18], along with a Deutsch term for
the Pauli exclusion for electrons [19],

Uαβ(r,T ) = ZαZβe2

r

[
1 − exp

(−2πr

�αβ

)]

+ kBT ln(2) exp

(
−4πr2

ln(2)�2
αβ

)
δαeδβe, (7)

where �αβ =
√

2πh̄2/μαβkBT and μαβ = mαmβ/(mα +
mβ). This is the form used in the early Hansen and McDonald
[12] paper on MD of temperature relaxation. We consider both
opposite- and like-sign charges for these potentials. We also
examine a new diffractive correction based on calculations of
the exact quantum pair density matrix at a given temperature.
These potentials, which we discuss directly below, are related
to the Kelbg form, so we also compare temperature relaxation
using the Kelbg potential [20].

A. Statistical potentials based on the exact pair density matrix:
Modified Kelbg

In order to treat electrons as classical particles in an MD
simulation, a variety of quantum SPs have been developed.
Their use in the study of plasmas was pioneered by Hansen and
co-workers [12,29–32]. The effects of quantum diffraction,
interference, and the Pauli exclusion principle are incorporated
in these potentials in a thermally averaged sense. In this work,
we utilize these existing SPs, in addition to new potentials
derived from the diagonal part of the exact Coulomb pair
density matrix and fit to a modified form of the Kelbg potential
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[20,33,34]. This treatment and its limitations are presented in
greater detail in Refs. [35,36].

A statistical potential for a pair of particles can be defined
from the nonideal part of the exact pair density matrix,
ρ2(rij ,rij ; β),

UC(rij ,β) = − 1

β
ln

[
ρ2(rij ,rij ; β)

ρF (rij ,rij ; β)

]
, (8)

where

ρF (rij ,rij ; β) = (2πβh̄2/μij )−3/2 exp[−μij |rij |2/2h̄2β]

is the free particle density matrix, β ≡ (kBT )−1, and μij is
the reduced mass of the interacting pair of particles. Our
computation of ρ2 for electron-electron and electron-proton
cases is discussed elsewhere [35,36]. We fit our results for the
statistical potential with the modified Kelbg form for a pair of
particles with indices i and j [33],

UC(rij ,β) = ZiZj

rij

e2

[
1 − e

−(
rij

λij
)2
]

+√
π

ZiZj

λij γij

e2

(
1 − erf

[
γij

rij

λij

])
, (9)

where we treat λij and γij as temperature-dependent fitting
parameters. At very high temperatures, in the limit of weak
coupling, λij is equal to the thermal de Broglie wavelength,

λ2
ij = h̄2β

2μij
, and γij = 1, and we therefore recover the original

Kelbg potential [20]. As the temperature is reduced and
the coupling increases, these parameters deviate from the
weakly coupled values. We examine the behavior of the fitting
parameters over a wide range of temperatures in order to derive
the following expressions for electron-electron (ee) and ep

interactions [36]:

λee =
√

h̄2β

me

(
1 + 0.005√

T

)
,

γee = 1 + 0.0321

T 0.4664
,

(10)

λep =
√

h̄2β

2mp

(
1 − 0.002

T

)
,

γep = 1 − 0.06√
T

,

where T is expressed in Hartrees.
For the ee interaction, we add an additional term to

UC(rij ,β) to account for the effect of Fermi statistics. Here,
we use the same form as adopted by Hansen and co-workers
[12,29–32], which was originally suggested by Deutsch,
Gombert, and Minoo [19,37,38],

Uee(rij ,β) = UC(rij ,β)

+β−1ln(2) exp
(−[π ln(2)]−1r2/�2

H

)
, (11)

where �H = h̄/
√

πmekBT . We stress that a two-body term
such as this cannot account for strong electron degeneracy; it
is meant here to incorporate corrections to classical statistics
that appear as the temperature is lowered slightly below the
regime where purely classical statistics should apply.

III. GENERALIZED LENARD-BALESCU THEORY

A. Theory

In order to understand our MD results, we use the GLB
theory as presented in Ref. [10], which is itself based partly on
the intellectual constructs of Ichimaru [39]. In their treatment,
the time rates of change of the species temperatures, due to
Ohmic heating of one species by the others, are related
to ensemble averages of products of density fluctuations.
Assuming spatial homogeneity of the particle densities, the
expressions for dT /dt may be written as double integrals over
k and ω space. We consider arbitrary numbers of species here,
a straightforward generalization of the work of Refs. [10,40],

dTα

dt
= 1

π2nα�2

[ ∑
β 
=α

∑
k

∫ ∞

0
dωωvαβ (k)

× Im〈δnα(k,ω)δnβ(−k, − ω)〉
]
, (12)

where vαβ(k) is the Fourier transform of the two-body
interaction between particles of species α and particles of
species β. The δnα are the density fluctuations in the presence
of the interparticle interactions. The ensemble average of
their products is related to the exact dielectric response, or
polarizability tensor [39]. Care must be taken when defining
the precise meaning of the ensemble average involved here; the
time-scale for this averaging must be long enough to identify
individual-species equilibrium temperatures (provided that
they make sense), but short compared to the interspecies
equilibration time that we aim to compute [10,39]. This is
possible as long as the ion mass is significantly greater than
the electron mass, for instance, but must necessarily be called
into question when the equilibrating species have more similar
masses.

In order to connect this average to quantities which are
calculable, we assume a linear responselike relation between
the interacting density fluctuations, and the spontaneous, or
ideal gas, fluctuations, δn(s)

α [10,39],

δnα = δn(s)
α + χ0

α

∑
β

vαβ[1 − Gαβ]δnβ, (13)

where it is understood that the argument of each quantity is
(k,ω). The δn(s)

α are the density fluctuations in the absence of
interactions. Note that β can equal α in this sum. This equation
describes the manner in which the density fluctuations of one
species (with free-particle linear polarizability, χ0) are induced
by the fluctuations of all the other species. The factors, G’s, are
the local field corrections (LFCs); if all the G’s are set equal
to zero, this is just the random-phase approximation (RPA) for
multiple species. As discussed in the work of Ref. [10], it is
essential to include the LFC in cases where the Landau length,
b0, exceeds the thermal de Broglie wavelength of the lighter-
mass species. RPA (G = 0) works well when the reverse is
true, as well as in cases where one species is highly degenerate.
This is discussed more in what follows.

Equation (13) is a matrix equation in the species indices
(α,β) which must be solved for the δnα in terms of the
δn(s)

α . Once this is done, the ensemble average in Eq. (12),
〈δnαδnβ〉, can be rewritten in terms of ideal gas (i.e., free

046406-6



MOLECULAR DYNAMICS SIMULATIONS AND . . . PHYSICAL REVIEW E 86, 046406 (2012)

particle) averages, 〈δn(s)
α δn

(s)
β 〉. These are well known and can

be readily computed for any density and temperature [39].
Then the right-hand side of Eq. (12) can be evaluated. We
write the formal solution to Eq. (13) as

δnα = −
∑

β

Bαβδn
(s)
β , (14)

where Bαβ is the matrix inverse of the matrix, Aαβ , defined by

Aαβ = χ0
αvαβ[1 − Gαβ] − δα,β . (15)

Then we have

〈δnα(+)δnβ(−)〉 =
∑

μ

∑
ν

Bαμ(+)Bβν(−)

× 〈
δn(s)

μ (+)δn(s)
ν (−)

〉
, (16)

where (+) indicates (k,ω), and (−) indicates (−k, − ω).
The ensemble averages of products of free-particle density
fluctuations are related to the (free-particle) dynamic structure
factors through [10,39]〈

δn(s)
μ (k,ω)δn(s)

ν (−k,ω′)
〉 = (2π )2δμ,νδ(ω + ω′)

×�S0
μμ(k,ω), (17)

and the structure factors are related back to the independent-
particle polarizabilities through the fluctuation-dissipation
theorem [39],

S0
μμ(+) = − h̄

2π
N

(
h̄ω

2kBTμ

)
Imχ0

μ(+), (18)

where N (x) = coth(x). The final result for the time rate of
change of the species temperature is then obtained by inserting
Eqs. (16)–(18) into Eq. (12), obtaining

dTα

dt
= − h̄

3π3nα

∫ ∞

0
k2dk

∫ ∞

0
ωdω

∑
β 
=α

vαβ(k)Im

{∑
μ

[
N

(
h̄ω

2kBTμ

)
Bαμ(+)Bβμ(−)Imχ0

μ(+)

]}
. (19)

For the case of just two species, electrons and ions, this expression can be simplified to [10,24]

dTi

dt
= − h̄

3π3nα

∫ ∞

0
k2dk

∫ ∞

0
ωdω

[
vei(k)

D(k,ω)

]2

[1 − Gei(k,ω)]

[
N

(
h̄ω

2kBTi

)
− N

(
h̄ω

2kBTe

)]
Imχ0

e (k,ω)Imχ0
i (k,ω), (20)

once the matrix inverse of Eq. (15) is explicitly evaluated
to obtain the Bαβ . The D(k,ω) involves the v’s, χ0’s, and
G’s and essentially represents the plasma dielectric function
[10,24,39],

D = [
1 − vee(1 − Gee)χ0

e

][
1 − vii(1 − Gii)χ

0
i

]
− v2

ei(1 − Gei)(1 − Gie)χ0
e χ0

i . (21)

Note that dTi/dt is proportional to the square of the electron-
ion interaction and is also proportional to the imaginary
parts of both electron and ion free-particle susceptibilities. As
discussed in Refs. [7,10,24], because the ion plasma frequency
is much lower than the electron plasma frequency (owing to the
large mass difference), Imχ0

i is peaked at very low ω, and this
allows one to use the f -sum rule to evaluate the remaining
factors at ω −→ 0. Though this is a fine approximation for
H [10], we choose not to make this replacement in this work,
since some of the cases which interest us have multiple ion
species and/or involve scaled ion masses (see the Ar-doped H
cases discussed later).

It is instructive to see how Eq. (20) relates back to an
LS-type result. Though we refer the reader to the more detailed
discussion of this in Ref. [10], we highlight the salient points
here, in which we consider electrons and protons interacting
via the Coulomb interaction: Once the ω integral has been
performed, we are left with an integral over k. From the above
discussion, the resulting integrand will involve the various
factors evaluated near ω = 0. For small k, the integrand
will be forced to zero by the dielectric function, D, which

becomes large for k smaller than the screening (Debye) wave
vector. This then provides the “bmax” of LS. For large k,
Imχ0

e (k,ω −→ 0) is proportional to exp(−λ2
thk

2) [41] for a
nondegenerate quantum plasma, so the k integrand will be
forced to zero when k is larger than the de Broglie wave
vector, 1/λth. This gives rise to the choice of bmin = λth in
LS. If the electrons are degenerate, χ0

e (k,ω −→ 0) will go to
zero rapidly beyond k ∼ 2kFermi [10,24,41]. For a classical
plasma, Imχ0

e (k,ω −→ 0) approaches a constant, −ne/kBTe,
independent of k; in this case, the large-k cutoff can only
arise from the 1 − Gei factor. For like-charge plasmas this
factor has been shown to go to zero right when k approaches
the inverse Landau length [10], hence providing the impetus
for the identification, bmin = b0. Thus, the expression of
Eq. (20) and its multi-ion generalization in Eq. (19) represent
theories devoid of the logarithmic divergences that plague
LS. Plasma screening mitigates the low-momentum (large b)
divergence, while quantum diffraction and/or two-body cor-
relations (embodied in Gαβ) eliminate the high-momentum
(small b) divergence; no ad hoc cutoffs are needed [10].

There are three types of quantities which are required in
order to compute dTα/dt with Eq. (19): the Fourier transforms
of the two-body interactions, vαβ(k), the free-particle suscepti-
bilities, χ0

α(k,ω), and the LFCs, Gαβ(k,ω). Not much is known
about the ω dependence of the Gαβ . Though there are methods
that purport to obtain it [39,42], the various approximations
involved have not been thoroughly tested for real plasmas.
We follow the approach of Ref. [10] and restrict our attention
to static LFCs, Gαβ(k), for which various methods apply; we
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discuss Gαβ more below. For the two-body interactions, vαβ (k),
we use either the Coulomb interaction, 4πZαZβe2/k2, or the
Fourier transform of a SP. The free-particle susceptibilities,
χ0

α(k,ω), are computed from the expression [39,41]

χ0
α (k,ω) = lim

η→0+

⎡
⎣2

∑
k′

fα(k′ + k) − fα(k′)
h̄2(k′+k)2

2mα
− h̄2k′2

2mα
− h̄ω + iη

⎤
⎦ , (22)

where fα(k) is the Fermi-Dirac occupancy for particles
of energy h̄2k2/2mα at a temperature of Tα . For quantum
particles, the imaginary part of χ0 has an analytic expression as
a function of density and temperature while the real part of this
quantity for electrons has been tabulated and fit for all n and
T by Dandrea, Ashcroft, and Carlsson [43]. We use their fit,
which is very accurate for both degenerate and nondegenerate
electrons. We note that the dependence on mass in Eq. (22)
allows us to scale their result to use it for quantum ions as well,
provided that the proper (n,T )-dependent chemical potential
for the ions is used in the resulting expressions.

As we mentioned earlier, we use the GLB in two modes:
quantum with the bare Coulomb interaction (QC) and classical
(h̄ −→ 0) with the SPs (CS). For QC, we apply the above
prescription exactly as stated and set vαβ(k) = 4πZαZβe2/k2.
For CS, we not only choose the Fourier transform of a SP
for vαβ(k), but we also take the h̄ −→ 0 limit in two distinct
places. The first is in the free-particle polarizabilities, χ0

α (k,ω).
Here, we make use of the relation [10]

lim
h̄→0

[
Imχ0

e (k,ω)
] = −

√
πne

kBTe

Y e−Y 2
, (23)

where Y = √
me/2kBTe(ω/k), and the corresponding ex-

pressions for Imχ0
i (k,ω). The real part is then obtained by

appealing to the so-called plasma dispersion function (also
known as Dawson’s function),

Reε(k̃,ω̃) = 1 + 1

k̃2
−

√
π

2

ω̃

k̃3
e
− ω̃2

2k̃2 erfi

(
ω̃√
2k̃

)
, (24)

where χ0
e is related to ε via ε = 1 − (4πe2/k2)χ0

e . In the above
equation, erfi(x) ≡ −ierf(ix), k̃ ≡ k/kD , and ω̃ ≡ ω/ωp,
where kD is the Debye wave vector and ωp is the plasma
frequency. The second place where the h̄ −→ 0 limit is taken
is in the N -function appearing in Eq. (19). Here we simply set
N (x) = 1/x for the classical case [10]. It should be mentioned
that this second change is almost immaterial for low-Z systems
as long as the ions are chosen to have their physical masses;
since the ion plasma frequency is far lower than the electron
plasma frequency, most of the important contributions to the
integrand of Eq. (19) are for ω ≈ 0, which also leads to
N (h̄ω/2kBT ) −→ 2kBT /h̄ω. Thus, the major changes when
studying the classical case are the appearance of the SP in
vαβ(k) and the use of the classical electron polarizability.

Note that for QC, vαβ(k) decreases slowly with k, as 1/k2,
while χ0

e (k,ω −→ 0) dies off exponentially for k greater than
1/λth, providing the large-k convergence of the integral. For
CS, vαβ(k) dies off quickly above 1/λth, while χ0

e (k,ω −→ 0)
goes to a constant. In both cases, the k integral converges
at large k, but for different reasons. This illustrates how
the effect of quantum diffraction, arising from the χ0

e in
the quantum calculation, gets inserted into the SPs in the

classical calculation. It is this classical GLB calculation which
is analogous to our MD. While this insertion is strictly
unfounded, we see below that the differences between τei

computed with QC and τei computed with CS get rather small
as the fusion-burning regime is approached (see the Appendix
for a detailed discussion of this).

To go beyond the RPA in the calculation of the plasma
dielectric response [embedded in the 〈δnαδnβ〉 of Eq. (12)
and the BαμBβμ of Eq. (19)], we make use of static LFCs,
Gαβ(k). Since these are a direct result of physics beyond the
RPA [cf. Eq. (13)], they must be derived by comparing some
manifestation of RPA density-density response to an analogous
quantity determined in an ostensibly less approximate way.
We choose to focus on the static two-body radial distribution
functions, gαβ(r), the conditional probability of finding a
particle of species β between r and r + dr away from a particle
of species α. The radial distribution functions are related to
the static structure factors by Fourier transformation [39],

gαβ(r) = 1 + 1√
nαnβ

∑
k

[Sαβ(k) − δαβ]eik·r, (25)

and the resulting inverse transformation,

Sαβ(k) = δαβ + √
nαnβ

∫
d3re−ik·r[gαβ(r) − 1], (26)

where Sαβ (k) = 1√
nαnβ

∫ ∞
−∞ dωSαβ(k,ω). From the fluctuation-

dissipation theorem, we can relate the structure factors to the
polarizabilities [39],

Sαβ(k,ω) = − h̄

2π
coth

(
h̄ω

2kBT

)
Imχαβ(k,ω), (27)

where we assume for simplicity that the whole system is in
thermal equilibrium at a temperature, T . In this way, we can
compute the gRPA

αβ (r) from χRPA
αβ (k) and compare them to the

“true” gαβ(r) produced some more accurate way, say from
MD, or from some less approximate theory than RPA.

In order to relate this comparison to the Gαβ , we start from
their definition in Eq. (13), and extract the interacting polariz-
ability, χαβ : Upon the application of an external potential, �β ,
acting on species β, a resulting density fluctuation, δnα , will
be induced in species α [39],

δnα =
∑

β

χαβ�β = χ0
α

⎡
⎣�α +

∑
β

vαβ(1 − Gαβ)δnβ

⎤
⎦ .

(28)

The expression in brackets on the right-hand side is the total
potential felt by the α-species particles, which is composed of
an external piece (�α) and an induced potential which involves
the LFCs. This relates the interacting polarizability, χαβ ,
which responds to the external potential to the free-particle
polarizability, χ0

α , which responds to the total potential. Like
Eq. (13), this is a matrix equation in the species indices.
Solving for the LFCs gives

1 − Gαβ = 1

vαβ

[
1

χ0
α

δαβ − [χ−1]αβ

]
, (29)

where [χ−1] denotes the matrix inverse of the χαβ matrix. The
prescription is then as follows: Determine the gαβ(r) using
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MD or some other means. Compute Sαβ(k) from them using
Eq. (26). Solve Eq. (27) to obtain χαβ(k) from Sαβ (k) (see
below), and then invert the χ matrix to obtain the Gαβ(k) from
Eq. (29).

There are three additional points regarding our scheme for
obtaining the LFCs which must be mentioned. (1) Equation
(27) relates Sαβ to Imχαβ , rather than to both the real and
imaginary parts of χαβ . We require both the real and the
imaginary parts, yet in order to obtain Reχαβ(k) from Imχαβ ,
we would have to use the Kramers-Kronig transform, which
itself requires knowledge of Imχαβ(k,ω) [or Sαβ(k,ω)] for all
ω. This dynamical information is very difficult to obtain for
a quantum many-particle system [39,42]. Thus, we choose
to compute the LFCs for our classical cases (CSs) only. For
classical particles, the static limit of Eq. (27) is simply written
as [39]

Sαβ(k) = − kBT√
nαnβ

χαβ(k,ω = 0), (30)

so both real and imaginary parts of χαβ (k) are obtained once the
static structure factors are known. (2) We use a combination of
two methods to determine the gαβ(r) for our various CS cases:
MD, and the hypernetted chain approximation (HNC) [30].
Both methods constitute improvements upon RPA; both use
the vαβ(k) as input, which we take to be our various forms
of SPs for the opposite-charge plasmas we study, and the bare
Coulomb interaction for the few like-charge cases we consider.
(3) Equation (27) assumes thermal equilibrium, yet our interest
is in situations for which Tα differs from Tβ . We believe this
to be of negligible importance as long as Tα and Tβ are not
too dissimilar. For most of our cases this is satisfied, and even
when Te and Ti differ by a lot, equilibrium and nonequilibrium
MD results for gαβ(r) are in very good accord (see below).
Thus, we carry out the prescription of Eqs. (16)–(20) for
plasmas in equilibrium, and then apply the resulting LFCs
to the associated out-of-equilibrium problems.

1. Hypernetted-chain evaluation of static LFCs

There is a close connection between the LFCs obtained
from Eq. (29) and the direct correlation function that has a
central role in the hypernetted-chain method.

If we let the total correlation functions hij (r) be defined
by hij ≡ gij − 1, then the direct correlation functions cij (r)
are introduced with the quite general Ornstein-Zernicke (OZ)
relation [30],

hij (r) = cij (r) +
∑

k

nk

∫
d3r′ hik(r − r′)ckj (r′). (31)

The HNC closes this system of equations with the expression
for hij (r)

hij (r) = exp[hij (r) − cij (r) − βUij (r)] − 1, (32)

in which Uij (r) is the pair potential for the pair (i,j ) and
which could be either the Coulomb interaction or an effective
potential with quantum diffraction and Pauli corrections [44].
We note that the HNC method is limited to the CS; indeed,
the OZ relation has a modified form when the electrons are
treated quantum mechanically [44,45]. For particular choices
of density, temperature, particle densities nk , and the potentials

Uij (r), Eqs. (31) and (32) may be solved for hij and cij by a
nonlinear iteration [46,47].

In Fourier space the OZ relation takes the form

h̃ij (k) = c̃ij (k) +
∑

k

nkh̃ik(k)c̃kj (k). (33)

The earlier expression (26) for the static structure functions
Sij (k) can be written

Sij (k) = δij + √
ninj h̃ij (k). (34)

It is convenient to write hij , cij , and Sij in matrix form:
H = (hij ) and so forth. We introduce a diagonal matrix d of
particle densities with

dij = δijni, (35)

and denote by d1/2 the diagonal matrix with diagonal values√
ni . Then the OZ relation becomes

H̃ = C̃ + C̃dH̃ , (36)

of which the solution for H̃ is

H̃ = (I − C̃d)−1C̃, (37)

where I is the unit matrix.
The matrix form of the defining relation [Eq. (34)] for S is

S = I + d1/2H̃d1/2. (38)

With a little manipulation it can be shown that

S = I + d1/2(I − C̃d)−1C̃d1/2 = (I − d1/2C̃d1/2)−1. (39)

We make contact between the matrix S and the density-
density response function matrix χ by expressing Eq. (30) as

βS(k) = −d−1/2χ (k)d−1/2, (40)

and, since in the CS χ0
α = −βnα , Eq. (29) becomes

1 − Gij = 1

βṽij

[−d−1 + d−1/2S−1d−1/2]ij

= − 1

βvij

{d−1/2[I − S−1]d−1/2}ij

= − 1

βvij

c̃ij . (41)

Since the quantities c̃ij (k) are by-products of the HNC
calculation, and ṽij (k) is identified with the effective potential
Ũij (k), the LFCs are found immediately when the HNC
calculation is done.

It may be noted that the matrix A in Eq. (15) is just

A = dc̃ − I = −d1/2S−1d−1/2, (42)

so

det(A) = − 1

det(S)
= − det(I − d1/2C̃d1/2) (43)

is the negative of the discriminant D(k,0), related to the
static dielectric function, as appearing in Eq. (21) for the
two-component case.
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B. Numerical details

In order to compute dTα/dt for the various species using
Eq. (19), we must identify a suitable (k,ω) grid over which to
compute the double integral numerically. The challenge here
is that Imχ0

i (k,ω) is peaked at very low ω in the neighborhood
of the ion plasma frequency, ωi =

√
4πZ2

i e
2ni/mi , while

Imχ0
e (k,ω) is peaked at the generally much higher electron

plasma frequency, ωe =
√

4πe2ne/me. We use an exponential
grid in ω such that ωmin = 10−7 × √

2T/me/rs , and ωmax =
105 × √

2T/me/rs . This large value of ωmax ensures that for
suitably large Te, the broadening of the electron plasmon peak
is well represented. Also, since the plasmon disperses with k,
this large ωmax also ensures that the plasmon peak is contained
for the largest values of k we choose (recall that the plasmon
energy increases with increasing k [39]).

For the k mesh, we also use an exponential grid, though
this is certainly less crucial than for the ω integral. The
kmin is chosen to be 10−3/rS , where rS is the Wigner-Seitz
radius, while kmax is chosen to be 104/rS . These choices are
appropriate for densities ranging from 1022/cc to 1026/cc and
temperatures between 1 eV and 20 keV, since kmin will be
comfortably below 1/λDebye, and kmax will be large enough to
encompass the range over which Imχ0

e (k) decreases to zero
well above k = 1/λth.

For all of our calculations using Eq. (19), we use a modified
rectangular-rule integration in which the logarithm of the
independent variable is used in defining the differential. For
the k integral, for example, we take u = ln k and write

∫
F (k)dk =

∫
kF (k)

dk

k
=

∫
kF (k)du

≈
∑

i

kiF (ki)[ln ki+1 − ln ki]. (44)

An identical expression is used for the ω integral. The number
of integration points we use is Nk = 1801 and Nω = 1201.
We determined that these numerical parameters are sufficient
for accurately computing the dTα/dt by converging the results
with respect to kmin, kmax, ωmin, ωmax, Nk , Nω, as well as by
requiring that the f -sum rule be simultaneously satisfied for
both electrons and ions,

−
∫ ∞

0
ωdω

(
4πZ2

e,ie
2

k2

)
Imχ0

e,i(k,ω) = πωe,i
2

2
. (45)

With the aforementioned parameter choices, electron and ion
f -sum rules are satisfied to within one part in 105 using a
single ω mesh, and for all relevant k [note that the right-hand
side in Eq. (45) is independent of k].

For the HNC calculations of the static LFCs, we iteratively
solve the simultaneous system Eqs. (31) and (32) with a
nonlinear adaptation of the GMRES method [48] which
accelerates the solution. Some of the HNC applications in this
paper need quite a large dynamic range in r and also in k in
order to describe the full variation of 1 − Gij . The coding uses
equally spaced meshes to allow efficient Fourier transforms,
the most costly operations involved. The present calculations
used 217 = 131 072 points in r and k.

IV. RESULTS AND DISCUSSIONS

A. Hydrogen

Relaxation times, τei , determined from the MD simulations
are presented in the rightmost columns of Tables I–IV, under
headings indicating the types of interparticle potentials used.
They are the results of the MD simulations, where the proton
mass had been fixed at 1824 times the (physical) electron
mass. As discussed above in Sec. II, this was an oversight; all
reported MD relaxation times have been scaled up by a factor
of 1.0066 to account for this. The reported temperatures are
selected to avoid extrapolation of Te outside the simulation
interval. The instantaneous Tp’s are then calculated from T∞
and the fitting function of Eq. (4); they differ slightly between
independent samples. The results for τei are not sensitive to
T∞, whether taken as the average of temperatures at t = 0
or tfinal, or an average over the simulation. Here we use the
instantaneous temperatures at t = 0 to compute T∞. In some
cases, we perform multiple uncorrelated MD simulations for a
given set of conditions in order to assess variability. Note that
for essentially all our studied cases, these run-to-run variations
in τei are significantly larger than the error estimates of our
determination of the initial slope, dTe/dt , for any single run.

Table I shows a collection of MD results for H at a density
of 1022/cc. Note first that as the electron and ion temperatures
increase, τei increases. This is to be expected from any
theory of temperature equilibration, such as LS [4]. Weaker
electron-ion coupling, here indicated in the third column,
gives rise to slower electron-ion relaxation. Second, note that
opposite-charge and like-charge results with the same potential
(Dunn-Broyles) give similar results. This is also expected,
particularly for the fairly weakly coupled (�ei ∼ 0.01–0.2)
cases here, as motivated again by LS. We stress, however, that
the equilibration times of Table I are the result of running
the MD simulations for a time less than 0.01τei , owing to
the difficulty of simulating such weakly coupled cases (as
discussed in Sec. II above). As such, detailed quantitative
trends cannot be gleaned from these data, as evidenced by

TABLE II. MD simulation results for τei (in fs) for the hydrogen
isochore, n = 1025/cc. The actual initial species temperatures are
shown here. GLB (and/or LS) theory shows that the values of τei are
essentially the same as they would have been if these initial tempera-
tures had been exactly equal to the target temperatures (say, Tp = 80
eV and Te = 100 eV, rather than Tp = 83 eV and Te = 98 eV),
owing to the closeness of actual and target initial temperatures. The
errors in τei reported are the result of computing the standard deviation
for several statistically independent MD runs for the same conditions.
For the value in which no error is reported, only a single MD run was
performed.

Tp (eV) Te (eV) �ei Dunn-Broyles

83 98 0.500 56.02 ± 0.82
180 195 0.250 67.23
203 245 0.200 77.86 ± 0.34
414 488 0.100 127.59 ± 0.88
805 995 0.050 249.29 ± 5.3
1608 1995 0.025 553.63 ± 26
4004 5000 0.010 1602.51 ± 71
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TABLE III. MD simulation results for τei (in fs) for hydrogen with various forms of SPs.

n (H/cc) Tp (eV) Te (eV) �ei Dunn-Broyles Kelbg Modified Kelbg

1.25 × 1024 200 248 0.100 298.67 262.82 257.75
1025 400 500 0.100 126.05 114.97 113.39
1025 800 998 0.050 232.99 224.91 212.39
8 × 1025 1600 1993 0.050 101.22 99.68 88.16

the apparent divergence of opposite-charge and like-charge
results as �ei is decreased, in contrast to expectation. Finally,
we note that the like-charge τei results with the pure Coulomb
interaction are smaller than those obtained with the statistical
potential for the same conditions, and these differences
between the τei increase as the temperature is increased.
This is because the electron thermal de Broglie wavelength is
significantly larger than the Landau length at high T (discussed
above in Sec. I); the statistical potential is softened within the
de Broglie wavelength while the Coulomb interaction is not,
so the effective bmin in the ln λei of Eq. (1) is smaller for pure
Coulomb than for the Dunn-Broyles treatment.

Since we have invoked LS in understanding the gross
features of the results pertaining to Table I, it is natural to ask
the following: Do these MD results agree quantitatively with
LS (and related approaches)? The first two cases in Table I
were studied earlier by some of us in Ref. [22], albeit with
much smaller system sizes which led to lower accuracy. In
Fig. 2 of that work, the effective ln λei (which is proportional
to 1/τei) extracted from MD results using the Dunn-Broyles
potential is shown along with the predictions of LS and BPS [8]
and a fit to the results of Ref. [9]. The MD equilibration rates
for these cases were 60% or so lower than those predicted by
the theories, though this was somewhat obscured by the fact
that our error bars were large enough to render this difference
nearly unresolved. Our more converged results for these cases
present equilibration rates which are a bit higher than those of
Ref. [22] but are still substantially lower than LS and BPS. The
LS and BPS predictions for τei for Te = 30 eV and Tp = 60 eV
are 1207 and 1103 fs, respectively, roughly 25%–33% lower
than our MD results for the electron-proton systems using
the Dunn-Broyles potential. At the higher temperatures, Te =
100 eV and Tp = 200 eV, we get 3982 and 4431 fs. These are
25%–36% lower than the MD results. Some of this discrepancy
likely results from a lack of convergence due to the challenges
of performing the MD at such weak plasma couplings (short
simulation times, etc.). However, the reason for much of this
discrepancy is that these theories pertain to energy transfer

TABLE IV. Relaxation rates (in eV/fs) for scaled-mass (α =
0.01) Ar-doped H, in which Dunn-Broyles + Deutch potentials are
used. Species densities are np = 1025/cc, nAr = 1024/cc, and ne =
2.8 × 1025/cc. ZAr is fixed at +18. Both MD and GLB results are
shown.

CS-GLB CS-GLB
MD QC-GLB (G = 0) (G)

dTAr/dt −0.0885 −0.1709 −0.0896 −0.0854
dTp/dt −0.0138 −0.0224 −0.0122 −0.0116
dTe/dt 0.011 0.0141 0.0076 0.0084

between quantum particles mediated by the pure Coulomb
interaction. The MD τei , in contrast, are the result of classical
dynamics with a modified, statistical potential.

To demonstrate that this assertion is correct, we use the
GLB theory to calculate the τei for these cases in two different
ways, as discussed above in Sec. III A. Local-fleld effects
are neglected for now (Gij = 0); we include them later.
First, we use the quantum prescription (QC). This produces
τei(Tp = 60 eV) = 1108 fs, and τei(Tp = 200 eV) = 4466 fs,
nearly equivalent to the quantum BPS predictions [22]. Next,
we use the h̄ → 0 classical prescription and the Dunn-Broyles
potential (CS), which yields τei(Tp = 60 eV) = 1276 fs, and
τei(Tp = 200 eV) = 4922 fs, somewhat closer to our MD
results. This strongly suggests that the underprediction of the
electron-ion temperature equilibration rate for the higher-T
weak coupling cases, as compared with the theories and
shown in Fig. 2 of Ref. [22], is partly due to the use of
classical dynamics and the Dunn-Broyles potential. We show
below that for higher temperature cases, the discrepancy
between our classical MD with Dunn-Broyles potentials and
weak-coupling theories which assume quantum dynamics and
the pure Coulomb interaction are almost entirely accounted
for in this way.

How accurate should we expect classical MD with a
statistical potential to be in predicting τei for hydrogen? Can
this approach still be of use in, for instance, differentiating
between candidate theories? We address this by studying
temperature relaxation for hydrogen at different temperatures
along the n = 1.0 × 1025/cc isochore. This is a density very
relevant for ICF, and moreover, the increased �ei (relative to
the n = 1022/cc cases) allows us to obtain more accurate MD
results. We consider electron temperatures between 100 eV
and 20 keV, and for each case, we take Tp = 0.8Te. For all
these temperatures, λth > b0, so quantum diffraction should
govern the lower length scale in the Coulomb logarithm of LS.

Figure 3 shows the results of various calculations of the
initial slope in the proton temperature, dTp/dt , as a function of
Te(t = 0) [again, with Tp(t = 0) = 0.8Te(t = 0)]. The gross
features of these curves (e.g., the maxima at Te ∼ 1 keV) are
due to the fact that dTp/dt ∝ (Te − Tp) ∝ Te, together with
the dependencies of λth, λDebye, and the prefactor of Eq. (1) on
Te, as per LS. The red points are the results of GLB in the QC
mode, with LFCs set equal to zero (see below). This should be
the true answer for hydrogen at the highest Te’s, since �ei is
quite small there. Though we do not display them in this figure,
these QC-GLB results are essentially identical to those of the
quantum limit of BPS [8]. The magenta squares show the MD
results with the Dunn-Broyles SPs. The associated τei values
are displayed numerically in Table II. In the plot, the values
for the individual statistically independent MD runs are shown
(several for each Te); these are the values which contribute to
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FIG. 3. (Color online) Values of the initial (t = 0) dTp/dt for H
along an isochore at a density, n = 1025/cc, for which Tp(t = 0) =
0.8Te(t = 0). Results of GLB calculations of different types (see text)
and MD results are shown.

the errors reported in the associated table. As for n = 1022/cc,
the MD equilibration rates lie quite below the QC-GLB
results, though they approach them as Te is increased [49].
The green symbols represent the results of GLB in the CS
mode (LFCs = 0), where the same Dunn-Broyles SPs were
used. They are in very good agreement with the MD results.
This suggests that the error incurred by using classical MD
with the Dunn-Broyles potential can be largely quantified and
understood by examining the differences between QC-GLB
and CS-GLB. These distinctions were discussed in Sec. III A:
quantum versus classical short-wavelength dielectric response
and Coulomb versus softened SPs. Note that for T = a few
keV, temperature relaxation from classical MD with the
Dunn-Broyles potential should be well within 10% of the
quantum result.

It is important to note that at these keV temperatures, the use
of the statistical potential in MD simulations is crucial: Since
λth is much larger than b0, the magnitude of the relaxation is
sensitively dependent on the softening of the potential at short
range. The fact that the MD and QC-GLB agree reasonably
well means that this softening is accounting for the salient
features of true quantum diffraction, though in a necessarily
approximate way. We also add that high accuracy in predictions
of τei with classical MD and these SPs is by no means
guaranteed, since the potentials are, at best, only constrained
to reproduce static properties of the quantum plasma. The
roughly 10%–15% or so difference between our Dunn-Broyles
MD and QC-GLB is therefore encouraging, particularly since
the ICF community is not in need of predictions of τei which
are much better than this.

Before continuing further in our analysis of MD results
of τei for hydrogen, we briefly discuss some features of our
GLB predictions that shed light on the physics of temperature
equilibration. Much of this expands upon the discussion in
Sec. III A and a similar discussion in Ref. [10]. In order to
make an explicit connection between our GLB results and LS,
we consider the k integrand of an effective Coulomb logarithm,

FIG. 4. (Color online) kF (k) (see text for definition) vs krS for
various τei H simulations along the n = 1025/cc isochore. These are
the results of GLB calculations in the quantum-Coulomb (QC) mode.
LFCs (Gij ) are set to zero.

F (k), defined by∫ ∞

0
F (k)dk = 3memic
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dTi/dt

(Te − Ti)
,

(46)

where dTi/dt is given by the expression of Eq. (19) (for
α = i; we consider just two species here). F (k) is defined
so that its integral over k equals ln λei in cases where the
more general GLB result of Eq. (19) reduces to LS [Eqs. (1)
and (2)]. These cases are characterized by having Maxwellian
electron and ion distributions, an ion mass that greatly exceeds
the electron mass, and species temperatures which are not too
dissimilar. Figure 4 shows a plot of QC-GLB results for kF (k)
versus rSk for all the cases of our n = 1025/cc isochore. As
Te is increased, kF (k) −→ 1 for intermediate values of k.
LS corresponds to F (k) ≡ 1/k, together with the constraint
that the integral over k is taken to be

∫ kmax

kmin
F (k)dk, where

kmin = 1/bmax and kmax = 1/bmin. The QC-GLB F (k) possess
maxima at small k and then goes quickly to zero as k −→ 0,
due to the sharp increase in the plasma dielectric function at
long wavelength for k < kDebye. For large k, F (k) goes to zero
very gradually as k is increased well beyond 1/λth, due to
quantum diffraction arising from the Imχ0

e factor in Eq. (20).
In this way, one sees the sense in which LS can be viewed
as an approximation to GLB. The approximation is the most
reasonable at the weakest couplings since here, F (k) ∼ 1/k

for intermediate values of k, yet even in such cases, it is only
perfectly accurate if one happens to choose bmin and bmax in
such a way that

∫ 1/bmin

1/bmax
dk/k ≡ ∫ kmax

kmin
dk/k = ∫ ∞

0 F (k)dk.
Figure 5 shows both QC-GLB and CS-GLB results for

kF (k) for the case: n = 1025/cc, Te = 1 keV, Tp = 0.8 keV,
where the Dunn-Broyles potentials are used for vαβ(k) in the
CS-GLB calculation. The differences between the quantum
pure-Coulomb theory and the classical theory with the softened
statistical potential can here be seen in a momentum-resolved
way. Note that the small-k parts of the two F (k) are identical.
This is expected, since the long-range parts of the statistical and
Coulomb potentials are the same, and the resulting screening at
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FIG. 5. (Color online) kF (k) vs krS for Te = 1 keV and Tp =
0.8 keV for H. Both QC and CS GLB results are shown. The statistical
potential is of the Dunn-Broyles variety. LFCs (Gij ) are set to zero.

large distances is therefore also the same. The intermediate and
large-k behavior is notably different, however. As discussed
in Sec. III A, these differences are the combined result of
the short-ranged softening in the statistical potential, and
the drastic difference between classical and quantum electron
dielectric response. The comparison shown in Fig. 5 suggests
that it should be possible to optimize vSP

ei (k) to require that
CS-GLB produces exactly the same F (k) as QC-GLB. Indeed,
we would simply need to iterate the h̄ −→ 0 version of
Eq. (20) to convergence in comparison with the QC result.
Here, that would involve increasing vSP

ei (k) somewhat at large
k. Though this approach for designing an effective potential to
be used in classical simulations by optimizing agreement with
a time-dependent property of a quantum system is certainly
reasonable, we choose not to do this here. Time-dependent
quantum phenomena are not known precisely for many-body
systems such as a plasma, except at very weak coupling.
Though T = 1 keV and n = 1025/cc in pure H may indeed
constitute weak enough coupling for this to work, we prefer to
base any improvements to existing SPs on static, equilibrium
properties, since these are known essentially for all plasma
couplings (see the end of the Appendix for a discussion of a
statistical potential constrained to reproduce the QC result for
temperature equilibration at weak coupling).

To this end, we adopt the modified Kelbg (MK) potentials
introduced in Sec. II A. Referring back to Fig. 3, the sky-blue
symbols are the results of CS-GLB performed with the MK
SPs. These dTe/dt are significantly closer to the QC-GLB
predictions than they are to the CS-GLB results with the
Dunn-Broyles potentials. Just as for Dunn-Broyles, the MK
results asymptote to the pure-Coulomb quantum answers at
high Te. Our GLB studies strongly suggest that classical MD
to determine temperature equilibration should be a factor of 4
or so more accurate if MK rather than Dunn-Broyles potentials
are used. The results shown in Table III show differences be-
tween Dunn-Broyles and modified Kelbg simulations, which
are of the proper magnitudes. Figure 6 shows the kF (k) for
the same case as in Fig. 5, but with the MK CS-GLB result
overlayed. The difference between the Dunn-Broyles and MK
F ’s is notable; this results in the difference between green

FIG. 6. (Color online) kF (k) vs krS for Te = 1 keV and Tp =
0.8 keV for H. Both QC and CS GLB results are shown. Statistical
potentials of both the Dunn-Broyles and modified-Kelbg varieties are
considered. LFCs (Gij ) are set to zero.

and sky-blue points at Te = 1 keV seen in Fig. 3. In addition,
F (k) from the MK CS-GLB is almost indistinguishable from
the F (k) of QC-GLB even though no attempt was made to
fit directly to the quantum GLB result. Better agreement with
static properties is enough to generate a statistical potential far
better suited for temperature equilibration simulations, at least
for the weak-coupling cases such as this one, where QC-GLB
should be accurate.

We mention in passing that for all the cases studied so
far, MD results for τei produced with our modified Kelbg
potentials and results obtained for the identical cases with
the original Kelbg potentials [20] are the same within our
statistics (compare the last two columns of Table III). This
means that for hydrogen in the fusion-burning regime, the
Kelbg form is generally the form of choice for calculations
of τei . We remind the reader, however, that results obtained
with the Dunn-Broyles/Deutch prescription are qualitatively
similar, and asymptote to those of Kelbg (and modified Kelbg)
at sufficiently high T .

Up to now, our discussion of results has involved GLB
calculations with no LFCs (i.e., Gij = 0). As we mentioned in
Sec. III A, we do not attempt to estimate LFCs in the quantum
cases [42]; this we save for a subsequent investigation. It is
still of interest, however, to include LFCs in our classical
GLB studies, aimed at directly reproducing our MD results
with this or that potential. We consider static LFCs only,
Gij (k,ω) ≡ Gij (k), as recommended in Ref. [10], and compute
them with HNC, as described in detail in Secs. III A and III A 1.
The results are easy to summarize: In all cases studied, the
relaxation rates are larger if static LFCs are included and
seem to be in worse agreement with MD, given our present
understanding of the statistical and finite-size errors in those
simulations. Figure 3 shows this clearly for the n = 1025/cc
isochore. The dark-blue points are the CS-GLB results with the
Dunn-Broyles potential and including the Gij (k) as calculated
by HNC with this potential. Again, the predictions of all the
approaches converge at high Te, but the discrepancies below
a few keV are systematic and large. Though not shown in the
figure, CS-GLB results with HNC-derived Gij (k) for the MK
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FIG. 7. (Color online) kF (k) vs krS with and without LFCs for
Te = 1 keV and Tp = 0.8 keV for H. Classical-statistical potential
GLB results are shown. The statistical potential is of the Dunn-
Broyles variety.

potential also overpredict dTe/dt relative to MD with those
potentials, while the Gij (k) = 0 GLB results with the MK
potentials seem to be in better agreement.

Figure 7 shows the kF (k) as computed with CS-GLB and
the Dunn-Broyles potential for the same case as shown in
Figs. 5 and 6, for both Gij (k) = 0 and Gij (k) 
= 0. The F (k)
including LFCs is quite a bit larger in magnitude than the
no-LFC F (k), even for rather small k. This is because the
1 − Gei(k) appearing in Eq. (20) has quite a bit of structure at
low k and asymptotes to a value significantly greater than 1 at
larger k, as shown in Fig. 8. It is this behavior of the LFCs that
causes the equilibration rates to be larger than the no-LFCs
results, as we have seen in Fig. 3.

We emphasize that the exercise of identifying a theoretical
approach which reproduces the results of classical MD is
somewhat separate from that of constructing a theory for
nature’s true hydrogen plasma. Though we ultimately aim for
the latter, it seems appropriate to first understand the classical

FIG. 8. 1 − Gei(k) vs krS for Te = 1 keV and Tp = 0.8 keV for
H as calculated by HNC with the Dunn-Broyles potential.

FIG. 9. Differences (including LFC vs not including LFCs)
between absolute values of dTe/dt for H along the Te = 1 keV
isotherm, where Tp = 0.8 keV. The results are those of CS GLB
with the Dunn-Broyles potential.

cases, since here, MD with sufficient accuracy will provide a
benchmark for a fixed set of potentials.

Since LFCs are a result of many-body screening phenomena
beyond the realm of RPA, it is reasonable to assume that their
magnitudes should depend on density. We indeed find this to
be the case. CS-GLB calculations of temperature equilibration
on the Te = 1 keV isotherm (with Tp = 800eV ) are shown in
Fig. 9. Dunn-Broyles potentials are used here. The differences
between dTe/dt with and without HNC-derived static LFCs
decrease as n is decreased. Again, the no-LFC results have
lower equilibration rates.

There are two possible reasons that CS-GLB with HNC-
derived static Gij (k) is less accurate than CS-GLB with
Gij = 0. (1) The HNC approximation produces poor results
for static correlations, in comparison to MD. This is checked
by comparing the radial distribution functions, gij (r) for HNC
and MD for a given case, and for a given set of input potentials,
vij (k). (2) The static LFC assumption is inappropriate for these
applications; that is, one needs Gij (k,ω) rather than Gij (k).
If HNC and MD gij (r) agree, the static LFC assumption
must be the culprit. Figure 10 shows HNC and MD gij (r)
results for a hydrogen plasma in equilibrium at T = 1 keV and
n = 1025/cc, for which the Dunn-Broyles + Deutch potentials
have been used; they are nearly identical. In addition, we
have demonstrated that the use of equilibrium HNC for our
non-equilibrium situations does not alter our results for τei by
enough to warrant concern. Thus, we conclude that dynamical
LFCs must play a role in determining the temperature relax-
ation of classical opposite-charge plasmas with Dunn-Broyles
two-body interactions, and that the assumption of static LFCs
for these plasmas leads to an overestimation of the impact of
physics beyond the RPA.

Our initial interest in exploring the use of static LFCs in
the GLB calculations comes from our reading of Ref. [10].
In this paper, the authors perform like-charge classical MD
simulations of positrons and protons interacting via the pure
Coulomb potential, which they analyze with GLB calculations.
They show that in the absence of quantum diffraction, it is
necessary to include LFCs in the GLB calculations to get
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FIG. 10. Radial distribution functions, gαβ (r), for H at n =
1025/cc and Te = Tp = 1 keV. Both HNC (lines) and MD (points)
results are shown, each using the Dunn-Broyles potential.

a finite answer for the temperature relaxation rate for this
system. Otherwise, the large-k part of F (k) −→ 1/k, and
ln λei = ∫ ∞

0 F (k)dk diverges. Furthermore, they argue that
if static, HNC-derived Gij (k) are included for this system,
the resulting ln λei integral acquires the appropriate effective
bmin ∼ b0 = e2/kBTe, the Landau length. This occurs because
1 − Gei(k) goes to zero at roughly k = 1/b0 (see Fig. 2 of
Ref. [10]). In the end, their GLB results with these Gij (k)
included agree very well with their like-charge pure-Coulomb
MD. We have checked that our methodology to compute the
static LFCs with HNC reproduces this result. Figure 11 shows
plots of 1 − Gei(k) vs rS.k for many temperatures and at a
single density, n = 1025/cc, for the classical pure-Coulomb
positron-proton system. For each Te, 1 − Gei(k) = 1/2 for
k ∼ 1/b0. The resulting effective ln λei for these cases, as
calculated by CS-GLB, behaves as shown by the black dots
in Fig. 12, here plotted against the dimensionless coupling

FIG. 11. (Color online) HNC results for 1 − Gei(k) for the
classical positron-proton system at n = 1025/cc, performed with the
pure Coulomb interaction.

FIG. 12. (Color online) Effective ln λei for the positron-proton
system (n = 1025/cc) vs the dimensionless plasma coupling, g ≡
b0/λDebye. Results are from classical GLB with the Coulomb
interaction (black points) and the Dunn-Broyles statistical potential
(red points). The green curve is a fit to the MD results reported in
Ref. [10].

g ≡ b0/λDebye. This is essentially equivalent to Fig. 1 of
Ref. [10], though we have extended to larger g by considering
lower T .

Our opposite-charge studies with SPs suggest that the use
of static LFCs produces worse results than if LFCs are set to
zero, while like-charge pure-Coulomb studies show that they
are necessary and lead to accurate results. This confusing state
of affairs prompts us to consider the like-charge classical case
with the SPs. The red crosses of Fig. 12 show the results of
CS-GLB with the Dunn-Broyles potential for these same like-
charge cases. Note that they lie well below the pure-Coulomb
results for small g. This is because λth > b0 for small g, and the
softening of the potential at short-range produces an effective
bmin ∼ λth. For g = 19.37, λth ∼ b0, and this is where the red
and black symbols meet. The interesting case of g large enough
so that b0 > λth is just to the right of the results in Fig. 12. These
cases are likely not amenable to treatment with CS-GLB, since
they are quite strongly coupled. More work must be done in
the future to address the limits of GLB for like-charge systems
such as these. For the more physically relevant opposite-charge
cases at the equivalent couplings, the appearance of (classical)
bound states would render GLB, as presented here and in
Ref. [10], completely inadequate.

The conclusion for our hydrogen studies can be summarized
simply: Comparison to GLB for weakly coupled cases shows
that classical MD with Dunn-Broyles SPs should lead to
electron-ion temperature equilibration rates which are roughly
10%–15% lower than the pure-Coulomb quantum answers in
the fusion-burning regime (n ∼ 1025/cc, T ∼ a few keV). As
the temperature is raised, the quantum answer is approached.
The precise nature in which it is approached at high T is
addressed in the Appendix. Statistical potentials based on
the exact quantum pair density matrix (of the Kelbg variety)
should lead to τei which are far more accurate than those
produced with Dunn-Broyles potentials. The use of classical
HNC-derived static LFCs in the Lenard-Balescu calculations
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does not lead to better agreement with classical MD for these
opposite-charge cases where the SPs are used.

There are still some uncomfortable unknowns which await
further study: We have no theory (analogous to GLB) which
is expected to work at strong electron-ion coupling. As such,
our ability to validate the MD with SPs is greatly hampered
there. We have no rigorous means of estimating LFCs for
the quantum case; thus, we do not know the extent to which
our conclusions regarding the need for dynamic LFCs in
the classical opposite-charge studies have any bearing for
real quantum plasmas. Finally, preliminary results of ours
suggest that plasmas for which the species have more similar
masses may be less amenable to treatment with the GLB
as presented here; MD results (Dunn-Broyles + Deutch SPs)
for mass-scaled hydrogen with n = 1025/cc, T ∼ 1 keV, and
mp = 10me relax a full 20% slower than the predictions of
GLB for this same system, in contrast to the nice agreement
shown in Fig. 3 for the physical mass case. Preliminary studies
of this system with the Fokker-Planck equation suggest that
this discrepancy is due to slight but important deviations of the
velocity distributions from the Maxwellian forms assumed in
our theoretical treatment [50].

One might argue that classical MD with SPs is not needed if
one is simply interested in determining τei for pure hydrogen
in the fusion-burning regime, since weak-coupling theories
such as the GLB and BPS can be used here instead. Indeed,
it is because we are confident of the efficacy of GLB that we
are able to “validate” the MD in the way that we have. The
practical situation is more nuanced, however: As we mentioned
in the Introduction, the real interest concerns H or DT plasmas
mixed with higher-Z dopants. When a system such as this is
driven out of equilibrium, the resulting temperature relaxation
involves electrons scattering off protons, electrons scattering
off the high-Z element, and proton-high-Z scattering as well.
For many plasmas of interest, the Z − Z coupling will be rather
large. In this case, it is crucial to use a method of calculation
which includes all possible many-body correlations in a time-
dependent way, such as MD. The study presented above for
pure H ensures that the electron-proton piece of this coupled-
rate problem will be accurately evaluated. It is to a problem of
this type that we now turn.

B. Ar-doped H

We consider a plasma consisting of hydrogen at a density
of nH = np = ne = 1025/cc, doped with 10 at.% argon. We
choose the initial temperatures of the Ar ions and protons to
be 6.6 keV, and the initial temperature of the electrons to be
4.5 keV. In these conditions, the Ar ions would be fully stripped
(ZAr = +18), so the species densities are np = 1025/cc, nAr =
1024/cc, and ne = 2.8 × 1025/cc. Our simulation cell contains
560 000 electrons, 200 000 protons, and 20 000 Ar18+ ions.
We use the Dunn-Broyles potentials with the Deutch Pauli
correction for this study, though the above analysis for H
strongly suggests that Kelbg potentials would be better for
reproducing the true quantum answer for at least the ep channel
of the relaxation.

Using a standard three-species LS treatment for this system
(see below), we find that τei is of order 2000 fs. Given
the small time steps required for an accurate rendering of

FIG. 13. (Color online) MD results (colored thick curves) and
results of LS (black thin curves) for the scaled-mass (α = 0.01) Ar-
doped H plasma. Species densities are np = 1025/cc, nAr = 1024/cc,
and ne = 2.8 × 1025/cc. ZAr is fixed at +18. MD was performed
with the Dunn-Broyles potential, and the LS Coulomb logarithms
were chosen according to the prescription outlined in Sec. 5.2 of
Ref. [35].

the dynamics, we choose to perform the MD simulation
with reduced ion masses: mp −→ αmp, and mAr −→ αmAr,
where α = 0.01. This trick has been used often for simulating
two-species plasmas (for example, Ref. [21]) and three-species
systems in which the ions have somewhat similar masses [23].
The idea is to take advantage of the fact that the primary
dependence of the temporal evolution on the mass ratios is
in the kinematic prefactor appearing, for instance, in Eq. (1).
The dependencies within the Coulomb logarithms are often
less important, though they are by no means negligible, as
implied in the work of Ref. [23]. Considering only the mass
dependence in the prefactor, the true relaxation can then be
obtained by dividing the time scale by α.

Our MD results for this mass-scaled Ar-doped H plasma
are shown in Fig. 13. The thick colored lines show the MD
data, while the thin black lines show the results of LS with
appropriately chosen Coulomb logarithms for each pair of
species [35]. Several notable features should be mentioned.
(1) The short time scale of the equilibration (tens of fs) is
due to the mass scaling. If the time scale is multiplied by 100
(as per the aforementioned prescription), something akin to
the physical temperature relaxation is recovered. (2) The final
equilibrated temperature is closer to the initial temperature
of the electrons than to that of the ions. This is simply
because there are ∼3 times as many electrons as ions, so
the heat capacity of the electron subsystem is larger [23,24].
(3) The final equilibrated temperature is slightly higher than
that predicted by LS. This is because the Ar-Ar coupling is
somewhat high (because ZAr = 18), so potential energy is
substantively lowered in the final state in which the ions are
colder- and kinetic energy must rise if the potential energy
falls, as mandated by total energy conservation [23,24,35].
This is a subtle effect even for this case, in which 10 at.% of a
fully stripped ion is present. We emphasize that it is beyond the
scope of not only LS, but the GLB as well (as we have presented
it here), since explicit potential energy contributions are absent
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FIG. 14. (Color online) LS results for the physical-mass (α = 1)
Ar-doped H plasma with Coulomb logarithms all set to unity. Species
densities are np = 1025/cc, nAr = 1024/cc, and ne = 2.8 × 1025/cc.
ZAr is fixed at +18.

in, for instance, Eq. (19). Rigorous inclusion of potential
energy effects within this context have recently appeared,
however [11]. (4) The p and Ar temperatures, though chosen to
be the same initially, quickly separate before coming together
again at later times. This is due to the sizable difference in mass
between p and Ar, the large ZAr, and the fact that there are
many more electrons than protons, which causes the Ar ions to
be pulled toward the electrons more rapidly than the protons.

It would be tempting to conclude that the initial p-Ar
temperature split is a robust result not only for the scaled-mass
system, but for the corresponding plasma with physical p and
Ar masses, once the time-scale is multiplied by 1/α = 100,
since both mp and mAr were scaled by the same factor. This,
however, is not the case. Figure 14 shows simplified LS
results for this system with α = 1, in which all the Coulomb
logarithms have been set to unity. Not only is the equilibration
time greater by a factor of ∼100, as expected, but there is no
sizable p-Ar temperature split. In contrast, Fig. 15 shows the

FIG. 15. (Color online) LS results for the scaled-mass (α = 0.01)
Ar-doped H plasma with Coulomb logarithms all set to unity. Species
densities are: np = 1025/cc, nAr = 1024/cc, and ne = 2.8 × 1025/cc.
ZAr is fixed at +18.

simplified ln λei ≡ 1 LS results for the α = 0.01 system. The
p-Ar temperature split is again apparent, as in Fig. 13. Thus,
we see that the mass-scaling approach, while appropriate for
many two-species problems, is highly suspect for the more
complex case of multiple ion species. This is unfortunate,
since it is in precisely these cases where it is often desirable
to speed up the simulation. However, it is also reassuring that,
at least for this particular Ar-doped H plasma, it might be
possible to adopt a more coarse-grained approach in which
the ions are lumped together into an “average ion.” Such a
simplified picture is often invoked in continuum simulations
of multicomponent plasmas. It should be noted that in
multi-ion plasmas where the ion masses are more similar,
mass scaling may still be a useful construct [23].

We end our discussion of this mass-scaled Ar-doped H
plasma by comparing to three-species GLB calculations. As
for hydrogen, we use the GLB in three modes: QC-GLB with
LFCs set to zero, CS-GLB with LFCs set to zero, and CS-GLB
with static LFCs derived from HNC calculations. There are
three couplings which must be computed in any given GLB
calculation: ep, e-Ar, and p-Ar. For the p-Ar term, we include
static HNC-derived LFCs, G(k), for each of the different
flavors of GLB we use. The reason for this is that the de Broglie
wavelengths of the p and Ar are miniscule, owing to their large
masses. Thus, for this coupling, the p-Ar Landau length is by
far the dominant length-scale governing the small distance part
of the Coulomb scattering. If we omitted the Gp−Ar (k) here,
the p-Ar term, analogous to the ei term of Eq. (20), would fail
to converge at large k. The ep and e-Ar terms are treated, for
each variant of GLB, in the manner described above for H.

The initial slopes of the species temperatures, as inferred
from the MD data of Fig. 13, are listed in Table IV, along
with the results of the three variants of GLB. As for hydrogen
(see, e.g., the red curve of Fig. 3), the QC-GLB rates are larger
than those of MD. The results of classical (h̄ −→ 0) GLB with
LFCs set equal to zero are in somewhat better agreement with
the MD, though the slope of the electron temperature is notably
too small. Inclusion of HNC-derived LFCs for every pair of
species leaves dTp/dt and dTAr/dt relatively unchanged while
raising dTe/dt slightly toward the MD value. So we see again
that the major effect of using classical MD with two-body
SPs of the Dunn-Broyles variety is to lower the temperature
equilibration rates relative to the predictions based on quantum
dynamics and the pure Coulomb interaction.

V. CONCLUSIONS

We have used nonequilibrium classical MD with two-body
SPs to simulate temperature equilibration in pure hydrogen
and Ar-doped hydrogen plasmas. We discussed the way
in which the two-temperature simulations are equilibrated,
the method for extracting the relaxation times, issues
of convergence (system size, time steps), and the SPs
used. Results of the MD were found to be in accord with
expectations gleaned from the LS theory, though a more
quantitative understanding of these results was made possible
by appealing to a many-body theory devoid of some of the
approximations inherent in the LS treatment.

By performing generalized Lenard-Balescu calculations in
both quantum and classical modes, it was shown that classical
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MD with SPs should yield the quantum result in the limit
of sufficiently weak coupling. This means that the salient
features of quantum diffraction, crucial for the short-distance
part of Coulomb scattering at high-temperatures, are captured
in these approaches. However, our results also suggest that the
specific potentials we used should give rise to temperature
equilibration rates which are between a few percent and
greater than 10% lower than those of the true quantum system
in the fusion-burning regime. We demonstrated that SPs of
the Kelbg variety, derived from the exact two-body thermal
density matrix, are substantially better than Dunn-Broyles
potentials, in that they reproduce the quantum pure-Coulomb
result more accurately at all temperatures. Inclusion of static
LFCs in the Lenard-Balescu calculations produced, for pure
hydrogen, worse results, when comparing to the MD, than
GLB calculations, which neglected LFCs altogether. This
suggests that a full understanding of the classical attractive-
potential temperature equilibration problem awaits the further
study of dynamical LFCs. In this way, the work presented here
serves to (1) better define the limits of applicability of quantum
SPs in simulating dynamical phenomena and (2) clarify the
limits of our understanding of the many-body phenomena
important for the determination of temperature equilibration
rates for hydrogen in the fusion burning regime.

Finally, study of a hydrogen plasma doped with fully
stripped Ar demonstrated that mass scaling in the MD can be a
dangerous proposition, while comparisons with GLB calcula-
tions reaffirm the above conclusions regarding both the utility
and the limits of classical MD with SPs. It will be important and
interesting in the future to direct attention to the significantly
more complex problem of high-Z dopants which are not fully
stripped during the course of temperature equilibration, as well
as to electron-ion temperature equilibration in the presence of
radiation.
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APPENDIX: CLASSICAL AND QUANTUM
T -EQUILIBRATION RATES SHOULD APPROACH

EACH OTHER AS 1/ ln(T )

Here we show that the temperature equilibration rate
computed classically with a SP (such as in the MD calculations
we describe) should approach that of the true quantum rate
as temperature is increased. We consider hydrogen at weak
enough coupling so that the generalized Lenard-Balescu
theory presented in Ref. [10] and discussed in Sec. III A is
thought to be valid. Using this theory, we show that

lim
T −→∞

[
νie(QC) − νie(SP)

νie(QC)

]
∝ 1

ln(T )
, (A1)

where νie = 1/τie. QC indicates the quantum result with
the pure Coulomb interaction, and SP indicates the classical
(h̄ −→ 0) result with some set of SPs.

We make the following assumptions. (1) At the density we
consider, the electron temperature, hereafter simply denoted
T , is high enough so that the Debye screening length, λD , is
much larger than the electron thermal de Broglie wavelength,
λth. (2) meTproton/mprotonT � 1; this is certainly satisfied for
the physical mass ratio when, for instance, Tproton = 0.8T . It is
then possible to simplify Eq. (20) by invoking the f -sum rule
for the ions that eliminates the integral over ω [10]. (3) The
density and temperature are such that the quantum electron
distribution function is Maxwellian. (4) The Fourier transform
of the SP is of the form

vei(k) = 4πe2

k2
K

(
k

kth

)
, (A2)

where kth = 1/λth is the thermal de Broglie wave vector, and
K(x) = 1 for x much less than 1, while K(x) −→ 0 for x

much greater than 1; this is satisfied, for instance, by the Dunn-
Broyles and modified-Kelbg potentials we have used in this
study.

If the plasma coupling is sufficiently weak, the thermal de
Broglie wavelength is well above the Landau length and LFCs
can be neglected. Thus, we set Gei = Gee = Gii = 0, and
Eq. (20) plus the application of the ion f -sum rule leads to [10]

νie = − 1

3π2ni

∫ ∞

0
dkk4 |vei(k)|2

|εe(k,0)|2
∂χ0

e (k,ω = 0)

∂ω
, (A3)

where εe(k,0) = 1 − vee(k)χ0
e (k,0). This expression applies

for both classical-SP (SP) and quantum-Coulomb (QC) cases.
We assume that the static electron dielectric function can be
approximated by

εe(k,0) = 1 + k2
D

k2
, (A4)

where kD = 1/λD is the Debye screening wave vector.
Though not exact, this approximate relation holds quite well
for both SP and QC in the weak-coupling cases we consider.
For QC, vei(k) = 4πe2/k2, and [10]

∂χ0
e (k,ω = 0)

∂ω
= − ne

(kBT )3/2

√
πme

2

1

k
f

(
k

2

)
, (A5)

where

f

(
k

2

)
=

3
√

π

4

(
kBT
EF

)3/2

1 + exp
( h̄2k2

F

8mekBT

)
exp(−βμ)

. (A6)

We here consider spinless electrons, so the EF in the above
numerator is h̄2(6π2ne)2/3/2me. Furthermore, the assumption
of Maxwellian electrons allows us to assert,

exp(−βμ) = 1

neλ
3
th

= 1

ne

(2πmekBT )2/3

h3
� 1. (A7)

This gives us

νie(QC) = 16e4ne

3ni(kBT )3/2

√
πme

2

∫ ∞

0

dk

k

exp
[− 1

16π

(
k
kth

)2]
(
1 + k2

D

k2

)2
.

(A8)
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For SP, we take the interaction of Eq. (A2) and use the
classical (h̄ −→ 0) result [10],

∂χ0
e (k,ω = 0)

∂ω
= − ne

(kBT )3/2

√
πme

2

1

k
, (A9)

which then yields

νie(SP) = 16e4ne

3ni(kBT )3/2

√
πme

2

∫ ∞

0

dk

k

K2
(

k
kth

)
(
1 + k2

D

k2

)2
. (A10)

The only difference between νie(QC) and νie(SP) is the
exponential factor in the former case and the K2(k/kth) in
the latter, both of which are functions of k/kth. To simplify
the equations that follow, we define the exponential factor
in the QC case to be H (k/kth) = exp[−(1/16π )(k/kth)2],
thereby exhibiting the formal similarity to the SP case,

νie(QC) = 16e4ne

3ni(kBT )3/2

√
πme

2

∫ ∞

0

dk

k

H
(

k
kth

)
(
1 + k2

D

k2

)2
. (A11)

Since both K2(x) and H (x) approach 1 for x much less than
1, it is immediately apparent from Eqs. (A10) and (A11) that
the k-integrands for SP and QC are identical for k � kth. This
is shown in Fig. 16, in which the GLB integrands, multiplied by
k, are plotted for SP (Dunn-Broyles potentials are used here)
and QC for hydrogen with n = 1025/cc, Te = 100 000 eV, and
Tp = 80 000 eV. In such a weakly coupled case, there is a large
range of k where the integrands divided by the LS prefactor,
denoted F (k) as in the main text, are equal to 1/k; this is the
range kD < k < kth. In order to estimate the T dependence
of these integrals, we break them into three distinct regions,
also indicated in Fig. 16 [we define F (k) to be the integrands
appearing in Eqs. (A10) and (A11), excluding the common

FIG. 16. (Color online) The GLB k-integrand divided by the LS
prefactor, F (k), multiplied by k for both QC and SP (Dunn-Broyles)
cases for hydrogen at n = 1025/cc, T ≡ Te = 100 000 eV, and Tp =
0.8Te. The vertical dotted lines are located at k = akD and bkth,
respectively, and define low-k, middle-k, and high-k regions (see text).
Between the dotted lines, F (k) ∼ 1/k. As T is increased further, the
middle-k region expands at the expense of the outer regions. QC and
SP F (k) only differ in the high-k region.

prefactors to the left of the integral signs]:

νie

P
=

∫ akD

0
dkF (k) +

∫ bkth

akD

dkF (k) +
∫ ∞

bkth

dkF (k),

(A12)

with

P = 16e4ne

3ni(kBT )3/2

√
πme

2
.

In Eq. (A12), a is larger than 1 and b is less than 1, ensuring
that the middle region (see Fig. 16) defines a range in which
F (k) ∼ 1/k. Clearly, both the low-k and middle-k pieces of
Eq. (A12) will be equal for QC and SP cases, so νie(QC) −
νie(SP) is completely determined by the differences in their
high-k pieces. We have∫ ∞

bkth

dkF (k) =
∫ ∞

bkth

dk

k
Q

(
k

kth

)

=
∫ ∞

b

dx

x
Q (x) ≡ Ith(b), (A13)

where Q denotes either H (QC) or K2 (SP). Since b is
a constant independent of T , we have demonstrated that
νie(QC) − νie(SP) ∝ T −3/2, which is not surprising given the
T dependence of the LS prefactor shown in Eq. (1). The
factor multiplying T −3/2 in this difference is determined by
the prefactor shown in Eqs. (A10) and (A11), as well as by
the difference between the QC and SP integrals represented in
Eq. (A13), I

QC
th (b) − I SP

th (b).
In order to form the quotient of Eq. (A1), we must estimate

the rest of the integral as well, which is equal for SP and QC.
For the low-k piece, we have∫ akD

0
dkF (k) =

∫ akD

0

dk

k
(
1 + k2

D

k2

)2

=
∫ a

0

dx

x
(
1 + 1

x2

)2 ≡ ID(a). (A14)

For the intermediate-k piece, we have simply∫ bkth

akD

dkF (k) =
∫ bkth

akD

dk

k
= ln

(
bkth

akD

)
= [ln(T ) + A],

(A15)

where A is a constant; here we have used the fact that kth/kD ∝
T . Combining all the pieces gives

νie(QC) − νie(SP)

νie(QC)
= I

QC
th (b) − I SP

th (b)

ID(a) + ln(T ) + A + I
QC
th (b)

,

(A16)

which approaches 1/ ln(T ) as T −→ ∞. Figure 17 shows
the GLB (LFCs set to zero) predictions for the fractional
differences in QC and SP equilibration rates on the n =
1025/cc isochore, plotted in such a way as to exhibit the
approach to this 1/ ln(T ) behavior at high-T .

The main point is that weak plasma coupling guarantees
that the differences between quantum and classical energy
transfer rates are confined to large k as long as the SP used
in the classical calculation is Coulombic for large separations
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FIG. 17. The reciprocal of the fractional difference between QC
and SP (Dunn-Broyles) rates, νie(QC)/[νie(QC) − νie(SP)], as a
function of T = Te for the n = 1025/cc isochore of hydrogen as
computed by GLB (LFCs = 0). The semilog plot is linear for high T ,
indicating that the reciprocal of the fractional difference asymptotes
to ln(T ).

and is regularized at small separations within a thermal de
Broglie wavelength. These differences depend on the precise
form of the SP; we have seen in Sec. IV A that they are smaller
for modified-Kelbg than for Dunn-Broyles, for instance. Yet

since these large-k quantum and classical portions are both
proportional to T −3/2, the T dependence of the magnitude of
the fractional differences in the rates is governed by the large
intermediate-k piece which is common to both. This fractional
difference is then nothing more than the Coulomb logarithm
itself, ln λei = ln(λD/λth) = ln(kth/kD) = ln(T ) + const.

Finally, we note that for plasmas satisfying the various
criteria outlined at the start of this section (sufficiently weak
coupling, large ep mass ratio for similar temperatures, etc.) it
is possible to define a statistical potential for which a classical
simulation of T equilibration should return the exact quantum
answer: Examination of Eqs. (A8) and (A10) reveals that
νie(QC) = νie(SP) if we choose

K

(
k

kth

)
= exp

[
− 1

32π

(
k

kth

)2 ]
. (A17)

It is doubtful, however, that the resulting ei potential,

vei(k) = −4πe2

k2
exp

[
− 1

32π

(
k

kth

)2 ]
, (A18)

would be in any way appropriate to use for reproducing the
correct static properties of the quantum plasma, such as gei(r),
for instance. Optimization of such static properties is precisely
what was used to derive the SPs we have used in this work
(Dunn-Broyles, modified-Kelbg).
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