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Pattern formation of Rayleigh-Bénard convection of cold water near its density maximum
in a vertical cylindrical container
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In order to understand the onset of convective instability and multiple stable convection patterns of buoyancy-
driven convection of cold water near its density maximum in a vertical cylindrical container heated from below,
a series of three-dimensional numerical simulations were performed. The aspect ratio of the container was 2 and
Prandtl number of cold water was 11.57. The sidewall was considered to be perfectly adiabatic, and the density
inversion parameter was fixed at 0.3. The result shows that the density inversion phenomenon in cold water has
an important effect on the critical Rayleigh number for the onset of convection and the pattern formation at higher
Rayleigh numbers. When the Rayleigh number varies from 3 × 103 to 1.2 × 105, eight stable, steady convection
patterns are obtained under different initial conditions. The coexistence of multiple stable steady flow patterns is
also observed within some specific ranges of the Rayleigh number.
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I. INTRODUCTION

Rayleigh-Bénard convection in confined enclosures is
an important problem due to its practical applications in
engineering and science, and for its theoretical aspect of being
a simple system for the study of complex pattern formation and
the rich dynamical behavior of high-dimensional nonlinear
systems. During the past few decades, many experimental
observations [1–4], theoretical analyses [5–7], and numerical
simulations [8–12] have been reported on the occurrence of
various convective patterns in cylinders for the Boussinesq
fluid with a linear temperature-dependent density. From
those remarkable works, it has become well known that
the motionless conductive state will lose its stability and
bifurcate to the convection when the Rayleigh (Ra) number
exceeds a critical value, which depends on the aspect ratio
(� = radius/height) and the sidewall conductivity of the
enclosure. As the Rayleigh number is increased above the
onset, the fluid motion becomes highly nonlinear and leads
to complex spatial and temporal behavior. The multiple stable
states corresponding to the flow histories and initial conditions
are physically realizable in Rayleigh-Bénard convection under
the Boussinesq approximation. Hof et al. [13] conducted
experimental research at a small aspect ratio and found that
both axisymmetric and asymmetric, stable steady convective
structures can exist at the same Rayleigh number for a fixed
aspect ratio. Leong [14], Ma et al. [15], and Borońska and
Tuckerman [16,17] simulate convective flows at the same
configuration as Hof et al. [13]. Their works verified the
various flow patterns in the experiment. Furthermore, Ma
et al. [15] also observed a stable four-spoke pattern which
is not obtained by the experiment. At the same time, Borońska
et al. [16,17] studied the evolution of the flow patterns with
different initial conditions.
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However, the pattern formation of Rayleigh-Bénard con-
vection in pure water near 4 ◦C could be more complex than
that in Boussinesq fluid by having the density inversion. The
density inversion means that there exists a maximum of the
mass density in pure water near 4 ◦C. Below this temperature,
the mass density of pure water increases with the increase
of temperature, and it decreases when the temperature is
above 4 ◦C. Until now, very few research activities have
focused on convection in confined enclosures submitted to a
vertical temperature gradient for cold water. Kalabin et al. [18]
performed a two-dimensional numerical simulation to study
cold water convection near the density maximum in a square
cavity heated from below. The vertical walls of the cavity
are adiabatic, and the temperature of the top and bottom
walls is symmetrical relative to the temperature of the density
maximum. When the Grashof number is between 29 000
and 950 000, four steady flow states and three unsteady
flow states have been observed. Zubkov et al. [19,20] also
studied the flow patterns of cold water convection with
the same configuration as Kalabin et al. [18], and they
found six stable flow structures when the Grashof number
was between 0 and 17 000. In addition, they determined
the existence range of each of the different stable flow
states.

The purpose of the present work is to study the pattern
formation of Rayleigh-Bénard convection of cold water near
its density inversion point in a vertical cylindrical enclosure.
Specifically, we will consider the effects of different initial
conditions on the convective patterns and multiple stable
steady patterns arising within specific ranges of the Rayleigh
number. The simulation is conducted under the assumptions
of laminar flow and perfectly insulating lateral for a fixed
aspect ratio of the enclosure � ≡ 2, which is the same with
Ma et al. [15] and Borońska et al. [16,17], and the range of
the Rayleigh numbers is 3000–120 000. We hope to obtain
various stable steady patterns in cold water convection near
the density inversion point and find out the influence of the
density maximum on the flow structures.
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FIG. 1. Sketch of the geometry and coordinate system.

II. PROBLEM FORMULATION

A. Physical and mathematical models

The physical model of the problem is shown in Fig. 1, and
the cold water is confined in a cylinder with radius r0 and depth
h. The aspect ratio of the cylinder is defined as � = r0/h = 2.
The upper and lower walls of the cylinder are isothermally
kept at constant temperature Tc and Th (Tc < Th), respectively,
and the sidewall is considered to be thermally insulated.
All physical properties are taken as constant, except for the
density ρ in the buoyancy term, which varies nonlinearly with
temperature. The nonlinear temperature-dependent density of
water is given as the following form proposed by Gebhart and
Mollendorf [21]:

ρ(T ) =ρm(1 − γ |T − Tm|q),

where ρm = 999.972 kg/m3 is the maximum density of water
at a temperature Tm = 4.029 325 ◦C, q = 1.894 816, and
γ = 9.297 173 × 10−6(◦C)−q .

Using h, ν/h, h2/ν, and ρν2/h2 as the reference scales for
length, velocity, time, and pressure, respectively, the governing
equations in the cylindrical coordinate system can be written

TABLE I. Comparison of the average Nusselt number at three
different meshes at Ra = 4 × 104.

NR × Nθ × NZ Nuave

40 × 120 × 20 2.731
60 × 160 × 30 2.765
80 × 200 × 40 2.769

in dimensionless form as

∇ · V = 0, (1)

∂t V + V · ∇V = −∇P + ∇2V + (Ra/Pr)|� − �m|qeZ,

(2)

∂t� + V · ∇� = (1/Pr)∇2�, (3)

where V (VR,Vθ ,VZ) denotes the dimensionless velocity vec-
tor, � = (T − Tc)/(Th − Tc) the dimensionless temperature,
�m = (Tm − Tc)/(Th − Tc) the density inversion parameter,
and eZ the unit vector in z direction. In this work, the
density inversion parameter is fixed at �m = 0.3. Ra =
gγ	T qh3/(αν) and Pr = ν/α are the Rayleigh number and
the Prandtl number, respectively, ν is the kinematic viscosity,
α the thermal diffusivity, g the gravity acceleration, and 	T

the temperature difference between the top and bottom walls.
The Prandtl number Pr of cold water at Tm is about 11.57.

All the container walls satisfy the no-slip boundary condi-
tion. Therefore, the dimensionless boundary conditions can be
written as follows:

Z = 1/2, � = 0, VR = Vθ = VZ = 0, (4)

Z = −1/2, � = 1, VR = Vθ = VZ = 0, (5)

R = �, ∂�/∂R = 0, VR = Vθ = VZ = 0. (6)

(a) Ra=4102 
  face 

(b) Ra=5000 
   two-tori 

(c) Ra=40 000 
   cross dart 

(d) Ra=47 000 
  four-roll 

FIG. 2. (Color online) Flow patterns at different Rayleigh numbers. Upper plot: Contours of the axial velocity in the Z = 0 plane, and
dashed lines correspond to negative values. Middle plot: Contours of temperature in the θ = 0 − π plane. Lower plot: Isothermal surfaces of
� = 0.3 (upper), 0.5 (middle), and 0.7 (lower).

046323-2
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 (a) Ra=4300      (b)Ra=5000 (c) Ra=10000  

FIG. 3. Flow patterns of stable face states at different Rayleigh numbers.

The average Nusselt number at the hotwall is defined as

Nu = − 1

2π�

∫ 2π

0

∫ �

0

∂�

∂Z

∣∣∣∣
Z=−1/2

dRdθ. (7)

B. Numerical method and validation check

The governing equations (1)–(3) are solved by the finite
volume method. The pressure-velocity coupling is handled
by using the SIMPLE algorithm, and the diffusion term is
approximated by a second-order central difference scheme. For
the discretization scheme of the convective term, the QUICK,
the second-order upwind and the second-order central schemes
were tested. It was found that the pattern formation and the
critical Rayleigh number of the flow transition are almost same
for the three kinds of schemes. Hence the QUICK scheme is
used for the convective term, as shown in Refs. [22–25]. The
dimensionless time steps varied from 5 × 10−3 to 1 × 10−4

according to the Rayleigh number and the evolution of flow. At
each time step, the solution is considered to be fully converged
when the maximum relative errors for velocity and temperature
are less than 10−5.

In order to verify the convergence of the grid, independent
tests for several different meshes were conducted. As shown
in Table I, the average Nusselt number at the hotwall was
presented with three different meshes at Ra = 4 × 10−4. It can
be found that a grid size 60R × 160θ × 30Z is sufficient for

accurate simulation. The present numerical solution has been
validated by our previous work [26] for natural convection
of cold water in horizontal annulus. Furthermore, due to the
lack of research data for Rayleigh-Bénard convection in a
vertical cylinder with the presence of cold water, another
validation test was conducted for Rayleigh-Bénard convection
of water subjected to the Boussinesq approximation in a
vertical cylinder with the numerical work of Ma et al. [15]
and Borońska and Tuckerman [16], as shown in Table II. It is
obvious that the present results are in agreement with those in
the references.

III. RESULTS AND DISCUSSION

A. Steady flow pattern coming from the conductive state

In the first series of simulations, the flow patterns starting
from the conductive state are considered. First of all, we
obtained the conductive solution at a small Rayleigh number
and then used this conductive solution as the initial condition to
run a series of simulations with a variation step of the Rayleigh
number from 2 to 200 at a Rayleigh number range between
3800 and 70 000. Depending on the Rayleigh number, several
typical flow states are observed as shown in Fig. 2.

If Ra < 4102, the system still remains stationary, that
is, the conductive state. For 4102 � Ra < 4188, the final
convection state is a steady symmetric pattern. We call this
flow pattern the face state, as shown in Fig. 2(a). The flow area

(a) t=0   (b) t= 16.8  (c) t= 56.2         (d) t= 87.5 

FIG. 4. Time evolution from face pattern to C pattern at Ra = 11 600.
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(a) Ra=3950 (b) Ra=18000 (c) Ra=44000

FIG. 5. Flow patterns of a stable two-tori state at different Rayleigh numbers.

of this state mainly happened in the center area, with two
hot-rising flows and one cold-descending flow, resembling
two eyes and a nose in a face. The maximum value of the
axial velocity in each up- or down-flow area is also labeled
in Fig. 2. For Rayleigh numbers between 4188 and 37 000,
the system evolves toward the axisymmetric state, as depicted
in Fig. 2(b). This state is named the two-tori state because it
contains two concentric toroidal rolls, where two hot up-flows
rise on the center and boundaries and the cold fluid descends
in the middle ring. For 37 000 � Ra < 42 000, a cross-dart
pattern is observed, as shown in Fig. 2(c). This final state has
five perfectly separated hot up-flows with one in the center
and the others symmetrically distributed near the sidewall. For
42 000 � Ra < 53 000, the final pattern consists of four rolls,
with two parallel down-flows alternating with three parallel
up-flows, thus forming the four-roll pattern, as shown in
Fig. 2(d). Continuing to increase the Ra number, the system
evolves into time-dependent oscillation. For all these patterns
mentioned above, the value of axial velocity increases with
increase of the Rayleigh number. The isothermal surface in
the maximum mass density fluid layer of the different flow
pattern is also depicted in Fig. 2.

We find that the convective motion for the entire flow
structure mentioned above appears in the whole container
when the density inversion parameter �m = 0.3, as shown
in the middle plot of Fig. 2. The critical Rayleigh number
of Rayleigh-Bénard convection of cold water in the confined
cylinder with adiabatic sidewall is a function of not only aspect
ratio but also the density inversion parameter. When the aspect
ratio � = 2, the critical Rayleigh number in Boussinesq fluids
is about 2000, according to the reports of Ma et al. [15] and
Borońska and Tuckerman [16], and in the present work on cold
water, it is near 4100.

TABLE II. Comparison of the critical Rayleigh number at the
primary thresholds at � = 2 and Pr = 6.7.

Mode Ref. [15] Ref. [16] Present

m = 1 1836 1828.4 1826
m = 2 1844 1849.4 1845

B. Evolution from face state

In order to exhibit evolution from the face state, a series
of simulations is performed for increasing or decreasing the
Rayleigh number with a step of 	Ra between 10 and 200.
We used the steady face pattern obtained at Ra = 4150 as the
initial condition to start the calculation. Furthermore, during
the simulations, the initial condition of the next simulation is
the result of the last simulation. When the Rayleigh number
is below 3940, the face pattern decays to the conductive state.
This result shows that there exists a hysteresis for the first
flow pattern transition of cold water convection, since we
reported earlier that the conductive state does not lose its
stability until the Rayleigh number is increased above 4102.
For 3940 � Ra � 11 500, the face pattern remains stable. With
the increase of the Rayleigh number, the hot up-flow near the
sidewall becomes much stronger, the absolute maximum value
of axial velocity in these areas gradually exceeds the absolute
maximum value of axial velocity in the cold down-flow, and
the two up-flows in the center move slowly to the boundaries,
as shown in Fig. 3. When Ra = 11 600, the face pattern finally
transforms into a stable C state by passing through several
intermediate patterns, as shown in Fig. 4.

In the results of Ma et al. [15] and Borońska et al. [16],
who obtained numerically a rich variety of flow states with
Boussinesq approximation, the first bifurcation pattern is the
dipole state instead of the face state. However, in the cold water
convection, it is found that the dipole state is an intermediate
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FIG. 6. The maximum axial velocity in center flow and flow area
ratio as a function of Rayleigh number.
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(a) t=0   (b) t= 15.3  (c) t= 38.4      (d) t= 76.6 

(e) t=0 (f)  t= 7.6  (g) t= 23.4       (h) t= 45.9 

FIG. 7. Time evolution from cross-dart structure: (a)–(d) Ra = 31 000, (e)–(h) Ra = 47 200.

pattern when the face pattern decays into a conductive
state.

C. Evolution from axisymmetric state

In this simulation we used the axisymmetric two-tori state
converged at 5000, like that in Fig. 2(b), as the initial condition.
When 3950 � Ra � 44 600, the two-tori pattern is stable, as
shown in Fig. 5. The convection is enhanced with the increase
of the Rayleigh number. The maximum absolute axial velocity
in the center upwelling fluids is always stronger than that
in the descending fluids. Figure 6 shows the value of the
maximum axial velocity in the center up-flow. Furthermore,
the flow area ratio of the center hot up-flow to the whole

midplane and the area ratio of the cold down-flow to the
midplane at different Rayleigh numbers are also shown in
Fig. 6, respectively. With the increase of the Rayleigh number,
the flow areas of the center up-flow decrease and the flow
areas of the cold down-flow nearly keep constant after a small
increase at low Rayleigh numbers. The total flow area of
the hot upwelling fluids is a little smaller than that of the
cold-descending area when the flow area of the down-flow
reaches a constant, and this phenomenon exactly satisfies
the continuity requirement that the mass flow rate of the hot
upwelling fluids must be the same with the cold-descending
fluids, in view of the smaller absolute axial velocity in the cold-
descending area. For Ra < 3950, the two-tori state transforms
into the conductive state, and for the Rayleigh number

 (a) Ra=7600     (b) Ra= 39 00  (c) Ra=10 000 

FIG. 8. Flow patterns of stable four-roll states at different Rayleigh numbers.
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 (a) t=0    (b) t= 31.2   (c) t= 91.8   

FIG. 9. Time evolution from four-roll structure to stable face structure at Ra = 7400.

above 44 600, the stable, steady two-tori pattern evolves into
oscillation.

D. Evolution from cross-dart state

The space structure of the cross-dart pattern is similar to the
four-spoke pattern observed by Ma et al. [15]. Both of the two
states contain four hot upwelling areas near the sidewall, which
is separated symmetrically by the cold downwelling fluids.
However, for the cross-dart pattern, the center of the cylinder
is held by hot upward fluids, which is different with the four-
spoke pattern. For the stable cross-dart pattern, we used the
result converged at Ra = 40 000, as shown in Fig. 2(c), as the
initial condition. The simulation results indicate that this kind
of steady flow structure exists in the range of Rayleigh numbers
31 600 � Ra � 47 000, and for Ra < 31 600 it transforms into
the stable axisymmetric state, as shown in Figs. 7(a)–7(d); for
Ra > 47 000, it leads to the stable four-roll state, as shown in
Figs. 7(e)–7(h).

E. Evolution from the four-roll state

This time we used the stable four-roll state converged at
Ra = 47 000, as shown in Fig. 2(d), as the initial condition.

It is found that the four-roll state is stable for a very wide
range of Rayleigh numbers, 7600 � Ra � 110 000. As in the
case of Boussinesq fluid reported by Borońska and Tuckerman
[16], the roll becomes more curved and the roll boundaries
grow much thinner with the increase of Rayleigh number, as
shown in Fig. 8. For Ra = 7400, the four-roll flow leads to the
face state, as displayed in Fig. 9. When the Rayleigh number
exceeds 110 000, the steady state loses stability and transforms
into a time-dependent flow.

F. Evolution from a stable C state

The initial condition used here is the stable C state, as shown
in Fig. 4(d), obtained previously at Ra = 11 000. For Rayleigh
numbers between 9000 and 23 000, we found this kind of
pattern still to be stable, as shown in Fig. 10(a). We also found
that the roll becomes more curved and the flow boundaries
become much thinner with the increase in Rayleigh number.
For 4600 � Ra < 9000, the new evolved states are also of
the C family, but the flow patterns have some changes. For
6500 � Ra < 9000, the new state is the four-spot pattern; the
curved hot up-flow near the sidewall in C pattern splits into four

(a) Ra=14000 (b) Ra=7000 (c) Ra=5000 (d) Ra=4000 

C  four-spot  three-spot deformity 

FIG. 10. (Color online) Flow patterns and isothermal surfaces of stable C family at different Rayleigh numbers: � = 0.3 (upper),
0.5 (middle), and 0.7 (lower).
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TABLE III. Stability range of all stable, steady convective patterns.

Flow pattern name Corresponding figure Range of stability

Face Fig. 2(a) 3940 � Ra � 11500
Deformity Fig. 10(d) 3946 � Ra � 4050
Two-tori Fig. 2(b) 3950 � Ra � 44600
Three-spot Fig. 10(c) 4600 � Ra < 6500
Four-spot Fig. 10(b) 6500 � Ra < 9000
C Fig. 4(d) 9000 � Ra � 23000
Cross dart Fig. 2(c) 31600 � Ra � 47000
Four-roll Fig. 2(d) 7600 � Ra � 110000

completely independent flow areas, as shown in Fig. 10(b).
For 4600 � Ra < 6500, the C pattern flow changes into the
three-spot pattern, with the hot fluids rising on three spot areas
along the boundaries, as shown in Fig. 10(c). For 4600 <

Ra � 4050, the stable C pattern transforms into the stable face
pattern, and for 3946 < Ra � 4050, it evolves into a new
nonsymmetric pattern, as shown in Fig. 10(d). The convection
motion in this structure happened mainly on one side of the
cylinder and the flow on the rest is very weak. Therefore we
named this pattern the deformity pattern. When Ra > 23 000,
the stable C flow leads to a period oscillation with a constant
amplitude.

G. Summary

Table III gives the stability range of all stable steady patterns
that we have obtained. The average Nusselt number at the
hotwall as a function of Rayleigh number is shown in Fig. 11.
For lower Rayleigh numbers, we obtained three stable steady
patterns: face, two-tori, and deformity. For higher Rayleigh
numbers, two types of flow patterns are still stable over
large intervals of the Rayleigh number: two-tori and four-roll
patterns. The average Nusselt number depends primarily on
the Rayleigh number and is slightly influenced by the flow
pattern.

The pattern formation in cold water is different from
that in the Boussinesq fluids reported by Borońska et al.
[16]. For higher Rayleigh numbers and perfectly adiabatic
sidewalls, we observed two-tori, four-roll, and cross-dart
patterns in cold water convection. However, according to
Borońska et al. [16], they obtained six stable flow patterns,
and none of the flow patterns observed near the onset of the
convection seem to be stable at higher Rayleigh numbers.
On the contrary, the two-tori pattern in cold water convection
can exist in a wide range of Rayleigh numbers, from 3950
to 44 600.
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FIG. 11. Variation of the average Nusselt number at the hotwall.

IV. CONCLUSIONS

Rayleigh-Bénard convection of cold water near its density
maximum in a vertical cylindrical enclosure heated from below
has been studied with a fully three-dimensional numerical
simulation. The aspect ratio of the cylinder was � = 2,
matching the geometry of Ma et al. [15] and Borońska
et al. [16], who obtained numerically a rich variety of flow
patterns with the Boussinesq approximation. The following
conclusions were obtained:

(1) For the range of Rayleigh numbers between 3000
and 110 000, eight stable steady convection patterns were
obtained. Even close to the threshold (at Ra = 4100) we
found three stable patterns: deformity, face, and two-tori
patterns. Furthermore, the coexisting phenomenon of the
steady axisymmetric structure and nonaxisymmetric structure
within specific ranges of Rayleigh numbers in cold water
convection also is observed.

(2) For the buoyancy convection of cold water near its
maximum density, our research demonstrates that the initial
condition has a significant effect on the form of the convection
structure.

(3) While determining the stability of the various stable
patterns, a hysteresis phenomenon was observed, which is
not reported in the reports of Ma et al. [15] and Borońska
et al. [16,17]. This phenomenon, however, has an important
influence on the stability range of various convective patterns.
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