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Self-consistent simulations of a von Kármán type dynamo in a spherical domain with metallic walls
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We have performed numerical simulations of boundary-driven dynamos using a three-dimensional nonlinear
magnetohydrodynamical model in a spherical shell geometry. A conducting fluid of magnetic Prandtl number
Pm = 0.01 is driven into motion by the counter-rotation of the two hemispheric walls. The resulting flow is of
von Kármán type, consisting of a layer of zonal velocity close to the outer wall and a secondary meridional
circulation. Above a certain forcing threshold, the mean flow is unstable to non-axisymmetric motions within
an equatorial belt. For fixed forcing above this threshold, we have studied the dynamo properties of this flow.
The presence of a conducting outer wall is essential to the existence of a dynamo at these parameters. We have
therefore studied the effect of changing the material parameters of the wall (magnetic permeability, electrical
conductivity, and thickness) on the dynamo. In common with previous studies, we find that dynamos are obtained
only when either the conductivity or the permeability is sufficiently large. However, we find that the effect of
these two parameters on the dynamo process are different and can even compete to the detriment of the dynamo.
Our self-consistent approach allow us to analyze in detail the dynamo feedback loop. The dynamos we obtain
are typically dominated by an axisymmetric toroidal magnetic field and an axial dipole component. We show
that the ability of the outer shear layer to produce a strong toroidal field depends critically on the presence of
a conducting outer wall, which shields the fluid from the vacuum outside. The generation of the axisymmetric
poloidal field, on the other hand, occurs in the equatorial belt and does not depend on the wall properties.
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I. INTRODUCTION

An electrically conducting fluid driven by viscous forcing
exerted at a boundary generates a dynamo if the fluid’s
magnetic properties—electrical conductivity and magnetic
permeability—and flow properties can amplify an initial weak
magnetic field and ultimately sustain a magnetic field of
significant amplitude. This is the most efficient type of forcing
to convert the power applied to the system into kinetic energy
available for the dynamo, and so is preferred in laboratory
experiments designed to study dynamo action, such as liquid
metal experiments. In most of these experiments the energy
injection scale is the largest scale of the system.

Recently, results from a boundary-driven dynamo experi-
ment, the von Kármán sodium (VKS) experiment located in
Cadarache, France, have shown that the magnetic properties
of the boundaries also greatly affect the ability of the flow
to maintain a dynamo [1]. The VKS experiment consists
of a cylindrical container filled with liquid sodium, with
two counter-rotating impellers at either end. The mechanical
forcing exerted by the impellers on the liquid sodium drives
a highly turbulent flow. For a sufficiently strong mechanical
forcing, dynamo action has been observed that sustains
a large-scale magnetic field despite the unconstrained and
turbulent nature of the flow. Furthermore, the axisymmetry
of the sustained magnetic field (an axial dipole) implies that
the turbulent motions are involved in the dynamo process
(e.g., [2]). This is an important result in the study of natural
dynamos, which operate at very large Reynolds numbers, and
mostly produce large-scale magnetic fields. However, dynamo
action is observed only in the VKS experiment when the
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impellers are made of soft iron, a material with high magnetic
permeability, which produces a discontinuity in the magnetic
field between the fluid and the impellers. At the highest
achievable mechanical forcing in the experiment, dynamo
action has never been observed with either stainless steel
or copper impellers [3]. Consequently, elucidating the effect
of changes of magnetic permeability of the impellers on the
dynamo, and more generally of magnetic boundary conditions,
is critical to understanding how the dynamo mechanism
operates in the VKS dynamo experiment. This problem is
also crucial in other shear-driven systems, such as the plasma
Couette experiment in Madison, WI [4], and the spherical
Couette liquid sodium experiment in College Park, MD [5].

The effect of magnetic boundary conditions on dynamo
action has been investigated in numerical simulations for
both von Kármán type flow (between coaxial rotating disks)
and Ponomarenko type flow (cylindrical helical flow) [6].
Unfortunately, computational limitations prevent numerical
simulations from reproducing the same level of turbulence
obtained in laboratory experiments. Numerical models include
the large-scale mean velocity component and sometimes
smaller scales with typical viscous length scales much larger
than natural or experimental dynamos due to the use of
unrealistically high viscosity. Many studies have adopted a
kinematic dynamo approach in which the flow is prescribed
for all time with no backreaction from the magnetic field.
The imposed mean base flow in these kinematic models
can be chosen analytically [7–11] or based on data from
laboratory water experiments [12–15]. Some authors adopt
a mean-field approach and parametrize the effects of small-
scale turbulence through an α effect, which corresponds to
a mean electromotive force that is linear and homogeneous
in the large-scale magnetic field [8,11,15]. A small number
of studies use computationally expensive three-dimensional
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(3D) self-consistent models where the velocity is produced by
boundary or volume forcing, and the magnetic feedback on the
flow is taken into account [16–18], but to our knowledge, only
Roberts et al. [19] have addressed the problem of magnetic
boundary conditions via self-consistent numerical simulations.

All previous numerical studies, using either the mean base
flow only, the mean field approach, or 3D self-consistent mod-
els, found that enhanced electrical conductivity or magnetic
permeability of either the container walls or impellers leads
to a reduction of the dynamo threshold measured by a critical
magnetic Reynolds number (where the magnetic Reynolds
number corresponds to the ratio of magnetic induction over
magnetic diffusion). Avalos-Zuniga et al. [8] attribute the
reduction of the dynamo threshold to a change in geometry of
the electric current lines or the magnetic field lines leading to
a reduction of the total ohmic dissipation. Giesecke et al. [11]
alternatively invoke the reduction of the “effective” magnetic
diffusivity, that is, the magnetic diffusivity averaged over
the whole volume of the system, although they acknowledge
that this argument does not explain why different magnetic
field growth rates are obtained when varying individually
either the magnetic permeability or the electrical conductivity
of the disks. Pétrélis et al. [2] argue that the refraction of
the magnetic field lines in the soft iron disks (due to the
discontinuity of the tangential magnetic field) may act as a
shield for the fluid dynamo region between the two disks from
the region behind the disks. Indeed, Stefani et al. [14] have
shown that the motions of liquid sodium in the region behind
the disks is detrimental to the dynamo action in kinematic
simulations. Roberts et al. [19] show that finite values of the
wall conductance promote dynamo action even when the wall
permeability tends to zero. When the wall conductance tends to
zero, on the other hand, their model fails to produce a dynamo
even for infinite wall permeability. Kaiser and Tilgner [7]
find that a surrounding wall of the same conductivity as the
fluid favors dynamo action up to an optimal thickness. In
this case, the ohmic dissipation in the fluid decreases as the
electric currents diffuse into the wall. However, they show
that thicker walls are detrimental to dynamos that produce
time-dependent magnetic field because the skin effect leads to
the presence of eddy currents in the wall, and so the ohmic
dissipation increases in this case. In an experimental setup
similar to VKS but using gallium as working fluid (which has
a lower conductivity than sodium and thus a lower magnetic
Reynolds number) and applying transverse magnetic fields,
Verhille et al. [20] find that the induced axial magnetic field
measured in the midequatorial plane is two to three times larger
in magnitude when soft iron disks are used compared to copper
or stainless steel disks. They argue that this result (among other
observations) is consistent with an induction mechanism in the
rotating disks amplified by the distortion of the magnetic field
lines by the soft iron.

In general, in a boundary-driven system, some essential
component of the dynamo likely operates close to the
boundaries, so it is perhaps not surprising that changing the
magnetic boundary conditions significantly affects the dynamo
threshold. Nevertheless, the current physical interpretations of
the experimental observations are partly based on assump-
tions about the flow properties in kinematic dynamo models
and have not been demonstrated in self-consistent models.

Moreover, the cylindrical geometry of the VKS experiment
makes it difficult to implement realistic boundary conditions
numerically, which has led some authors to adopt idealized
boundary conditions (e.g., infinite magnetic permeability,
which implies vanishing tangential magnetic field at the
boundary) [9,15].

Here we investigate the underlying problem of the role of
magnetic boundary conditions in dynamo models through self-
consistent 3D magnetohydrodynamical numerical simulations
in spherical shell geometry. Our study extends and expands
on the work of Roberts, Glatzmaier, and Clune [19] (RGC10
hereafter), who used the boundary forcing exerted by the
counter-rotation of the two hemispheric outer walls to drive
a mean flow in a spherical cavity. In their study, RGC10
use a thin wall boundary condition which implies that the
magnetic field in the outer wall instantly responds to a change
of magnetic field in the fluid. However, the conditions under
which the thin wall limit is appropriate for modeling the
experimental setup are unclear. Here, we investigate in more
detail the role of the outer wall by modeling a wall of finite
thickness and finite values for the electrical conductivity and
magnetic permeability. The model is self-consistent in the
sense that the flow produced by the motions of the rotating
boundaries can be adjusted by the Lorentz forces of the
sustained magnetic field. Furthermore, no parametrization
of the turbulent effects are included in the equations. For
fixed forcing and magnetic properties of the fluid, we have
examined the effects of varying the properties of the wall
(magnetic permeability μw, electrical conductivity σw, and
thickness h) on the resultant dynamo. Spherical geometry has
the advantage that magnetic boundary conditions can be easily
implemented using a toroidal-poloidal decomposition for the
magnetic field. The spherical geometry is convenient to study
magnetohydrodynamical (MHD) problems numerically but
prevents us from studying the exact same flow obtained in
the cylindrical VKS experiment. Moreover, the impellers in
the VKS experiment consist of flat disks upon which eight
curved blades are attached. The effects of the blades on the
flow are not reproduced in our numerical setup. Therefore, the
application of our results to the VKS experiment will remain
tentative.

II. MODEL

The model setup is sketched in Fig. 1. We use spherical
coordinates (r,θ,φ) with r the radius, θ the colatitude, and φ

the azimuth. An electrically conducting incompressible fluid
fills the spherical shell between the inner radius ri and the outer
radius ro. The fluid has viscosity ν, density ρ, and electrical
conductivity σf , and its magnetic permeability is equal to the
vacuum magnetic permeability, μ0. All the properties of the
fluid are constant in the volume and are not varied throughout
the MHD study. The solid outer wall is modeled by a spherical
shell of finite thickness h, which rotates with angular velocity

�w(θ ) = Uw cos θ/ro, (1)

where Uw is a constant forcing velocity. Northern and southern
hemispheres therefore rotate at the same rate but in opposite
directions. Note that the wall is “solid” in the sense that it
is not fluid, but the angular velocity profile (1) varies with
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SELF-CONSISTENT SIMULATIONS OF A VON KÁRMÁN . . . PHYSICAL REVIEW E 86, 046317 (2012)

Fluid
Pmf = μ0σfν = 0.01
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FIG. 1. Schematic 3D view of the setup. Within the wall, the
shading represents the absolute value of the angular velocity |�w| =
Uw| cos θ |/ro, maximum at the poles and zero at the equator.

latitude and so a shear is present in the wall. We impose
impenetrable and no-slip boundary conditions on the fluid at
r = ro, and so the wall exerts a viscous stress on the fluid. The
wall has electrical conductivity σw and magnetic permeability
μw. At the outer boundary of the wall, r = ro + h, we impose
a vacuum boundary condition corresponding to zero electric
current for r > ro + h.

Within the fluid, we solve the momentum equation for an
incompressible fluid and the magnetic induction equation:

∂u
∂t

+ u · ∇u = − 1

ρ
∇p + ν∇2u + 1

ρ
j × B, (2)

∇ · u = 0, (3)

∂B
∂t

= ∇ × (u × B) − ∇ × 1

σf

∇ × B
μ0

, (4)

∇ · B = 0, (5)

where u is the velocity, p is the pressure, and B is the
magnetic field. Within the wall, we solve the magnetic
induction equation with only the prescribed velocity for the
wall uφ(θ,r) = �w(θ )r sin θ , where �w is given by Eq. (1).
More details about the implementation of the induction in the
wall are given in the Appendix. For numerical convenience a
solid inner core is present between r = 0 and r = ri = 0.2ro.
The inner core is held at rest and has the same electrical
conductivity and magnetic permeability as the fluid. We solve
the magnetic induction equation within the inner core with zero
velocity. The boundary conditions for the velocity at r = ri are
no-slip and impenetrable.

The equations are solved in nondimensional form. The
length scale is the outer radius ro; the velocity is scaled by the
forcing velocity Uw; the time is scaled by ro/Uw; the magnetic
field is scaled by

√
ρμ0Uw. The dimensionless parameters for

the fluid are the magnetic Prandtl number,

Pmf = μ0σf ν, (6)

and the Reynolds number, which is a measure of the forcing
strength,

Re = Uwro

ν
. (7)

The dimensionless parameters for the wall are the wall
thickness ĥ = h/ro, the relative conductivity σr = σw/σf , and
the relative magnetic permeability μr = μw/μ0.

At the fluid-wall interface, the boundary conditions for the
normal and tangential components of the magnetic field and
electric current density, j = ∇ × μ−1B, are

Bw · er = Bf · er , (8)

Bw × er = μrBf × er , (9)

jw · er = jf · er , (10)

jw × er = σr jf × er , (11)

where the subscripts f and w indicate the field on the side of
the fluid and wall, respectively. Therefore, a jump of magnetic
permeability, μr �= 1, implies a discontinuity of the tangential
magnetic field, whereas a jump of electrical conductivity, σr �=
1, implies a discontinuity of the tangential electric currents, and
hence a discontinuity in the radial derivatives of the tangential
magnetic components.

For this study, we have modified the fully three-dimensional
and nonlinear PARODY code that was designed to solve
magnetohydrodynamic problems in spherical geometry. The
modification includes the addition of an outer wall of finite
thickness and finite magnetic properties. The code was
originally written by Dormy et al. [21], and subsequently
parallelized and optimized by J. Aubert and E. Dormy. The
code was previously benchmarked against five independent
numerical codes used in the geophysical and astrophysical
dynamo community [22]. The velocity and magnetic fields are
decomposed into poloidal and toroidal scalars, which are then
expanded in spherical harmonics Ym

l in the angular coordinates
with l representing the latitudinal degree and m the azimuthal
order. A second-order finite difference scheme is used on
an irregular radial grid (finer near the boundaries, using a
geometrical progression for the radial increment). A Crank-
Nicolson scheme is implemented for the time integration of the
diffusion terms and an Adams-Bashforth procedure is used for
the other terms. The poloidal-toroidal decomposition and the
spherical geometry allow a relatively simple implementation
of the magnetic boundary conditions. A detailed description
of the implementation of the magnetic boundary conditions in
the code is given in the Appendix.

The typical resolution is 400 radial points in the fluid,
between 20 and 50 radial points in the wall depending on the
wall parameters, 15 radial points in the inner core, lmax = 160
degrees, and mmax = 48 orders of spherical harmonics. We
have verified that the kinetic and magnetic energy spectra in l

and m are well resolved [see Figs. 3(d), 7, and 10(c)], and that
a finer radial resolution does not change the numerical solution
significantly. All the simulations presented in this paper have
reached a statistically stationary state in which the kinetic and
magnetic energies are roughly constant in time.

The relations between spherical components and poloidal-
toroidal components are given in the Appendix. In the
following sections, poloidal and toroidal scalars of a vector B
are denoted BP and BT , respectively, and the radial, latitudinal,
and azimuthal components Br , Bθ , and Bφ respectively. For an
axisymmetric field (corresponding to m = 0 in spectral space)
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(a) Re = 300 (b) Re = 48193

FIG. 2. Axisymmetric flow in a meridional plane for different Reynolds numbers in the statistically steady state. The left panel (closeup of
the outer boundary layer) and left half of the meridional plane show the zonal velocity uφ (black, positive; gray, negative). The right half of
the meridional plane shows the axisymmetric poloidal streamlines [corresponding to upol = (ur,uθ )] with constant contour interval. Extremum
values for the axisymmetric velocity are (in units of Uw) for Re = 300: ur ∈ [−0.095,0.090], uθ ∈ [−0.09,0.09], and uφ ∈ [−0.50,0.50]; for
Re = 48 193, ur ∈ [−0.023,0.011], uθ ∈ [−0.10,0.10], and uφ ∈ [−0.50,0.50].

the toroidal component is related to the azimuthal component,
directed east-west, and the poloidal component is related to
the radial and latitudinal components, enclosed in a meridional
plane. Azimuthal averages are denoted by an overbar.

III. RESULTS

First, in Sec. III A, we present hydrodynamic simulations
without magnetic field for different values of the boundary
forcing in order to study the underlying flow in the system.
The rest of the paper then focuses on the results from full
MHD simulations run at a fixed forcing. Sections III B and
III C describe the dynamo onset and some general features of
the self-sustained magnetic field. In Sec. IV, we investigate
the details of the dynamo process and discuss the role of the
magnetic properties of the wall.

A. Hydrodynamics

The axisymmetric viscous forcing exerted by the outer
boundary on the fluid drives a zonal (i.e., axisymmetric and
azimuthal) velocity, uφ . For small Reynolds numbers [e.g.,
Re = 300 in Fig. 2(a)], the zonal velocity extends into the
bulk of the fluid, whereas for large Re [e.g., Re = 48 193
in Fig. 2(b)], the zonal flow is confined to a narrow layer
close to the outer boundary. Within this layer at large Re,
radial gradients of uφ are large at all latitudes except in
the equatorial region, where latitudinal gradients are largest.
The differential rotation in the viscous boundary layer pumps
a meridional (i.e., axisymmetric and poloidal) circulation
consisting of two counter-rotating cells with an inward radial
velocity in the equatorial plane (Fig. 2). The viscous boundary
layer is analogous to an Ekman boundary layer commonly
found in rotating flows, and the pumping of the meridional
circulation is analogous to Ekman pumping [23]. The thickness

of the Ekman layer scales as δ ∝ Re−1/2 in our dimensionless
units. Hence, a thinner viscous boundary layer is observed
for large Reynolds number. The viscous time scale is τν = Re,
and the spin-up time scale is τ� = Re1/2 in dimensionless units
[23]. The spin-up time scale corresponds to the typical time
scale to establish the meridional circulation, which transports
angular momentum between the viscous boundary layer and
the bulk of the fluid. For large Reynolds numbers, or equiv-
alently low viscosity, the meridional circulation establishes a
steady state much more rapidly than by viscous diffusion alone.
For example, at Re = 48 193, the hydrodynamic simulation
has been run for about 4 τ�, corresponding to a few percent of a
viscous time scale. After a short initial transition phase (lasting
about 50 time units), the kinetic energy reaches a constant
average value and no further spreading of the viscous boundary
layer is observed. Since the upper and lower hemisphere rotates
at opposite rotation rate, we expect the bulk of the fluid to have
zero angular velocity as observed for Re = 48 193.

The latitudinal profile of uφ imposed at the boundary
displays an inflection point at the equator. Consequently, for
small enough viscosity, the steady axisymmetric base flow is
prone to shear instabilities according to the Rayleigh instability
criterion for shear flows (e.g., [24]). Based on numerical
simulations, we have determined that a non-axisymmetric
component of the flow first appears at a critical Reynolds
number 200 < Rec < 250. The most unstable mode at Re =
250 has the azimuthal symmetry m = 2 and consists of vortices
located around the equatorial plane [Fig. 3(a)]. In a similar von
Kármán flow in cylindrical geometry, Nore et al. [25] argued
that the first non-axisymmetric instability of the equatorial
shear layer of the basic flow is similar to a Kelvin-Helmoltz
instability.

For Re = 48 193, which is about 200 times larger than
the critical Reynolds number, the non-axisymmetric flow is
still mostly located in the outer equatorial region, which we
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FIG. 3. (a), (b) Isodensity surface of kinetic energy of the non-axisymmetric components [20% (Re = 300) and 15% (Re = 48193) of the
maximum]. (c) Azimuthal and time average of the non-axisymmetric rms velocity [

√
(|u| − |u|)2] for Re = 48 193 in units of Uw . (d) Kinetic

energy spectrum for azimuthal modes in the toroidal component (black circles) and in the poloidal component (gray squares) for Re = 48 193
in units of ρU 2

w . The kinetic energy has been averaged in time and over the whole volume.

call the equatorial belt [Figs. 3(b) and 3(c)]. On average,
the energy of the non-axisymmetric flow is symmetric with
respect to the equatorial plane. The mean non-axisymmetric
velocity tends to zero on a long time average. The mean
flow is therefore purely axisymmetric. For this Reynolds
number, kinetic energy is found in all azimuthal modes,
but the m = 2,4,6 modes have significantly larger amplitude
than the other non-axisymmetric modes [Fig. 3(d)]. For m � 8
the spectrum approximately follows a m−3 power law. Note
that kφ = m/(r sin θ ) corresponds to the azimuthal wavenum-
ber and kH = √

l(l + 1)/r ≈ (l + 1/2)/r is the horizontal
wavenumber on a spherical surface [26]. In our numerical
simulation at Re = 48 193, the kinetic energy spectrum in
l also follows a l−3 power law at small scales. This result
is somewhat unexpected for 3D turbulence at small scales
in these types of flows, for which the latest theoretical
predictions and experimental results (albeit performed in
cylindrical geometry) obtain spatial kinetic spectra exhibiting
a k−2 slope when the cascade is nonlocal at small scales [27].
A k−3 spectrum is more generally associated with quasi-2D
turbulence, which could speculatively be argued here but is
not obviously the case.

We define a local Reynolds number, Rel = (u∗π/m)Re,
where u∗(m) is the dimensionless rms velocity for a mode m,
as a measure of the local ratio of the nonlinear inertial terms to
the viscous terms. The viscous scale, defined as the scale for
which Rel ≈ 1, is m = 43. For the MHD simulations presented
in the next sections, the magnetic diffusive scale, defined for
a local magnetic Reynolds number of the conducting fluid of
order unity, Rml = Pmf Rel = 1, is m = 5 (Pmf = 0.01).

The mean kinetic energy as a function of the forcing
Reynolds number is shown in Fig. 4(a). The dimensionless
kinetic energy decreases as the Reynolds number increases,
implying that either the laminar or the turbulent viscous
dissipation increases. Note that the dimensional kinetic energy
increases with the forcing but the flow amplitude does not
scale linearly with the forcing. In Fig. 4(b), we plot the ratio of
non-axisymmetric to zonal kinetic energies (volume-averaged)
in function of Re. As expected, the ratio increases with the
forcing for Re > Rec but then saturates for Re > 5000 at a

value of about 37%. We interpret this result as a consequence of
the location of the non-axisymmetric motions in the equatorial
belt, where latitudinal gradients of uφ are large. The zonal
kinetic energy remains mostly confined to the narrow laminar
viscous boundary layer at higher latitudes [see Fig. 2(b)].
Therefore the non-axisymmetric flow only drains part of the
zonal kinetic energy, even at large Re.

B. Dynamo onset in the parameter space

The MHD simulations presented in this paper have been
run with fixed Reynolds number Re and fixed fluid properties
(magnetic permeability, electrical conductivity, and viscosity).
We vary only the properties of the outer wall. To compare
our results with RGC10, we use the same magnetic Prandtl
number for the fluid, Pmf = μ0σf ν = 0.01. Our forcing at
Re = 48 193, about 200 times critical, corresponds to Uw =
80 m/s with ro = 0.5 m and ν = 8.3 × 10−4 m2/s in RGC10.
The magnetic Reynolds number of the fluid based on the
forcing velocity at large scale is then Rmf = RePmf = 482.
At these parameters, RGC10 obtained a dynamo if either the
electrical conductivity and/or the magnetic permeability of the
wall were made sufficiently large. To investigate the role of
the wall on dynamo action, we vary the wall’s thickness h,
relative magnetic permeability μr , and electrical conductivity
σr . The magnetic field is initialized with both a weak tilted
dipole component and a weak axial quadrupole component,
with a ratio of magnetic energy to kinetic energy of about 10−5.

Figure 5 presents the results in the parameter space (σr,μr ),
where σr and μr are varied independently, and for two different
wall thicknesses ĥ = 0.1 and ĥ = 0.01. We consider that a
dynamo is in existence when the magnetic energy in the fluid
stabilizes to a stationary value for several global magnetic
diffusion times in the fluid, τf = Rmf in dimensionless units.
When the global magnetic diffusion time of the wall τw =
ĥ2σrμrRmf is larger than τf , the simulation must be run for
at least one time τw. For instance, the case ĥ = 0.1, σr = 1,
and μr = 1000 has been run for a time τw = 10τf .

For a homogeneous system (μr = 1 and σr = 1), the flow
is unable to generate a dynamo for ĥ = 0.1 and ĥ = 0.01.
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For ĥ = 0.1 [Fig. 5(a)], an increase of the wall conductivity
by a factor 10 while keeping μr = 1 leads to dynamo action.
An increase of the wall permeability by a factor 1000 is
necessary to obtain dynamo action while keeping σr = 1. In
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FIG. 5. Results of MHD simulations in the parameter space (σr ,
μr ) for two different wall thicknesses ĥ. The black symbols are
simulations presented in this study. The gray symbols are simulations
from RGC10. The dotted lines correspond to constant magnetic
diffusivities in the wall ηw = 1/(μwσw).

this respect, a large wall conductivity is more favorable for
dynamo action than a large wall permeability. The boundary
between dynamo and nondynamo in the (σr,μr ) space does
not follow a line of constant magnetic diffusivity of the wall,
ηw = 1/(μwσw) (dotted lines in Fig. 5); therefore, the effect
of the wall on the dynamo mechanism cannot be understood
purely in terms of magnetic diffusivity. Moreover, the loss
of dynamo action from (σr,μr ) = (10,1) to (σr,μr ) = (10,10)
suggests that the effects of moderate wall conductivity and
permeability act in competition and lead to the dynamo
suppression. The effects of σr and μr on the dynamo process
must therefore be considered separately.

For ĥ = 0.01 [Fig. 5(b)], larger values of σr and μr are
necessary to obtain dynamo action in comparison to ĥ = 0.1.
For μr = 1, an increase of the wall conductivity to σr = 50
is necessary to obtain a dynamo. For the large permeability
case, μr = 1000, high values of the wall conductivity, at least
σr = 20 are still required for dynamo action. An increase of
the wall thickness therefore appears to promote dynamo action
(at least from ĥ = 0.01 to 0.1). Again, we observe competing
effects between moderate values of both wall conductivity and
permeability: The case (σr,μr ) = (50,100) fails to produce a
dynamo unlike the case (σr,μr ) = (50,10).

In the thin-wall limit of RGC10, the controlling parameters
are the integrated conductivity over the wall thickness, ĥσr ,
and the integrated permeability, ĥμr . Their results are shown
in Fig. 5 with gray symbols. For ĥ = 0.1, the case (σr,μr ) =
(2,100) fails to produce a dynamo in our study, whereas
RGC10 obtained a dynamo. However, for ĥ = 0.01, our results
are in agreement with the results of RGC10, implying that the
thin-wall limit may be considered reasonably valid up to a wall
thickness equal to 1% of the outer radius but is not valid all
the way up to 10% relative thickness.

We have rerun the dynamo case (ĥ,σr ,μr ) = (0.1,10,1) as
a kinematic dynamo. We take the time average of the velocity
over 700 rotation periods and then solve the induction equation
with this prescribed velocity. The flow is predominantly
axisymmetric, but also contains weak non-axisymmetric com-
ponents, which are not coherent structures but rather the result
of inadequate averaging. We find that this flow is unable to
generate a dynamo, proving that a key ingredient of the dynamo
comes from the fluctuating part of the flow.
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FIG. 6. Time series of the kinetic (solid gray) and magnetic (toroidal, solid black; poloidal, dashed black) energies for three simulations
with different wall magnetic properties and ĥ = 0.1. A global magnetic diffusion time in the fluid τf corresponds to 482 time units. Kinetic
and magnetic energy are averaged over the whole volume of the fluid and given in units of ρU 2

w .

Finally, a brief search shows no evidence for subcritical
dynamos. For instance, when the magnetic field from the case
(ĥ,σr ,μr ) = (0.1,10,1) is used as initial condition for the case
(ĥ,σr ,μr ) = (0.1,1,1) the dynamo dies.

C. General characteristics of the magnetic field

Figure 6 shows time series of the kinetic and magnetic
energies of three cases: a nondynamo, (ĥ,σr ,μr ) = (0.1,1,1),
and two dynamos, (0.1,10,1) and (0.1,1,1000). Close to the
dynamo onset, the sustained magnetic energy is about 20% of
the averaged kinetic energy. The most supercritical dynamo
that we calculated [(ĥ,σr ,μr ) = (0.1,100,1)] produces an
averaged magnetic energy about 30% of the kinetic energy. A
comparison of energy spectra shows that the magnetic energy
is smaller than the kinetic energy at all scales. The kinetic
energy value is not significantly modified in the saturated phase
of the dynamo. In the case (ĥ,σr ,μr ) = (0.1,10,1), the kinetic
energy increases initially as the magnetic field grows to larger
values than its saturated value [t < 500 in Fig. 6(b)] but then
returns to similar values as in the nonmagnetic simulation once
the magnetic field saturates to smaller values. Plots of either
axisymmetric or non-axisymmetric flow and kinetic energy
spectra do not show visible differences in the nondynamo and
dynamo cases.

The magnetic field is mostly an axisymmetric toroidal field
(about 80% of the total magnetic energy). Figure 7 shows
poloidal magnetic energy spectrum for the cases (ĥ,σr ,μr ) =
(0.1,10,1) and (ĥ,σr ,μr ) = (0.1,1,1000). The poloidal field is
mostly dipolar (l = 1). In all cases, the dipole is mainly axial
and does not reverse polarity. We obtained very similar results
for the magnetic field generated with a thin wall, ĥ = 0.01.
Consequently, in the rest of the paper, we only describe the
analysis of the results for the case ĥ = 0.1.

The characteristics of the axisymmetric magnetic field are
in good agreement with the results described in RGC10. We
can also compare the topology of the self-sustained magnetic
field in our work with other studies of von Kármán flows and
the self-consistent generation of dynamos [16–18], although
they have not addressed the role of magnetic boundary

conditions. These authors use spherical geometries and a
volume forcing to mimic the role of disks rather than a
boundary forcing. They find dynamos without the presence of
a conducting wall between the outer sphere and the vacuum,
but these dynamos only operate at larger magnetic Prandtl
numbers than considered in this paper. Bayliss et al. [16] and
Gissinger et al. [17] also obtain an axisymmetric magnetic
field (mainly an axial dipole for the poloidal part) when the
flow has a non-axisymmetric component and for magnetic
Prandtl numbers of order unity. Reuter et al. [18] show that
when increasing the Reynolds numbers with fixed Pm, the
sustained magnetic field becomes small scale. However, they
find that small Prandtl number calculations at fixed Re yield a
dipole dominated field. In the study of Reuter et al., the highest
Reynolds number, based on rms velocity, is Re∗ = 2367, for
which a small-scale dynamo is generated with a magnetic
energy spectrum peaking around l = 5 for Pmf = 0.25. The
rms Reynolds number is defined as Re∗ = u∗Re, where u∗
is the dimensionless rms velocity. In our MHD calculations,
the rms velocity is u∗ ≈ 0.048, that is, Re∗ ≈ 2313. All the
dynamos we obtain at Pmf = 0.01 have fields dominated by
the dipole component.
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FIG. 7. Poloidal magnetic energy spectra as a function of har-
monic degree l for (σr,μr ) = (10,1) (black circles) and (σr,μr ) =
(1,1000) (gray squares) and for ĥ = 0.1. The magnetic energy has
been averaged in time and over the whole volume of the fluid.
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IV. ANALYSIS OF THE DYNAMO MECHANISM

In order to elucidate the effect of the wall on the dynamo
mechanism, it is necessary to describe in detail the generation
of magnetic field in our simulations. Since most of the
magnetic energy resides in the axisymmetric components, and
dynamos are generally understood in a mean field framework
(e.g., see the review of [28]), we focus on the production
of the axisymmetric magnetic field, the largest scale of the
system. The role of a change in the wall magnetic properties
is described for two canonical cases: large wall conductivity,
(ĥ,σr ,μr ) = (0.1,10,1), hereafter called Case C, and large wall
permeability, (ĥ,σr ,μr ) = (0.1,1,1000), hereafter called Case
P. In Sec. IV A, we show that the toroidal magnetic field is
induced by zonal velocity shear within the boundary layer
adjacent to the outer wall. In Cases C and P, the magnetic
properties of the wall play a crucial role in allowing a strong
toroidal field to develop in the shear layer. In Sec. IV B, we
set out the ingredients that lead to the production of the mean
electromotive force (emf), the source of the poloidal field. We
find that only a limited range of azimuthal modes (between
5 � m � 14) contribute, and we propose an explanation for
this observation based on the properties of the flow. Finally,
our explanations are verified in a set of numerical experiments
in Sec. IV C.

A. Generation of the axisymmetric toroidal field

The axisymmetric dynamo magnetic field components in
Cases C and P are plotted in Fig. 8. In both cases, the
axisymmetric azimuthal magnetic field, Bφ , is generated in
the narrow fluid shear layer next to the outer wall. The
axisymmetric poloidal magnetic field intersects this shear
layer, and experiences the strong radial gradient of uφ . The
toroidal field is then created mostly by the so-called ω effect
(e.g., [28]), where Bφ is induced by the action of the radial
shear of uφ on the axisymmetric radial magnetic field, Br .

The toroidal field must vanish in the vacuum region outside
of the wall, that is, Bφ(ro + h) = 0. The wall therefore provides
a buffering region between the fluid and the vacuum for Bφ ;
in the absence of the conducting outer wall, the toroidal field
would necessarily vanish at r = ro, implying the presence of
large radial gradients of Bφ in the fluid shear layer and so
strong ohmic dissipation there. From Eqs. (9) and (11) we can
deduce the following continuity equations for Bφ and its radial
gradients at the fluid-wall interface:

Bφ|w = μrBφ|f , (12)

∂rBφ

∂r

∣∣∣∣∣
w

= σrμr

∂rBφ

∂r

∣∣∣∣∣
f

, (13)
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FIG. 8. (Color) Axisymmetric magnetic field in a meridional plane (time average over about 100r0/Uw). From left to right: azimuthal
component Bφ , poloidal magnetic field lines, radial component Br , and latitudinal component Bθ . The magnetic field is given in units
of

√
ρμ0Uw . The outer shell represents the wall of thickness ĥ = 0.1. For the color plots of Case P, Bφ in the wall is divided by 1000 and Bθ

by 10.
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FIG. 9. (a), (b) Axisymmetric poloidal electric currents, jP , in a closeup of the meridional plane for μr = 1. The vertical and horizontal
axes correspond to the radius and the colatitude, respectively. The solid (dotted) lines represent clockwise (counterclockwise respectively)
electric currents. (c) Bφ(θ = π/4,r) for μr = 1 and varying σr given in units of ρU 2

w . The region r > 1 corresponds to the wall.

where the discontinuity of ∂rrBφ is deduced from the
discontinuity of the tangential electric currents, jθ =
−(1/r)∂r (rBφ/μ). High values of σr or μr buffer Bφ in the
fluid in different ways, as follows.

1. Effect of large conductivity: Case C

Case C has μr = 1, and so Bφ is continuous, but the
relatively high conductivity of the wall allows for large radial
gradients of Bφ in the wall compared to the fluid. In this case,
a large amplitude of Bφ in the shear layer can match to the
vacuum boundary condition with weak radial gradients of Bφ

in the fluid near the wall. High wall conductivity therefore
leads to less limitation on the growth of Bφ in the shear
layer. Equivalently, large σr enables the circulation of large
latitudinal electric currents in the wall, which supports an
axisymmetric azimuthal field of large amplitude in the fluid
[Fig. 9(a)].

These ideas are borne out in Fig. 9(c), which shows
the radial profile of the axisymmetric azimuthal field at the
colatitude θ = π/4 for increasing values of σr and μr = 1.
The maximum of the azimuthal field in the fluid increases up
to σr = 50 but starts to saturate for higher σr . It appears that
for σr � 50, the wall entirely shields the fluid from the vacuum
boundary condition and the amplitude of the azimuthal field,
unrestrained by the vacuum boundary condition, only depends

on the induction and its competition with magnetic diffusion
in the shear layer. For σr = 10 [Fig. 9(a)], the electric currents
fill the whole thickness of the wall. For σr = 100 [Fig. 9(b)],
the currents appear more confined to the inner side of the
wall at high latitudes. This is explained by the discontinuity
of the tangential currents at the interface [Eq. (11)] leading
to stronger values of jθ in the inner part of the wall. A
counterclockwise current loop is also present in the outer
equatorial part of the wall.

The wall thickness plays here a similar role to the wall
conductivity: A thick wall makes the matching between a large
amplitude of Bφ in the shear layer and the vacuum possible.
The comparison of our calculations at ĥ = 0.1 and ĥ = 0.01
in Fig. 5 confirms the favorable role of a thick wall on dynamo
action. However, we note that for ĥ > 0.1 this favorable effect
may well be lost due to the occurrence of a skin effect for
oscillatory magnetic fields as shown by Kaiser and Tilgner [7].

In summary, for a wall of small magnetic permeability, a
high conductivity or a large thickness is necessary to obtain a
large amplitude of the axisymmetric toroidal field due to the
proximity between the shear layer and the vacuum.

2. Effect of large permeability: Case P

When the wall has a large magnetic permeability, the
discontinuity of the tangential magnetic field component
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across the fluid-wall interface [Eq. (9)] yields weak values
of Bθ in the fluid close to the wall. This forces the poloidal
magnetic field in the fluid to be mainly radial, effectively
strengthening Br in the shear layer [Fig. 8(b)]. By maintaining
this radial magnetic field across the shear layer, especially
at high latitudes where the radial gradients of uφ are large,
the wall directly enhances the ω effect via the induction
term Br∂ruφ , leading to the production of a strong azimuthal
magnetic field in the fluid. Since Br is stronger at high latitudes
in Case P than in Case C, the maximum values of Bφ in the
shear layer are observed at higher latitudes in Case P than in
Case C, as can be seen in Fig. 8. For Case P, the discontinuity
of Bφ at the interface implies that a large toroidal magnetic
field is present in the wall. Furthermore, the discontinuity of
Bθ provokes an abrupt change in the direction of the poloidal
magnetic field lines in the wall which connect in the wall
rather than in the vacuum, confining the magnetic field inside
the wall.

The arguments presented in this section assume that only
diffusive processes are acting in the wall, and so the radial
gradient of Bφ is roughly linear in r within the wall. An
induction process for Bφ , due to the coupling of uφ and the
axisymmetric poloidal magnetic field, also happens in the wall
but we have verified that the induction terms are several orders
of magnitude smaller than the diffusive terms in the wall for
each case.

B. Generation of the axisymmetric poloidal field

We have seen that the axisymmetric toroidal magnetic
field, BT , is mainly generated from an ω effect acting on
the axisymmetric poloidal magnetic field, BP (in particular
the axial dipole). According to the Cowling antidynamo
theorem (e.g., [28]), BP must be sustained by the coupling of
non-axisymmetric velocity and magnetic modes. Indeed, we
find that the poloidal magnetic field is of strongest amplitude
in the equatorial belt where the non-axisymmetric motions
are present (Fig. 8). The equations for the evolution of the
components of the axisymmetric poloidal field, Br and Bθ , in
the fluid are

∂Br

∂t
= 1

r sin θ

∂

∂θ
(sin θE) −

[
∇ × 1

σf

∇ × B
μ0

]
r

, (14)

∂Bθ

∂t
= −1

r

∂

∂r
(rE) −

[
∇ × 1

σf

∇ × B
μ0

]
θ

, (15)

where the source of the axisymmetric poloidal field, the mean
emf, is

E =
Mmax∑
m=0

Em with Em = um
r Bm

θ − um
θ Bm

r . (16)

Em is nonzero if there are correlations between the velocity
and magnetic field modes of same azimuthal order m, denoted
here as um and Bm.

The production of the mean emf E is a very complex
problem, and so we break down the problem into steps, which
are summarized below and then described in detail after. Step 1
consists of the main observation, which we then explain by
going through Steps 2, 3, and 4.

Step 1. We find that the main contribution to the emf comes
from a limited number of azimuthal modes, specifically 5 �
m � 14, which we call the “dynamo” modes. These modes,
together with the axisymmetric mode m = 0, can each sustain
the dynamo via the mechanism, as explained below.

Step 2. The components Bm
r and Bm

θ are mainly produced
by the distortion of the axisymmetric toroidal magnetic field,
BT , by the velocity modes of same azimuthal order, um

r and
um

θ . Consequently, Bm modes are out of phase by π/2 in φ

with um modes of same direction (r or θ ).
Step 3. As a consequence of Step 2, the emf Em produced

by the mode m is nonzero if um
r and um

θ , are partly out of phase.
The latitudinal and radial gradients in the zonal velocity lead
to this required systematic phase shift between um

r and um
θ

because they are mainly located at different radii.
Step 4. Dynamo modes with a narrow range of m are

selected because the phase shift between um
r and um

θ is only
significant for modes with a typical shearing time scale of the
same order as their turnover time scale.

Cases C and P display very similar features for their emf
so the mechanisms of generation of BP are likely the same.
Therefore, in the following, we only analyze Case C. This
suggests that the wall magnetic properties play only a minor
role in the generation of the axisymmetric poloidal field from
non-axisymmetric modes.

1. Step 1: Main contributions to the emf

Figure 10(a) shows the time-averaged emf produced by the
interactions of m = 0 (axisymmetric) modes and other groups
of the m > 0 (non-axisymmetric) modes. As expected from
Cowling’s theorem, the largest values of Br and Bθ [Fig. 8(a)]
do not correlate with the latitudinal and radial derivatives of
Em=0, respectively. Figure 10(a) also shows that Em from the
m � 5 modes is one order of magnitude larger than from the
1 � m � 4 modes and is produced in the equatorial belt with
its latitudinal and radial derivatives well correlated with Br

and Bθ in Fig. 8. Figure 10(b) shows the maximum of Em from
each mode; clearly, some modes produce a significantly larger
emf than others, most notably m = 5,7,8,13,14. However, the
kinetic energy of these modes is not noticeably different than
the other modes according to the kinetic energy spectrum,
which displays a nearly flat slope for m � 8 [Fig. 3(d)].
Furthermore the magnetic energy spectrum in m [Fig. 10(c)]
also shows that the azimuthal modes producing a large emf do
not exhibit a significantly larger magnetic energy. The m � 15
modes produce weak contributions to the emf.

To explain why the production of a temporally and spatially
coherent emf depends on the azimuthal order of the modes,
we first studied whether a given m mode can sustain the axial
dipole on its own. To do so, we ran a simulation identical
to Case C, except that only modes m = 0,5,10,15, . . . , are
calculated. We obtained a dynamo with an axisymmetric
magnetic field of very similar characteristics to that of Case
C. This simulation has the same toroidal field morphology, an
axial dipole with strong values of Br in the equatorial belt, and
about half the amplitude of the axisymmetric field produced
in Case C. We further ran a similar numerical simulation but
this time calculating only modes m = 0,20,40, . . . . This case
fails to produce a dynamo. We conclude that for selected m
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the production of Em depends only on the interaction of a
mode with itself and with the axisymmetric magnetic field.
Hereafter, these selected modes are called the dynamo modes,
and we consider their contributions to the emf individually.
We now need to understand how the dynamo modes organize
to produce a coherent emf and what physical mechanism
determines which azimuthal orders are dynamo modes.

2. Step 2: Generation of the non-axisymmetric magnetic field

A magnetic mode m is partly generated by the interaction
of the axisymmetric magnetic field with the m velocity
mode. Since Bφ 
 Br,Bθ as observed in Figs. 6 and 8, the
evolution rates of the non-axisymmetric field produced by this
interaction, Bm

r and Bm
θ , are given by

∂Bm
r

∂t
∼ Bφ

r sin θ

∂

∂φ
um

r + [∇2Bm]r , (17)

∂Bm
θ

∂t
∼ Bφ

r sin θ

∂

∂φ
um

θ + [∇2Bm]θ . (18)

The induction term on the right-hand side corresponds to
the distortion of the axisymmetric toroidal magnetic field

lines by the non-axisymmetric velocity modes. To assess if
this interaction is the main source of the non-axisymmetric
magnetic modes, we compared the induction terms (including
all interactions) of Bm

r and Bm
θ with the induction terms in

Eqs. (17) and (18), respectively, for m = 5. We found that
the induction terms in Eqs. (17) and (18) contribute to more
than 70% of the amplitude of the induction from all terms.
In Eq. (17), the balance between the induction term and the
evolution rate of Bm

r and/or with the diffusion term implies
that Bm

r and um
r should be out of phase by π/2 in φ. Similar

arguments based on Eq. (18) yield that Bm
θ and um

θ must
be phase shifted by π/2 in φ. Figure 11 shows snapshots
of the radial and latitudinal components of the velocity and
magnetic field for the m = 5 mode in different planes. We
indeed observe a phase shift of about π/2 in φ between velocity
and magnetic modes. Any snapshot of the m � 2 modes shows
similar results.

3. Step 3: Spatial distribution of the non-axisymmetric velocity

The azimuthal average of um
r Bm

θ in E is nonzero if um
r

and Bm
θ are partly in phase in azimuth. Similarly, a nonzero

046317-11
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FIG. 11. (Color) Snapshot of the radial (a) and latitudinal (b) components of the m = 5 magnetic (color) and velocity (lines) mode (Case
C). (Left) (r,φ) planes above and below the equatorial plane at colatitudes θ = π/2 ± π/15. (Right) (φ,θ ) plane at radius r = 0.8 with the
colatitude on the vertical axis (range limited to [π/4,3π/4]) and the longitude on the horizontal axis (range limited to [0,π ]). For the magnetic
field in color: red, positive; blue, negative. For the velocity: black line, positive; gray line, negative.

azimuthal average of um
θ Bm

r requires that um
θ and Bm

r are partly
in phase. According to our previous argument, um

r and Bm
r are

out of phase by π/2, and similarly for um
θ and Bm

θ . Hence,
um

r must be at least partly out of phase with um
θ to obtain a

nonzero emf. The shearing caused by latitudinal and radial
gradients of the zonal velocity could create such a systematic
phase shift. This shearing of the non-axisymmetric velocity
structures is visible in Fig. 11, where the velocity components
appear more noticeably slanted in (φ,θ ) planes than in (r,φ)
planes. In snapshot figures, the velocity modes appear to be
sometimes torn apart in (φ,θ ) planes, as can be observed for
um

θ in Fig. 11(b). A systematic phase shift between um
r and

um
θ could be created when their strongest values have slightly

different spatial locations and therefore experience a different
shear by uφ .

Figure 12 shows the non-axisymmetric rms velocity compo-
nents in a meridional plane. The strongest latitudinal velocity
is located closer to the outer sphere than the strongest radial
velocity, presumably due to the presence of the impenetrable
wall, which forces radial motions to decelerate at the wall and
to recirculate tangentially. Since latitudinal gradients of the

zonal velocity are larger than radial gradients in the equatorial
region, and the non-axisymmetric structures are more visibly
slanted in a (φ,θ ) plane compared to a (r,φ) plane (see
Fig. 11), the shearing caused by latitudinal gradient of uφ is
predominant in the equatorial belt. Since um

θ is located closer
to the wall than um

r , um
θ experiences a larger latitudinal shearing

than um
r .

4. Step 4: Selection of the dynamo modes

For the moment, suppose that um
r experiences no latitudinal

shearing. To obtain a noticeable latitudinal shearing of um
θ , the

typical shearing time scale has to be comparable to or shorter
than the turnover time scale of the structure. This argument
based on the dynamical time scales explains why certain
azimuthal modes are preferred. To illustrate how the shearing
affects differently structures depending on their azimuthal and
latitudinal extents, Fig. 13 represents schematically contours
of um

θ in a plane (φ,θ ) at a given radius R for two different
azimuthal modes. The “shearing” distance, d, depends on the
latitudinal gradient of the angular velocity, � = uφ/r sin θ ,
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SELF-CONSISTENT SIMULATIONS OF A VON KÁRMÁN . . . PHYSICAL REVIEW E 86, 046317 (2012)

0.01

−0.01

0.6 0.8 1
−0.5

0

0.5

(a) uφ

0.6 0.8 1
−0.5

0

0.5

0.01

0.015

0.02

0.025

0.03

0.035

(b) |ur |m>0

0.6 0.8 1
−0.5

0

0.5

0.01

0.015

0.02

0.025

0.03

0.035

(c) |uθ |m>0

FIG. 12. (a) Zonal velocity, (b) radial, and (c) latitudinal components of the non-axisymmetric rms velocity [
√

(|u| − |u|)2] in a closeup of
the meridional plane. The contour interval for the zonal velocity is 0.01. Solid lines, positive; dashed lines, negative.

integrated over the latitudinal extent of the structure lθ during
a time �t :

d = ∂�

∂θ
lθ�t, (19)

where �t is the typical turnover time scale:

�t = lθ∣∣um
θ

∣∣ . (20)

The shearing of the structure of azimuthal width lφ = 2πR/2m

is significant if lφ � d, that is, if

m � mc = πR
∣∣um

θ

∣∣
∂θ�l2

θ

. (21)

Note that, in general, we expect the latitudinal extent lθ and the
non-axisymmetric velocity amplitude |um

θ | to depend on m, so
the formula (21) is nonlinear in m. Still supposing that um

r is
not sheared, the mode m = mc displays a phase shift of π/2
in φ between um

r and um
θ in the equatorial plane. Modes with

small m experience a smaller relative deformation than larger
m modes for the same shearing rate, as pictured in Fig. 13. For
modes with very large m, we may expect that the deformation
undergone by the structures (d 
 lφ since lφ is small) leads to
an incoherent phase shift on average.

The simplified picture described here predicts the existence
of a critical mode and possibly a critical range of modes [lφ ≈

O(d)], for which a systematic phase shift between um
r and um

θ

is produced due to the equatorial antisymmetry of the zonal
flow. This argument provides a consistent explanation for the
observations made in Figs. 10(a) and 10(b): (i) A coherent emf
is produced only for m � 5, (ii) only some modes of selected
azimuthal symmetry produce a large emf, and (iii) m � 15
modes generate only a weak emf.

To evaluate mc from the numerical simulations, we plot in
Fig. 14 the latitudinal profile of the rms |um

θ | for the modes
m = 2, m = 5, and m = 9 at a given radius and time and φ

averaged. First, the amplitude of the velocity at this radius is
comparable for the three modes. Second, the latitudinal extent
of the structures varies only weakly with m. The peaks of the
profiles have a width corresponding to the region of maximum
latitudinal gradient of the angular velocity �, of latitudinal
extent about 0.2ro. For this azimuthal order range (m � 9),
the latitudinal extent, lθ , may be limited to the region of largest
latitudinal gradient of �, readily explaining why different
azimuthal modes have similar latitudinal extents. Using the
values obtained in the numerical simulations, |um

θ | ≈ 0.01,
R ≈ 1, |∂θ�| ≈ 1, and lθ ≈ 0.2 (given in nondimensional
units), we obtain mc ≈ 1 from the formula (21). However,
in the emf plots of Fig. 10(a), we found that m � 5 is
necessary to obtain a coherent emf. This apparent discrepancy
is probably explained by the neglect of the latitudinal shear of
um

r so far: um
r also undergoes a latitudinal shear, but less than

equator

uφ

lθ

d lφ

θ

φ

large m

lθ

d lφ

small m

FIG. 13. Schematic representation of latitudinal velocity contours (black, positive; gray, negative) in a plane (φ,θ ) for two modes of different
azimuthal order m.
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FIG. 14. Latitudinal profile of the rms latitudinal velocity at
radius r = 0.96 for different azimuthal modes m (time and azimuthal
average). The latitudinal gradient of angular velocity � at radius
r = 0.96 is plotted in gray (divided by 1000).

um
θ since ∂θ� is weaker at smaller radius where um

r is strongest
(Fig. 12). Consequently, it is not surprising that a larger
deformation of the velocity structure than d ≈ lφ is required to
obtain a significant phase shift between radial and latitudinal
velocity, leading to a larger mc in the numerical simulations
than given by our simplified picture summarized in the
formula (21).

In the arguments presented here, we have emphasized the
importance of the radial segregation between the maximum
values of um

r and um
θ . Bm

r is induced locally at the same
radius as um

r , and similarly for Bm
θ and um

θ . However, the cross
product E requires that Bm

r exists in the same region as um
θ ,

and similarly for Bm
θ and um

r . Magnetic diffusion, which is
at least as important as magnetic induction at scales m � 5
(for which Rml � 1; see Sec. III A) alleviates this problem by
coupling regions of large radial gradients of Bm

r and Bm
θ . The

large-scale dynamo described here may therefore fail for larger
magnetic Prandtl numbers (i.e., smaller magnetic diffusivities)
than considered here.

Finally, we have not considered so far the fluctuating nature
of the non-axisymmetric flow, which may lead to episodic
losses of the phase shift between components of the velocity.
Figure 15 shows a time series of Em(r = 0.85,θ = π/2)
produced by the m = 7 mode. Em periodically goes to zero,
but it is nonzero on average. The contributions of the dynamo
modes at different m ensure that the total emf is always large
enough to sustain the axial dipole.

In summary, we find that the axisymmetric poloidal field is
generated by a few non-axisymmetric modes. The latitudinal
deformation of these modes, a consequence of the equatorial
antisymmetry of the zonal flow, is crucial for the production
of a coherent emf. The selection of the non-axisymmetric
dynamo modes depends on the boundary forcing (measured
by the Reynolds number) since this determines the latitudinal
gradient of the zonal flow and the amplitude of the non-
axisymmetric velocity (see Fig. 4). All simulations here were
performed at the same forcing but the influence of the Reynolds
number on the dynamo modes could be tested at a later date.

3730 3735 3740 3745
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0

2

4

6
x 10

−5

Em
=

7

time (ro/Uw)

FIG. 15. Time series of Em(r = 0.85,θ = π/2) produced by the
m = 7 mode.

C. Effects of the wall magnetic properties on the
non-axisymmetric modes

In Sec. IV A, we have demonstrated the importance of
the wall magnetic properties for the amplification of the
axisymmetric toroidal field, both by a large conductivity,
which shields the shear layer from the vacuum, or by large
permeability, which directly enhances the ω effect by forcing
the field to be normal in the shear layer. We emphasize that the
induction of the axisymmetric toroidal field clearly happens
in the fluid shear layer. In Sec. IV B, we have described the
flow properties leading to the generation of an axisymmetric
poloidal magnetic field without invoking the role of the wall
magnetic properties. This yields the tentative conclusion that
the wall is necessary to the dynamo only to obtain a large
amplitude axisymmetric toroidal field. This axisymmetric
toroidal field then feeds the non-axisymmetric magnetic
components responsible for the mean emf, but the rest of the
dynamo mechanism is ultimately a result of the flow properties.

To confirm this idea, we perform the following numerical
experiment. The wall conductivity or permeability is set to
different values for different azimuthal orders, m = 0 or
m �= 0, and the effect on dynamo action is studied. This is an
easy modification to the code since the azimuthal direction is
solved spectrally using a spherical harmonics decomposition.
The results are presented in Table I. In Case C0, the wall
conductivity is enhanced for the mode m = 0 but not for
the modes m �= 0 so that only the axisymmetric magnetic
field sees the discontinuity of conductivity at the fluid-wall
interface. In this case, an axisymmetric magnetic field very
similar to the dynamo case C is produced. In Case C1,
the wall conductivity enhancement is reversed and only the

TABLE I. Results of MHD simulations with different magnetic
properties depending on the azimuthal order m (ĥ = 0.1).

Case σm=0
r σm �=0

r μm=0
r μm �=0

r Dynamo?

C0 10 1 1 1 Yes
C1 1 10 1 1 No

P0 1 1 1000 1 Yes
P1 1 1 1 1000 No
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TABLE II. Results of MHD simulations with different magnetic
properties for the poloidal and toroidal component and depending on
the azimuthal order m (ĥ = 0.1).

σm=0
r σm �=0

r μm=0
r μm �=0

r

Case pol tor pol tor pol tor pol tor Dynamo?

C0P 10 1 1 1 1 1 1 1 No
C0T 1 10 1 1 1 1 1 1 Yes

P0P 1 1 1 1 1000 1 1 1 Yes
P0T 1 1 1 1 1 1000 1 1 No

non-axisymmetric magnetic field sees the discontinuity of
conductivity. Then, the system fails to produce a dynamo.
Similar results are obtained for mode-assigned permeability
(Cases P0 and P1). The nonlinearity of the system implies
that the amplification of a given magnetic mode affects the
other nonamplified modes and vice versa, so the interpretation
of the results of this numerical experiment is not entirely
straightforward. Nonetheless, the results of Cases C0 and
C1 taken together (and Cases P0 and P1 together) imply
that this nonlinear cascade is inefficient in these cases and
therefore contribute further evidence to the conjecture that the
mechanism of generation of the axisymmetric poloidal field
does not require the non-axisymmetric magnetic field to be
modified by the presence of the wall.

To further narrow down the role of the wall we attempt to
distinguish between its effect on BP and BT by performing an-
other set of modified simulations where we set different values
of the conductivity and the permeability for the poloidal and
toroidal m = 0 modes while the relative conductivity and per-
meability are kept equal to 1 for the modes m > 0. The results
are presented in Table II. A dynamo is obtained only in Cases
C0T and P0P. Again, the nonlinearity of the system demands
some caution in the interpretation of these results, but these
special cases taken together lend further credence to our theo-
ries about the role of the wall: An enhanced conductivity ampli-
fies BT directly, whereas an enhanced permeability provokes
a strengthening of BP in the shear layer, and so a direct en-
hancement of the ω effect. No further action of the conducting
wall on the other components of the magnetic field is required.

V. CONCLUSIONS AND DISCUSSION

Through a series of high resolution simulations, we have
studied dynamos driven by boundary forcing in a spherical
shell geometry, and the effects of varying independently the
thickness, electrical conductivity, and magnetic permeability
of the outer wall.

For a homogeneous system (same magnetic permeability
and conductivity in the fluid and the wall) with a magnetic
Prandtl number Pmf = 0.01, the flow is unable to sustain
a magnetic field at the forcing used (corresponding to Re =
48 193, about 200 times the critical forcing for hydrodynamical
non-axisymmetric instabilities of the base flow). For a wall
thickness h = 0.1ro, increasing the wall conductivity, σw, by
a factor 10 or the wall magnetic permeability, μw, by a factor
1000 creates a dynamo. The effects of high σw and high μw

are clearly different on the dynamo threshold, so the decrease

of the magnetic diffusivity in the wall, ηw = 1/(σwμw), is
not the controlling parameter of this problem. The favorable
roles of large wall thickness, conductivity, and magnetic
permeability on dynamo action obtained in our numerical
simulations are in agreement with previous numerical studies
using different geometry, different flows, and, in some cases,
idealized boundary conditions [8,9,11–13,15]. In particular for
a thin wall (thickness h = 0.01ro), we found a good agreement
with the results of Roberts et al. [19], where a similar setup
is used with an outer magnetic boundary condition valid in a
thin-wall limit.

In our numerical simulations, in both large σw and large
μw cases, the dynamo generates a large-scale (axisymmetric)
magnetic field. The magnetic field is mostly an axisymmetric
toroidal field and an axisymmetric dipolar poloidal component.
The axisymmetric toroidal magnetic field, BT , is generated
by an ω effect, corresponding to the radial shearing of
the radial magnetic field in the shear boundary layer located
close to the outer wall. The wall plays an essential role in
the amplification of BT in the shear layer. In the large σw

case, the discontinuity of conductivity allows strong radial
gradient of the axisymmetric azimuthal magnetic field, Bφ ,
or equivalently large latitudinal electric currents in the wall,
shielding the induction in the shear layer from the vacuum
outside, thereby allowing stronger Bφ in the fluid. In the
large μw case, the wall forces the poloidal magnetic field to
be normal at the fluid-wall interface, imposing strong radial
magnetic field across the shear layer and therefore again the
generation of stronger Bφ . Similarly to the large σw case, a
thick wall provides a wide matching region to the vacuum
condition, thereby allowing a large amplitude of BT in the
shear layer. By filtering the effects of the wall magnetic
properties on the different magnetic modes (Sec. IV C), we
can reasonably conclude that the essential role of the wall on
the dynamo is to allow for large axisymmetric toroidal field BT

in the fluid. The vacuum boundary condition is detrimental for
the dynamo by constraining the allowable growth of BT and so
the other magnetic components of the dynamo that feed from
it. The presence of a “shielding” wall is therefore essential,
either thick, of high conductivity, or of high permeability. We
conjecture that without these conditions, even at higher forc-
ings no dynamo will be found if no hydrodynamical bifurcation
occurs and for fixed magnetic diffusivity of the fluid. However,
we emphasize that this argument applies only for shear flows
where the ω effect occurs adjacent to the outer boundary.

The axisymmetric poloidal magnetic field, BP , is mostly
an axial dipole, and is generated in the equatorial belt, where
non-axisymmetric motions are strongest. A coherent emf is
produced by a narrow range of non-axisymmetric modes
with azimuthal symmetry 5 � m � 14. The velocity modes
are sheared by the large latitudinal gradients of the zonal
flow uφ in the equatorial region. This shearing is essential to
produce appropriate azimuthal phase shifts between radial and
latitudinal velocity components, leading to nonzero azimuthal
average of the cross product between velocity and magnetic
field of same azimuthal symmetry. This emf has a significant
time-average only for a few modes which are selected by the
amplitude of the non-axisymmetric velocity, their azimuthal
and latitudinal extent and the latitudinal gradients of the zonal
flow. Since all these quantities vary with the strength and the
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geometry of the forcing, we expect different non-axisymmetric
dynamo modes to be selected for different forcings.

In the more general context of dynamo theory, we note
that this numerical dynamo model operates similarly to the
asymptotic dynamo model of Braginsky [29], where a large
zonal flow generates a strong axisymmetric toroidal magnetic
field and a small deviation of the flow from axisymmetry may
be sufficient to produce an axisymmetric poloidal magnetic
field to overcome Cowling’s theorem.

Having established how our dynamo model operates, it is
important to discuss how our results relate to the observations
of the VKS experiment. In this work, we use a spherical
geometry for numerical convenience. In this geometry and at
the large forcings studied here, the shear exerted by the zonal
flow is located in a viscous boundary layer at the outer wall,
yielding significant influence of the wall parameters on the
dynamo action. In the cylindrical von Kármán setup used in the
VKS experiment and at Reynolds number of the order of 106,
velocity measurements in water show evidence that the largest
axial gradients of the shear layer are located in the equatorial
midplane between the two counter-rotating disks [12]. Conse-
quently, an “axial” ω effect, the shearing of the axial magnetic
field lines, is thought to be operating in the equatorial midplane
of the cylinder [30]. This is a major difference between our nu-
merical work and the VKS experiment. If the shear layer is far
from the outer boundary, then the amplification by the wall of
the toroidal field may not be operating in the VKS experiment.
In the VKS experiment, the generation of the axisymmetric
poloidal magnetic field is usually described as the result of an
α effect produced by the helical vortices present between the
blades fixed on the rotating flat disks [2]. In numerical studies,
this effect has been parametrized either by adding a source term
in the magnetic induction equation of the mean field [11,15] or
by using an analytical formulation of non-axisymmetric flow
[10]. In this scenario, BP is produced close to the disks, and
the generation mechanism is thought to be helped by the high
magnetic permeability or electrical conductivity of the disks. In
our work, somewhat differently, we found that BP is produced
in the equatorial belt by fluctuating non-axisymmetric motions,
and that the wall parameters do not affect this mechanism.

The discrepancy in the location of the active dynamo
regions, and therefore the potentially different role of the
wall on the different steps of the dynamo feedback loop, may
reveal the importance of the geometry of the container or
the presence of blades on the rotating walls in these dynamo
experiments, both physical and numerical. However, the
different approaches used to calculate the induction effects (be
they self-consistent or parametrized) in the various numerical
codes used to simulate the physical experiment may also
explain part of the discrepancy. In a forthcoming work, we
will study the consequences of the geometry of the forcing on
dynamo action, still using a spherical geometry but varying
the latitudinal profile of angular velocity of the wall. Here,
we find that the latitudinal gradients of the zonal flow play
an important role in the selection of the non-axisymmetric
dynamo modes sustaining the axial dipole. Forcing confined
closer to the poles may simulate the experimental forcing more
realistically. A further interesting question is whether there
are certain configurations of the forcing which cannot produce
dynamo action.

ACKNOWLEDGMENTS

The authors would like to thank P. Cardin, P. H. Diamond,
P. Garaud, G. A. Glatzmaier, D. W. Hughes,
S. M. Tobias, G. R. Tynan, K. White, and T. S. Wood
for useful discussions and two anonymous referees for
improving the manuscript. Financial support was provided by
the Center for Momentum Transport and Flow Organization
(CMTFO), a Plasma Science Center sponsored by the US
Department of Energy (DoE) Office of Fusion Energy
Sciences, and the American Recovery and Reinvestment Act
(ARRA) 2009. This research was further supported by an
allocation of advanced computing resources provided by the
National Science Foundation (NSF). The computations were
performed on the NSF Teragrid/XSEDE machine Kraken at
the National Institute for Computational Sciences (NICS)
and on the University of California Santa Cruz (UCSC)
supercomputer Pleiades purchased under NSF MRI Grant No.
AST-0521566.

APPENDIX: IMPLEMENTATION OF THE MAGNETIC
BOUNDARY CONDITIONS

In this Appendix, we derive the magnetic boundary
conditions at an interface located at the radius ro between
the fluid and the wall (denoted by the subscripts f and
w, respectively) of different magnetic permeability, μ, or
electrical conductivity, σ . The magnetic properties in each
media are constant. The relative permeability and conductivity
are μr = μw/μ0 and σr = σw/σf .

The magnetic field is decomposed into poloidal and toroidal
vectors,

B = ∇ × ∇ × (BP r) + ∇ × (BT r), (A1)

where BP and BT are the poloidal and toroidal scalars. The
spherical components of B can be expressed in function of
these two scalars by

Br = 1

r
L2(BP ), (A2)

Bθ = ∂

∂θ

[
1

r

∂

∂r
(rBP )

]
+ 1

sin θ

∂BT

∂φ
, (A3)

Bφ = 1

sin θ

∂

∂φ

[
1

r

∂

∂r
(rBP )

]
− ∂BT

∂θ
, (A4)

with L2 the angular Laplacian operator,

L2 = − 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
− 1

sin2 θ

∂2

∂φ2
. (A5)

Through a magnetic permeability discontinuity, the conti-
nuity of the radial magnetic field [Eq. (8)], and the disconti-
nuity of the tangential magnetic field [Eq. (9)] yields

BP |w = BP |f , (A6)

BT |w = μrBT |f , (A7)

∂rBP

∂r

∣∣∣∣
w

= μr

∂rBP

∂r

∣∣∣∣
f

. (A8)
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The electric current density, j, is divergence-free and can
also be decomposed into poloidal and toroidal scalars, jP

and jT . Through an electrical conductivity discontinuity, the
continuity of the radial electric current density [Eq. (10)]
and the discontinuity of the tangential electric current density
[Eq. (11)] yield

jP |w = jP |f , (A9)

jT |w = σrjT |f , (A10)

∂rjP

∂r

∣∣∣∣
w

= σr

∂rjP

∂r

∣∣∣∣
f

. (A11)

jP and jT are related to the BP and BT by

jP = BT

μ
, (A12)

jT = 1

r2
L2

BP

μ
− 1

r

∂

∂r

rBS

μ
, (A13)

jS = 1

r

∂

∂r

rBT

μ
, (A14)

where we use the spheroidal scalar for a divergence-free vector,

jS = 1

r

∂rjP

∂r
. (A15)

To solve the magnetic induction equation, we need to evaluate
second order radial derivatives on our irregular radial grid.
To obtain the finite difference scheme of second order in the
vicinity of ro, a radial function g is expanded using Taylor’s
formula:

g(ro − dr−) = g(r−
o ) − g′(r−

o )dr−

+ g′′(r−
o )

(dr−)2

2
+ O[(dr−)3], (A16)

g(ro + dr+) = g(r+
o ) + g′(r+

o )dr+

+ g′′(r+
o )

(dr+)2

2
+ O[(dr+)3], (A17)

where r−
o (r+

o ) is located infinitely close to ro on the fluid side
(wall side respectively) and dr− (dr+) is the radial incremental
step between ro and his neighbor on the radial grid on the side
f (w, respectively).

The function g is chosen such as it is continuous at the
interface, while its radial derivatives are not:

g(r+
o ) = g(r−

o ), (A18)

g′(r+
o ) = γg′(r−

o ), (A19)

g′′(r+
o ) = αg′′(r−

o ) + βg(r−
o ) + q, (A20)

where q represents the possible contribution from the nonlinear
terms.

The second-order derivative of g is obtained by taking
the combination g(ro − dr−)γ dr+ + g(ro + dr+)dr−, then
applying the identities (A16)–(A20) and rearranging, which

leads to

g′′(r−
o ) = 2

dr+dr−(αdr+ + γ dr−)

×
[
dr−g(ro + dr+) + γ dr+g(ro − dr−)

− (dr− + γ dr+)g(r−
o ) − dr−(dr+)2

2
βg(r−

o )

]

− dr+

γ dr− + αdr+ q. (A21)

1. Poloidal component

The evolution equation for the poloidal scalar, BP , is
obtained by taking the dot product of the magnetic induction
equation with r:

∂BP

∂t
= − 1

σ

[
1

r2
L2

BP

μ
− 1

r

∂

∂r

(
1

μ

∂

∂r
(rBP )

)]
+ fP ,

(A22)

where fP contains the nonlinear terms. We use a spherical
harmonics expansion for BP ,

BP (r,θ,φ) =
∞∑
l=0

l∑
m=−l

pm
l (r)Ym

l (θ,φ), (A23)

to solve the angular Laplacian operator,

L2BP =
∑

l

∑
m

l(l + 1)pm
l Ym

l , (A24)

where Ym
l is the spherical harmonic function of degree l and

order m.
The nonlinear terms are

fP = 1

l(l + 1)
r · ∇ × (u × B), (A25)

= 1

l(l + 1) sin θ

(
∂

∂θ
sin θ [u × B]φ − ∂

∂φ
[u × B]θ

)
.

(A26)

The cross-product u × B is calculated in spatial space us-
ing u = (ur,uθ ,uφ) and B = (Br,Bθ ,Bφ). At the fluid-wall
interface, the velocity in the fluid matches continuously to
the no-slip boundary condition, u(ro) = (0,0,uφ(ro)) with the
azimuthal velocity in the wall uφ = r sin θ cos θ . The spherical
components of the cross-product in the wall are

[u × B]r = −uφBθ , (A27)

[u × B]θ = uφBr, (A28)

[u × B]φ = 0. (A29)

The continuity of the velocity and Br across the interface
therefore ensures the continuity of the nonlinear term fP .

The difficulty in the numerical implementation of Eq. (A22)
is therefore to calculate the second-order radial derivative of
rpm

l . Using g = rpm
l and Eq. (A8),

g′(r+
o ) = μrg

′(r−
o ). (A30)
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The right-hand side of Eq. (A22) must be continuous across
the interface, yielding

g′′(r+
o ) = σrμrg

′′(r−
o ) + g(r−

o )
l(l + 1)

r2
o

(1 − σrμr ). (A31)

We can now use the identity (A21) to calculate g′′(r−
o ) from the

values of g at r = ro − dr−, r = ro, and r = ro + dr+. This
allow us to evaluate the right-hand side of the linear evolution
equation for pm

l at the point r−
o . The radial scheme in the wall

uses the point at r+
o with pm

l (r+
o ) = pm

l (r−
o ).

2. Toroidal component

The evolution equation for the toroidal scalar, BT , is
obtained by taking the dot product of the curl of the magnetic
induction equation with r:

∂BT

∂t
= − 1

r2
L2

1

σ

BT

μ
+ 1

r

∂

∂r

1

σ

∂

∂r

(
r
BT

μ

)
+ fT . (A32)

Again, a spherical harmonics expansion is used,

BT (r,θ,φ) =
∞∑
l=0

l∑
m=−l

tml (r)Ym
l (θ,φ). (A33)

The nonlinear terms are

fT = 1

l(l + 1)
r · ∇ × ∇ × (u × B), (A34)

= 1

r
[u × B]r + 1

l(l + 1) sin θ

[
∂

∂θ
sin θ

1

r

∂

∂r
(r [u × B]θ )

+ ∂

∂φ

1

r

∂

∂r

(
r[u × B]φ

) ]
. (A35)

At the interface BT (r+
o ) = μrBT (r−

o ), so the nonlinear terms
are continuous if fT (r+

o ) = μrfT (r−
o ). The first term of

right-hand side of (A35), [u × B]r = −uφBθ , respects this
continuity condition. However, the second term on the right-
hand side of (A35) does not respect this condition because
of the discontinuity of the radial gradient of the velocity
across the interface. The discontinuity of fT /μ must therefore
be taken into account in the numerical implementation of
Eq. (A32).

We use g = rtml /μ. Using jP = BT /μ and Eq. (A11), we
obtain

g′(r+
o ) = σrg

′(r−
o ). (A36)

The right-hand side of Eq. (A32) divided by μ must be
continuous across the interface, yielding

g′′(r+
o ) = σrμrg

′′(r−
o ) + g(r−

o )
l(l + 1)

r2
o

(1 − σrμr )

+ σwro(μrfT (r−
o ) − fT (r+

o )). (A37)

Using the identity (A21) to calculate g′′(r−
o ) from the values of

g at r = ro − dr−, r = ro, and r = ro + dr+, we can evaluate
the evolution equation for tml at the point r−

o ,

∂tml (r−
o )

∂t
= − 1

μf σf

l(l + 1)

r2
o

tml (r−
o ) + 1

roσf

g̃′′(r−
o )

+ dr+fT (r+
o ) + dr−fT (r−

o )

dr− + μrdr+ , (A38)

where

g̃′′(r−
o ) = 2

dr+dr−σr (dr− + μrdr+)

[
σrdr+g(ro − dr−)

+ dr−g(ro + dr+) − g(r−
o )

(
σrdr+ + dr−

+ dr+2dr−

2

l(l + 1)

r2
o

(1 − σrμr )

)]
. (A39)

The contribution of the nonlinear terms to the evolution of tml
at r = r−

o is therefore evaluated through a weighted average
of fT (r−

o ) and fT (r+
o ) [third term on the right-hand side

of Eq. (A38)], which ensures continuity of BT /μ and of
(σ−1)∂r (rBT μ−1).

The radial scheme in the wall uses the point at r+
o with

tml (r+
o ) = μrt

m
l (r−

o ).

3. Match to external potential field

The vacuum boundary condition at rv = ro + h corre-
sponds to j = 0. The interface between the wall (w) and the
vacuum (v) corresponds to a jump of magnetic permeability
and electrical conductivity. The toroidal scalar vanishes in the
vacuum, so the boundary condition at r−

v , the point infinitely
close to the interface on the side of the wall, is simply

tml (r−
v ) = 0. (A40)

In the vacuum, the poloidal scalar follows

∂pm
l

∂r
+ l + 1

r
pm

l = 0. (A41)

Using Eqs. (A6) and (A8), the boundary condition for the
poloidal scalar is

∂pm
l

∂r

∣∣∣∣
r−
v

= −μrl + 1

r
pm

l (r−
v ). (A42)
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