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Viscoelastic convection: Few-modes model and numerical simulations of field equations for
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The structure formation of convection rolls in Maxwellian fluids that are heated from below in a Rayleigh-
Bénard setup is investigated close to onset with a simple few-modes ansatz and by solving the hydrodynamic
field equations with a finite-difference method. Depending on the magnitude of the viscoelastic relaxation time
one can have besides stationary convection also oscillatory patterns in the form of standing or traveling waves.
The existence and stability regions of these convection structures are determined. The convection behavior of
the model is compared with the results of full numerical simulations. Furthermore, the effect of modulating the
heating periodically in time on the stability of the quiescent conductive state of the fluid and on its convection
behavior is investigated as a function of the fluid’s viscoelasticity.
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I. INTRODUCTION

The Rayleigh-Bénard system [1,2] is a well-known hy-
drodynamic setup which provides an easy experimental and
theoretical access to a very rich variety of flow structures [3].
When the temperature difference between the two horizontal
plates exceeds a critical threshold, convection rolls and further
flow patterns arise. With binary mixtures as working fluid, the
so-called Soret coupling between temperature differences and
concentration fluxes [4] leads to a new type of instability at the
critical threshold: the system responds oscillatorily [5]. During
recent decades, another class of fluids, namely, the viscoelastic
fluids, has been investigated intensively [6] because of the
presence of intrinsic elastic restoring forces. This circumstance
and the existence of the associated additional degrees of
freedom can also cause overstability [7] and oscillatory
convection.

We study here the convection of Maxwellian fluids in
the Oberbeck-Boussinesq approximation [4] in order to con-
centrate on the essential parts of the problem that causes
oscillatory behavior in the form of traveling and standing
convection waves. The relevant system parameters are the
Rayleigh number Ra, the Prandtl number Pr, and the Deborah
number De, which is proportional to the viscoelastic time scale
λ. The value of De strongly affects the flow behavior. Below a
certain value De � De∗, the fluid shows the characteristics of a
Newtonian fluid [7], for instance a stationary instability. Above
the critical value De � De∗, the fluid shows an oscillatory
instability. We investigate this behavior in two dimensions by
using the Galerkin and finite-difference methods [8]. While
these methods have been tested intensively for a lot of fluids
and systems, they are restricted to small Deborah and Rayleigh
numbers due to numerical instabilities [9].

The Lorenz model [10] allows an alternative insight into the
instability mechanisms of a Newtonian fluid without the efforts
that are connected to full numerical simulations. We study in
this paper among others a kind of enlarged and generalized
model with three complex field modes and one real mode.
It is capable of describing viscoelastic effects of convecting
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Maxwellian fluids including traveling waves and standing
waves on a very basic level. On the other hand, if one takes into
account only real field amplitudes then one loses the oscillatory
instability that shows up in the Maxwell approach above a
certain Deborah number De∗ since the restricted mode ansatz
allows only roll structures that are stationary close to onset
and that show only at higher Rayleigh numbers the transition
from oscillatory to chaotic amplitude behavior known from
the standard Lorenz model [11]. This type of analysis was
expanded to other fluids such as the Carreau-Bird fluid [12] and
the Oldroyd-B fluid [13]. Recently the effect of time-periodic
gravity modulation on convection rolls in Oldroyd-B fluids
was investigated with a few-modes truncation that is similar
to ours [14].

Several authors have addressed the linear problem associ-
ated with the onset of convection in different types of fluid
model equations starting with the early work of Vest and
Arpaci [7] and Sokolov and Tanner [15]. Later on Eltayeb [16]
and Martı́nez-Mardones and Pérez-Garcı́a [17] published a
similar analysis for the Oldroyd-B fluid. All these results
predict an oscillatory instability depending on the viscoelastic
time scale. Rosenblat [18] and Park and Lee [19] used a model
that can be projected on either an Oldroyd-B or a Phan-Thien-
Tanner model. They analyzed the subcritical and supercritical
behavior of periodic solutions and they investigated traveling
and standing wave convection structures at onset. Brand and
Zielinska [20] and Zielinska et al. [21] derived nonlinear
amplitude equations around the codimension-2 point of a
linear Maxwell fluid with an advective term in the constitutive
equations. Martı́nez-Mardones et al. [22–24] also discussed
amplitude equations for Jeffreys fluids. They found that the
flow structure and the bifurcation properties strongly depend
on the chosen constitutive equations. Based on Ginzburg-
Landau amplitude equations, they predicted that for a wide
range of parameters the stable solution of an Oldroyd-B model
is a supercritical standing wave solution and that subcritical
bifurcations and polycritical points will occur only under
unrealistic conditions if one includes the upper-convected time
derivative.

Our paper is organized as follows. In Sec. II we present the
governing equations and the few-modes model. Section III is
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devoted to linear as well as nonlinear aspects of the bifurcation
to stationary roll convection, traveling waves, and standing
waves. The latter were analyzed not only with the few-modes
model but also with numerical finite-difference simulations
of the linear Maxwell fluid (LFM) and the upper convected
Maxwell fluid (UCM). In Sec. IV, we present results for time-
modulated heating that were obtained from our few-modes
model and from finite-difference simulations.

II. SYSTEM

Let us consider two horizontal plates with a distance d

between them, that are perpendicular to the external gravita-
tional field g and that are kept at temperatures T1 (lower) and
T2 (upper). They enclose a viscoelastic fluid, that is described
by a viscoelastic relaxation time λ [25]. The coefficients of
volumetric expansion, thermal conductivity, and kinematic
viscosity are denoted by α, κ , and ν, respectively.

A. Basic field equations

We neglect the elastic energy and obtain within the
Oberbeck-Boussinesq approximation the dimensionless basic
equations

0 = ∇iui, (2.1a)

(∂t + u · ∇)ui = −∇iP + Pr ∇jTji + Pr θδi3, (2.1b)

(∂t + u · ∇) θ = Ra w + ∇2θ (2.1c)

for the velocity field u = (u,v,w), the hydrostatic pressure P ,
and the perturbations of the conductive temperature profile θ =
T − Tcond. To transform them to a dimensionless form, we used
the system height d as length scale, the thermal diffusion time
d2/κ as time scale, and, consequently, κ/d as velocity scale.
The dimensionless quantities lead to new system parameters,
namely, the Rayleigh number

Ra = αgd3

νκ
(2.1d)

measuring the thermal driving force and the Prandtl number

Pr = ν

κ
(2.1e)

as the ratio of the thermal diffusion time to the momentum
diffusion time. The Prandtl number is fixed here throughout
this paper to Pr = 10.

The constitutive equations of an upper-convected Maxwell
fluid can, by the help of the shear rate γ̇ij = ∇iuj + ∇jui , be
expressed [11,25] by

(∂t + u · ∇)Tij = Tkj∇kui + Tik∇kuj

+ 1

De
(γ̇ij − Tij ), (2.1f)

where Tij = Tji [26] represents the stress tensor. The Deborah
number

De = λ
κ

d2
(2.1g)

is the viscoelastic relaxation time λ measured in units of the
thermal diffusion time. It characterizes the elastic properties
of the fluid. The Newtonian case is realized within the limit
De → 0.

The boundary conditions of the velocity field mainly
influence the absolute values of the critical thresholds. This
influence can be minimized by the use of reduced parameters;
we discuss this further below. Furthermore, the boundary
conditions have an impact on the critical fields and, thus, on
the ansatz functions. In order to simplify the model as far as
possible, we choose free-slip conditions at both plates, which
allows us to expand the velocity fields by simple trigonometric
functions [7]. We also checked that numerical results for
no-slip boundary conditions showed qualitatively the same
behavior.

We implemented a finite-difference method based on the
work of Hirt et al. [27] and Harlow and Welch [28]. Addi-
tionally, this simulation contains the discretized constitutive
equations of the stress tensor.

B. Model

The derivation of the model equations largely follows the
work of Khayat [11]. Therefore we summarize here only the
most important steps in our derivation.

Our aim is a Lorenz-like system for weakly viscoelastic,
Maxwellian fluids. A suitable approach consists of keeping
the critical modes as well as one nonlinear field mode which
generates the vertical heat current [10]. Then, all coupling
terms in the constitutive equations vanish. Furthermore,
the differences between the upper-convected and the linear
Maxwell fluid vanish with this choice of ansatz functions.
Finally, it is sufficient to take within this approximation only
the divergence of the stress tensor into consideration. In this
way we find a new representation of the stress field as

S = (
∂2
x − ∂2

z

)
Txz + ∂x∂z(Tzz − Txx). (2.2)

Consequently, the resulting few-modes approximation is

ϒ(x,z,t) = [ϒ̂11(t)eikx + c.c.]
√

2 sin πz, (2.3a)

S(x,z,t) = [Ŝ11(t)eikx + c.c.]
√

2 sin πz, (2.3b)

θ (x,z,t) = [θ̂11(t)eikx + c.c.]
√

2 sin πz

+ θ̂02(t)
√

2 sin 2πz. (2.3c)

Here ϒ is the stream function with

∂xϒ = w and ∂zϒ = −u (2.4)

so that the mass balance equation (2.1a) is automatically
fulfilled. After projection on the orthonormal ansatz functions,
we obtain the model equations

τ∂t

⎛
⎜⎝

W

X

Y

Z

⎞
⎟⎠ =

⎛
⎜⎝

−δ −δ 0 0
Pr 0 Pr 0
0 r −1 0
0 0 0 −β

⎞
⎟⎠
⎛
⎜⎝

W

X

Y

Z

⎞
⎟⎠+

⎛
⎜⎝

0
0

−XZ

Re(YX∗)

⎞
⎟⎠.

(2.5)

The critical mode amplitudes

X = 2πk

Q2
ϒ̂11, Y = −i

2πk2

Q6
θ̂11, and W = 2πk

Q6
Ŝ11

(2.6)
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usually are complex. In (2.5) X∗ denotes the complex conju-
gate of X. On the other hand, the amplitude of the nonlinear
mode

Z = −
√

2πk2

Q6
θ̂02 (2.7)

has to be real. Here, Q2 = π2 + k2. All amplitudes depend
on time t and on the wave number k of the roll pattern. Also
the parameters entering the model besides the Prandtl number
depend on k. They are

r = Ra

Rastat
, τ = 1

Q2
, δ = τ

De
, β = 4π2τ. (2.8)

Here r is the Rayleigh number Ra (2.1d) normalized by the
stationary stability threshold,

Rastat(k) = Q6

k2
. (2.9)

The characteristic time scale τ of the model could be
eliminated by reducing the time t further, but we will not do that
here. Finally, along with the inverse of the Deborah number
the viscoelastic relaxation rate enters into δ. The Newtonian
limit De → 0, i.e., δ → ∞, leads to the well-known standard
Lorenz model with W = −X.

As an aside we mention that the model system (2.5) can be
transformed to a single differential equation of third order:

0 = ...
X + δ + 1

τ
Ẍ +

[
Pr + 1

τ 2
δ − Pr

τ 2
(r − Z[X])

]
Ẋ

+ Pr

τ 2

[
δ

τ
− ṙ + β

τ
Z[X] − δ

τ
(r − Z[X])

+ 1

2 Pr
(XẊ∗ − XW ∗[X] + c.c.)

]
X, (2.10)

into which enter, however, two memory functions,

W [X] = − δ

τ

∫ ∞

0
X(t − t ′)e−(δ/τ )t ′dt ′, (2.11a)

Z[X] = τ

2Pr

∫ ∞

0
[X(t − t ′)Ẋ∗(t − t ′)

−X(t − t ′)W ∗(t − t ′) + c.c.]e−(β/τ )t ′ dt ′. (2.11b)

III. STATIONARY DRIVING

The case of a stationary driving, i.e., �T = T1 − T2 =
const was already considered by Khayat [11], but with
the restriction to real field amplitudes in Eq. (2.5). This
restriction allows only roll structures that are stationary close
to onset and that show at higher Rayleigh numbers the
chaotic amplitude behavior known from the standard Lorenz
model. But, as mentioned before, in reality the elastic forces
support an oscillatory instability that shows up in the Maxwell
approach above a certain Deborah number De∗. After having
summarized the relevant linear results we discuss in this
section the two nonlinear oscillatory solutions of our model,
namely the traveling wave (TW) and the standing wave (SW)
solutions and also the stability exchange between them.

A. Linear results

Within the Maxwell model the linear theory predicts the
stationary thresholds to be independent of the Deborah number
while the oscillatory thresholds depend on De [7,15,16,18]. In
our few-modes model, one finds first of all that the dominant
eigenvalue is real for δ > δ∗ = Pr

Pr+1 . And then a family of
stable solutions describing so-called stationary overturning
convection (SOC) with wave number k bifurcates at r = 1,
i.e., at Ra = Rastat(k) forwards out of the quiescent conductive
state. Furthermore, the squared flow amplitude grows linearly
with the distance from the respective threshold since X2 =
β(r − 1) and W = −X = −Y [11].

For smaller values of δ, overstability can be found. But the
oscillatory threshold curve

rosc = Raosc(k)

Rastat(k)
(3.1)

is restricted to lie below the stationary onset, i.e., rosc < 1. The
corresponding Hopf frequency ωH is a function of the reduced
inverse Deborah number δ and the Prandtl number Pr:

rosc = δ

Pr
[δ(Pr + 1) + 1], (3.2a)

ω2
Hτ 2 = Pr δ(1 − δ) − δ2. (3.2b)

Note that rosc and ωH in eqs. (3.2) depend on the wave
number k via the parameters δ and τ .

The linear equation leading to this result (3.2) consists of
four terms:

0 = De
...
X +

(
1 + De

τ

)
Ẍ

+
(

Pr + 1

τ
− Pr r De

τ 2

)
Ẋ + Pr(1 − r)

τ 2
X, (3.3)

where the term proportional to Ẋ is mainly responsible for the
oscillatory instability and the one proportional to X generates
the stationary instability. Interestingly enough, the first term
De

...
X does not have a big impact on the linear eigenvalues close

to the transition point δ∗ and r ∼ 1.

B. Traveling wave solution

In a relaxed TW the fields do not depend on x and t

separately since they move with the constant phase velocity
vph = ωTW/k either to the right or to the left. Thus, the moduli
of the complex field amplitudes X, Y, and W are constant in
time while their phases increase linearly in t .

The TW solution branch can easily be found for δ(Pr +
1) + 1 > 0 to vary as

|X|2 = sTWμ (3.4a)

where

sTW = β(1 − δ) (3.4b)

denotes the (initial) slope of the squared modulus |X|2 in a
bifurcation diagram and

μ = r

rosc
− 1 (3.5)

is the relative distance to the oscillatory bifurcation threshold
(3.2a).
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The TW solution always bifurcates forward out of the basic
state [24] since the oscillatory instability occurs only for δ <

Pr/(Pr + 1) < 1. Due to the simplicity of the model equation,
the TW frequency does not vary with the Rayleigh number r .
The TW frequency is always equal to the corresponding Hopf
frequency (3.2b),

ωTW = ωH . (3.6)

C. Standing wave solution

In a SW the fields oscillate in time while their nodes
remain spatially fixed. In contrast to the TW case we could
not obtain a closed analytical solution for, say, the complex
mode amplitude X(t ; μ) as a function of time and control
parameter μ. So we performed an expansion in powers of μ1/2

around the oscillatory onset μ = 0.
One finds the complex SW mode amplitude XSW (t ; μ) to

have in lowest order μ1/2 the harmonic form

XSW(t ; μ) = |X1|eiωSWt + c.c. (3.7)

with

|X1|2 = sSWμ, (3.8a)

ωSW = ωH + αSWμ. (3.8b)

Here ωH is the Hopf frequency of the SW at onset. From a
solvability condition in order μ3/2 one then obtains the initial
slopes of the variation of |X|2 and of ωSW with μ to read

sSW = rosc
Pr (1 − δ)

δ

1 − (β+2)q2
osc

�osc

(
Pr + 1

1−δ

)
2
β

+ β−2ω2
H τ 2

γ 2
osc

, (3.9a)

αSW = −rosc
(β + 2)Pr2 q2

osc

2ω2
Hτ 2�osc

, (3.9b)

using the abbreviations

q2
osc = δ2 + ω2

Hτ 2, (3.10a)

γ 2
osc = β2 + 4ω2

H τ 2, (3.10b)

�osc = (β + 2)

(
Pr + 1

1 − δ

)
q2

osc

−
(

2

β
γ 2

osc + β − 2ω2
H τ 2

)
Pr. (3.10c)

The term �osc in Eq. (3.9b) causes the divergence of
the initial slope at the tricritical transition from forward
to backward bifurcation. It is straightforward to obtain the
quadratic equation

δ2

[
2

Pr + 1

Pr

4 − β

β
− (β + 2)

]

+ δ

[
2
β − 4

β
+ (β + 2)

Pr + 1

Pr

]
= 3β

Pr
(3.11)

for the condition �osc = 0 for the occurrence of the tricritical
SW transition. The phase diagram in Fig. 1 shows the
parameter regions in the k-De plane for forward and backward
SW bifurcations, respectively. Note the small interval of
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FIG. 1. (Color online) Phase diagram in the k-De plane for
forward and for backward bifurcating SW convection, respectively,
and for stationary convection. The critical relation between wave
number and Deborah number is shown by the dash-dotted line labeled
kc.

forward SW bifurcation adjacent to the stationary regime.
Thus, there are in the k-De plane two lines locating tricritical
SW transitions. These tricritical lines delimit in Fig. 1 the
region marked “Backward” for backward bifurcating SWs.

Furthermore, backward bifurcating SWs occur only with
small wave numbers when the Deborah number is not too big.
However, it is hard to stabilize SW roll patterns with small
wave numbers k 	 kc in numerical simulations and presum-
ably also in real experiments. Our numerical finite-difference
simulations support this conclusion. All SW patterns that we
observed bifurcated forward.

Figure 2 presents the results of numerical integrations of
the few-modes model (2.5) and of numerical finite-difference
simulations of both the linear Maxwell model (circles) and the
upper-convected Maxwell model (squares). The SW Nusselt
number Nu as a ratio between the total heat flux and the
conductive heat flux oscillates in time. Thus, we indicated
its minimum and maximum over the period 2π/ωSW. The
Nusselt numbers of the few-modes model and of the linear
Maxwell model are—in particular close to the onset of
SW convection—in good agreement with the results of the
upper-convected Maxwell model. The SW frequencies of
the linear models increase only very weakly with increasing
Rayleigh numbers. On the other hand, the nonlinearities in the
constitutive equations of the upper-convected Maxwell model
seem to be responsible for the stronger growth of the SW
frequencies with increasing r .

D. Stability

Close to the oscillatory threshold perturbation theory lead-
ing to coupled amplitude equations allows one to determine
the stability of extended TWs and SWs [29,30]. The stability
depends on the initial slope with which the squared TW
and SW amplitudes grow with increasing distance from the
common Hopf bifurcation threshold. The result is that the
structure with the smaller initial slope is unstable and dies out.

The result of such a stability analysis of our few-modes
model is shown in the k-De parameter plane of Fig. 3 for TWs
and SWs with wave numbers 2 � k � 8. Note first of all that
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FIG. 2. (Color online) Nusselt number (lower figure) and fre-
quency (upper figure) of SW solutions of different approaches versus
reduced Rayleigh number r: Finite-difference simulations of the
linear Maxwell fluid (circles), finite-difference simulations of the
upper-convected Maxwell model (squares), and truncated model (2.5)
(full lines). For the Nusselt number the minimum Numin = mint Nu(t)
and the maximum Numax = maxt Nu(t) are shown. The parameters
are k = 6 and De = 0.1.

the model allows stable, forward bifurcating TW solutions.
However, they occur at quite large Deborah numbers that are
well beyond the range of applicability of this simple model.
The transient times from the disturbed conductive basic state
to the final stable TWs are quite large even for large thermal
driving μ > 0.05.

E. Deborah number

At higher Deborah numbers, the oscillatory threshold flat-
tens and the corresponding critical Rayleigh number decreases.
Consequently, a larger interval of unstable wave numbers
exists close to onset.

Moreover, numerical instabilities occur [8,31]. Several au-
thors have addressed the numerical instabilities and discussed
them [32–34]. In our simulations at higher elasticity, the results
of the numerical simulations begin to depend on numerical
parameters. At even higher values of De, the pressure iteration
fails.

If we use the rate of advection as the time scale for
the definition of the Deborah number Deshear = λw̃max

d
then

its values may change considerably since the convection
amplitude w̃max enters and is not reduced here. The difference
can be expressed by the Péclet number as follows:

Deshear

De
= Pe = wmax. (3.12)

24 6 8
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FIG. 3. (Color online) Stability behavior of forward bifurcating
TWs and SWs of the few-modes model close to the Hopf bifurcation
threshold obtained from a perturbation analysis. The regime with
stationary convection (close to the abscissa) and the one with
backward bifurcating SWs (stripes) are included for the sake of
completeness. The narrow interval of forward bifurcating SWs close
to the stationary regime that can be seen in Fig. 1 is not resolved here.
The dash-dotted line marks the critical wave number kc.

For example, for a SW structure of μ = 0.05, De = 0.1, and
k = 5, the resulting Péclet number is around 10 and, thus,
Deshear ∼ 1.

IV. MODULATED DRIVING

In the previous section we investigated the oscillatory
convection that arises in viscoelastic fluids because of the
elastic restoring forces. In this section we explore how this
system, which shows under stationary driving oscillations with
the internal characteristic TW or SW frequency, ωTW or ωSW,
respectively, responds to external imposition of an oscillation
of the thermal driving force. For the sake of simplicity we
consider only a harmonic modulation of the temperature
difference between the lower and the upper plates,

�T (t) = �Tstat + �Tmod(t) = Ra[1 + � cos �t]. (4.1)

Here � is the relative modulation amplitude and Ra(t) =
Ra[1 + � cos �t] is the instantaneous Rayleigh number.

In the presence of such a modulation of the thermal driving
the vertical variation of the temperature field in the quiescent
conductive basic state, Tcond(z,t), is no longer linear in z but
becomes nonlinear. However, the analytical expression for
Tcond(z,t) is obtained straightforwardly by solving the heat
diffusion equation.

We performed a linear Floquet stability analysis of this
conductive state using a many-mode Galerkin expansion for
a linear Maxwell fluid and we compared that with the result
of our modulated few-modes model; cf. Sec. III A. Then we
present in Sec. IV C for small Deborah numbers the results
of full, nonlinear numerical simulations for a linear Maxwell
fluid and for an upper-convected Maxwell fluid.
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A. Modulated few-modes model

Here we want to mention that the temperature modulation
(4.1) does not change the structure of the few-modes model
(2.5). However, the stationary reduced Rayleigh number r in
(2.5) is replaced by the time-dependent quantity

r̃(t) = rRe[1 + �̃ei�t ]. (4.2)

The complex modification �̃ of the modulation amplitude of
the plate’s temperature difference enters into the model via the
sin(2πz) contribution to the conductive profile Tcond(z,t) [35].
On has

�̃ = �
4π2

4π2 + i�
. (4.3)

The modulus |�̃| of the correction approaches � for small fre-
quencies and vanishes for very large modulation frequencies.

B. Linear stability analysis

We integrated the fundamental matrix of the linearized,
modulated few-modes model over one modulation period
�(t0 + T ) = �(t0) · E and obtained the Floquet multipliers
μ = exp(ρT ) from the eigenvalues of E [36,37]. We have
chosen �(t0) to be the 6 × 6 unit matrix that contains in
its columns the six orthogonal initial values for the vector
(W,X,Y ) with W,X,Y being complex—the real mode Z is
decoupled and damped away within the linearized few-modes
model. Then E = �(t0 + T ) is obtained from numerical
integration over one modulation period.

The real parts of the Floquet exponents ρ describe the
stability of the modulated conductive solution against growth
of convective perturbations, whereas the imaginary parts
describe the phase shift of the solution after one modulation
period. The stability threshold is determined by the condition
that the largest real part goes through zero.

We performed the same calculation for linearized multi-
mode Galerkin models and calculated for both scenarios the
stability thresholds for free-slip boundary conditions. Unlike
the results obtained in the unmodulated case, the linear stability
results obtained with a many-mode Galerkin expansion from
the linearized field equations differ slightly from those of the
few-modes model. The reason is that the mode truncation
represents the conductive temperature profile Tcond(z,t) and the
convective perturbation fields only approximately. However,
we checked that for modulation frequencies � < 200 the
results of both are almost equal if one uses parameters that
are scaled by the respective critical values.

Figure 4 visualizes the influence of the Deborah number on
the stability of the conductive state. The tongue structure of the
stability boundaries in Figs. 4(a) and 4(b) differs considerably
from that of the Newtonian fluid (dotted lines). Even very
small Deborah numbers De 
 10−3 have a measurable impact
on the results.

For the parameters of Fig. 4(c), the growth of convection
without modulation is oscillatory with the Hopf frequency at
onset. For these parameters, a small amplitude modulation
produces a quasiperiodic response; see the curve labeled Q
that emerges at � = 0 out of the Hopf bifurcation threshold
rosc = 0.079. With increasing modulation amplitude, however,
windows open up where the oscillation frequency of convec-
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FIG. 4. (Color online) Results of the Floquet stability analysis of
the few-modes model for a modulation frequency � = 13.32. Bold
and dashed lines show the stability boundaries of the modulated
conductive state against growth of convection. The bifurcation
thresholds for harmonic, subharmonic, and quasiperiodic responses
are identified by H, SH, and Q, respectively. The parameters in
(a) (k = 2.22, De = 0.04) and (b) (k = 2.22, De = 0.07) are
chosen such that without modulation (� = 0) stationary convection
grows beyond the stability threshold. The dotted lines show the
harmonic bifurcation threshold of a Newtonian fluid (De = 0). For
the parameters in (c) (k = 5.86, De = 0.1) stationary thermal driving
produces oscillatory convection with the Hopf frequency ωH = 57.63
at onset rosc = 0.079. The Floquet exponent of the quasiharmonic
response under modulation is shown by the dash-dotted line. Note
the harmonic and subharmonic intervals with exponents 0 and π ,
respectively.

tion is harmonic or subharmonic relative to the modulation
frequency �.

It is remarkable that the influence of temperature mod-
ulation on the stability boundaries of conduction depends so
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FIG. 5. (Color online) Influence of temperature modulation on
the stability behavior of the conductive state for fixed modulation
frequency � = 10 and amplitude � = 0.01 relative to the stability
property for � = 0. In the regions marked stabilized (destabilized)
modulation stabilizes (destabilizes) the quiescent basic state in
comparison with the unmodulated case, i.e., the marginal Rayleigh
number for � = 0.01 is larger (smaller) than the one for � = 0.
Below the dashed line De∗(k,� = 0) the instability is stationary
without modulation.

strongly on the parameters. For example, the Deborah numbers
in Figs. 4(a) and 4(b) are very similar. Nevertheless, a small
amplitude modulation destabilizes the conductive state in
(a) but stabilizes it in (b). In order to survey the influence, we
determine the stability thresholds for a very small modulation
amplitude of � = 0.01 and compare them with those of the
unmodulated case. The results are shown in Fig. 5 in the k-De
plane. In the Newtonian limit De → 0 one sees the stabilizing
effect of modulation that was investigated before [35,38].
Increasing the Deborah number leads in the k-De plane of
Fig. 5 to an alternating sequence of parameter regions with
destabilization and stabilization. Similar results were also
obtained for different values of the modulation amplitude
� = 0.001, . . . ,0.05.

We also investigated the stability changes that are induced
by modulation of r(t) from a different perspective. In order to
do that, we kept the mean Rayleigh number r fixed at a value
that is slightly subcritical under stationary heating conditions
as indicated schematically by the position of the square in
the inset of Fig. 6. Then we modulated the temperature
difference with increasing amplitude � around this mean value
until convection arises. Figure 6 shows the amplitude where
under these conditions convection appears, i.e., the stability
boundary � versus ωH /� for a fixed value of r = 0.99rosc. For
the parameters of Fig. 6 the stability behavior is similar to that
of a Mathieu oscillator because the impact of the Newtonian
fluid is still noticeable. Centered around ωH/� = 1/2, there
is a sizable frequency interval for subharmonic response.
There convection oscillating with the Hopf frequency ωH can
be driven already with a very small modulation amplitude.
Further periodic windows with harmonic and subharmonic
response, respectively, appear alternatingly at ωH/� = n (H)
and at ωH/� = n + 1/2 (SH) with n being integer. Their
width decreases with increasing n. Between the above periodic
intervals convection grows quasiperiodically as indicated in
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FIG. 6. (Color online) Stability threshold of modulation ampli-
tude � versus reduced inverse modulation frequency ωH /�. The
bifurcation thresholds for harmonic, subharmonic, and quasiperiodic
response are identified by H, SH, and Q, respectively. The mean
value r = rosc0.99 of r(t) is fixed to be slightly below the oscillatory
threshold rosc under stationary heating (� = 0) as shown schemati-
cally by the square in the inset. The parabola in the inset refers to the
� = 0 marginal stability curve and the arrows indicate the action of
the modulation. The parameters are De = 0.1 and k = 6.

Fig. 6 by those parts of the stability curve that are labeled by
Q and that are connected to the periodic parts.

C. Nonlinear results

We performed extensive numerical calculations to elucidate
the nonlinear behavior of convection under modulation. We
studied in detail modulated SOC, TW, and SW convection. In
the modulated SOC state the rolls remain spatially fixed and
only their amplitude oscillate. This type of convection showed
the largest response to modulation. For the parameters that we
investigated here, the modulated TWs showed practically no
oscillations of the phase velocity and only minor amplitude
oscillations. Also the SWs that we studied were only slightly
amplitude modulated. We also mention that despite an ex-
tensive numerical search we did not find TWs that became
stabilized by the action of temperature modulation.

So, in the following we only present some results con-
cerning modulated SOC convection that we obtained from
finite-difference simulations using the LMF and the UCM field
equations. We found that for small modulation frequencies
and small Deborah numbers the difference between these two
fluid models shows up only via a relatively small difference
in the flow amplitudes while the dynamical behavior of the
convective response to modulation is the same. This can be
seen in detail in Fig. 7. There we show the time variation of
the maximum wmax(t) of the vertical velocity field—for better
visibility over two modulation cycles. Here wmax refers to the
maximum over the whole fluid layer.

In Fig. 7 the mean Rayleigh number is well below the
marginal stability value Rastat for growth of convection under
stationary heating conditions. The time variation of Ra(t) is
shown in Fig. 7(a). As indicated by the shaded areas in Fig. 7(a)
it exceeds the stationary threshold Rastat only during the time
intervals that are delimited in Fig. 7 by the dotted vertical
lines. Note, however, that the modulation amplitude � = 1 in
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FIG. 7. (Color online) Convective response of a weakly elastic
fluid to temperature modulation with large amplitude and small
frequencies � as indicated. The time variation of the Rayleigh number
is shown in (a). The “supercritical” regime in which Ra(t) exceeds
the onset Rayleigh number Rastat for stationary heating is shaded. The
maximum wmax of the vertical velocity field over the whole fluid layer
as obtained from finite-difference simulations of LMF and UCM field
equations is shown in (b). For the dashed curve in (c) we decreased
the numerical “noise” level in our UCM simulations by a factor of
10 compared to the full curve in order to elucidate its role for the
growth behavior of convection in the “supercritical” driving regime;
see the text for further details. The parameters are De = 0.01, � =
1, 〈Ra(t)〉t = 500, k = π/

√
2, and Rastat = 27π 4/4.

Fig. 7 is large and that the modulation frequencies are small.
Thus, because the modulation period is large compared to the
thermal diffusion time, the driving of the system is modulated
in a quasistationary manner and, moreover, it spends long
times in a driving regime that is supercritical with respect to
the stationary case.

Within each modulation cycle convection begins to grow
from small velocity levels that have been attained during the
previous “subcritical” regime [Ra(t) < Rastat] as soon as the
Rayleigh number Ra(t) crosses the threshold Rastat. Then
the typical relaxation oscillation behavior follows that has

been observed also for low-frequency modulated Newtonian
fluids [37]. Comparing the LMF and the UCM dynamics, one
sees that response of the UCM is weaker and that it shows a
much higher “noise” level of the fields during the “subcritical”
regime.

The noise level in our simulations here is of purely
numerical nature. But in experiments it can be expected to
be much higher because of internal and external thermal
fluctuations and all types of imperfections. This noise acts
as perturbations and thus determines the convection level to
which the system can drop down during the subcritical regime.
And thereby it determines as a kind of initial condition for
the growth phase, for example, the time at which convection
becomes large enough to be seen in the supercritical regime.
To show that, we manipulated the noise level in the UCM field
equations in Fig. 7(c). By reducing in the finite-difference
simulations the admissible level of the divergence of the
velocity field by a factor of 10, the numerical fluctuations
decrease, the flow velocity decreases in the subcritical regime,
and the growth in the ensuing supercritical regime is delayed
(see the dashed line).

V. CONCLUSION

We have investigated the influence of viscoelastic forces
on the convection structures that appear close to onset in
Maxwellian fluids heated from below. We presented a simple
few-modes model. Its predictions concerning stationary and
oscillatory structures are in good agreement with results that
we obtained by numerical simulations of the full nonlinear
field equations for small Deborah numbers. We found stable
standing waves for many realistic parameters and a change
from forward to backward bifurcation for small wave numbers
and small Deborah numbers.

In the presence of a time-periodic temperature modulation,
we observed that the linear stability and the linear convective
response behavior of the quiescent fluid strongly depend on
all system parameters. Furthermore, even the low-frequency-
modulated, quasistationary nonlinear structures are sensitive
to small changes in the Deborah number. In addition, the
differences between the UCM and LMF become visible also
for small Deborah numbers when the heating is modulated.
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Matter 2, 1281 (1990).
[18] S. Rosenblat, J. Non-Newtonian Fluid Mech. 21, 201 (1986).
[19] H. M. Park and H. S. Lee, J. Non-Newtonian Fluid Mech. 66, 1

(1996).
[20] H. R. Brand and B. J. A. Zielinska, Phys. Rev. Lett. 57, 3167

(1986).
[21] B. J. A. Zielinska, D. Mukamel, and V. Steinberg, Phys. Rev. A

33, 1454 (1986).
[22] J. Martı́nez-Mardones, R. Tiemann, W. Zeller, and C. Pérez-
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