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Pore-scale flow simulations were conducted to investigate the permeability tensor of anisotropic porous
media constructed using the Voronoi tessellation method. This construction method enabled the introduction of
anisotropy to the media at the particle level in a random and yet controllable way. Simulations were carried
out for media with different degrees of anisotropy through varying the mean aspect ratio of grain particles.
The simulation results were then analyzed using the Kozeny-Carman (KC) model. The KC model describes the
permeability of the anisotropic media in a tensor form with the anisotropy represented by different tortuosities
along the three principal directions. The tortuosity tensor was found to be a complex function of the particle
morphology, which is yet to be fully determined. However, the results presented have established the starting point
for further theoretical development to formulate such a function and to build closed-form analytical permeability
models for anisotropic porous media based on first principles.
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I. INTRODUCTION

Fluid flow in porous media is commonly described by
the widely accepted Darcy law, which was originally derived
through experiments by Henry Darcy [1] and has been shown
to be deducible from the Navier Stokes equations using the
homogenization technique [2]. The permeability K , defined by
this law, for an isotropic medium is quantified by theoretical
models mostly based on the Kozeny-Carman (KC) formula
[3,4],

K = f (φ)

kS2
, (1)

where k is known as the Kozeny-Carman constant, S is the
particle specific area (total area of the grain particles divided
by their total volume), and f (φ) is a porosity function [5]. The
value for k is usually taken as proportional to the square of
the tortuosity T , introducing in that way the medium’s pore
structure into Eq. (1). The relationship expressed in Eq. (1) is
based on the assumption of a Poiseuille flow through a pipe
[6,7]. Moreover, the porosity function f (φ) has many proposed
forms, including the theoretically derived Kozeny-Carman
porosity function f (φ) = c0φ

3/(1 − φ)2, with c0 being a shape
parameter [7], and empirical power law relations [5,8].

In anisotropic media, the permeability is a tensor accounting
for the difference in the resistance of granular particles to
flows in different directions. The tensorial law has been tested
previously with numerical studies based on pore network
models involving even high Reynolds number flows where
the tensorial law is extended with the Forchheimer term
[9,10] and it has been proposed that its tensorial nature is
given by an anisotropic tortuosity tensor [6]. However, more
detailed studies at the pore scale are needed to elucidate
this morphological relationship. At this scale, the flow is
strongly dependent on not only details of the topology of
the pore structure but also the morphology of the obstacles.
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These microscopic details, largely inaccessible during physical
experiments or macro-scale numerical modeling [11], can be
resolved by pore scale simulation techniques.

The overall goal of this article is to quantify the microscopic
and macroscopic effect of anisotropic medium morphology
on pore-water flow in different directions within the porous
media. Simulations were carried out systematically to ex-
amine the responses of modeled anisotropic porous media
to different pressure gradients applied. The study adopted
the lattice Boltzmann method (LBM) to model flow through
granular assemblies artificially constructed using the Voronoi
tessellation method. The Voronoi tessellation was obtained
from the Voro++ open source library (Ref. [13]) developed by
Chris Rycroft, and for the LBM the MechSys open source
library (Ref. [12]), developed by the first author, is used.
Anisotropy was introduced at the particle level by altering
individual particles aspect ratios, generating samples with
isotropic to highly anisotropic pore structures. By taking
Eq. (1) as a theoretical basis, the simulation results were
analyzed to examine the relationship of permeability with the
three key morphological variables: the particle specific area S,
porosity φ, and tortuosity tensor T .

In the following, Sec. II explains the methodology, de-
scribing how the fluid was modeled with the lattice Boltzmann
method, how the anisotropic granular medium was constructed
with the Voronoi tessellation and how the simulations were
carried out. Section III shows the results for the anisotropic
permeability tensor followed by Sec. IV where these results
are analyzed based on the KC model. An extension of the
work for a double-degree anisotropy is also included in Sec. V.
Finally Sec. VI presents conclusions drawn from the study.

II. METHODOLOGY

A. Lattice Boltzmann method

The LBM has been used previously to study flow effects
at the pore scale [11,14]. For the present study the lattice
Boltzmann D3Q19 scheme was used [15]. In this scheme the
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space is divided into a cubic domain where each cell has a
set of probability distribution functions fi , representing the
density of fluid particles going through one of the 19 discrete
velocities �ei . The density ρ and velocity �u at each cell position
�x can be determined by

ρ(�x) =
18∑
i=0

fi(�x), �u(�x) =
∑18

i=0 fi(�x)�ei

ρ(�x)
. (2)

Each distribution function has an evolution rule derived from
the Chapman Enskog expansion of the Boltzmann equation
[16],

fi(�x + �eiδt,t + δt) = fi(�x,t) + �col, (3)

where �x is the position of the local cell, δt is the time step,
and �col is a collision operator representing the relaxation
processes due to the collision of the fluid particles. For this
study, the widely accepted Bhatnagar-Gross-Krook (BGK)
model for the collision operator [17] was used, which assumes
that the collision processes drive the system into an equilibrium
state described by an equilibrium function f

eq
i ,

�col = f
eq
i − fi

τ
, (4)

with τ being the characteristic relaxation time. It has been
shown that the Navier Stokes (NS) equations for fluid flow [18]
are recovered if

f
eq
i = ωiρ

(
1 + 3

�ei · �u
C2

+ 9(�ei · �u)2

2C4
− 3u2

2C2

)
, (5)

and the kinetic viscosity of the fluid (ν) is given by

ν = (τ − 0.5)
δ2
x

3δt

, (6)

with C = δx/δt , a characteristic lattice velocity defined by
the grid spacing δx . Equation (6) imposes a constraint on the
choice of τ , which must be greater than 0.5 for the viscosity
to be physically correct. It is also known that values close
to 0.5 produce unstable numerical behavior [16] due to the
nonlinearity of the NS equations; hence it is advisable to keep
its value close to one.

The fluid is assumed to be reflected by the solid boundaries.
Hence, the bounce-back boundary condition [16] was imple-
mented for cells that are tagged as solids. In the bounce-back

FIG. 1. (Color online) Voronoi assemblies (with shrinkage) in
three dimensions (3D) for an isotropic (α = 1.0) and anisotropic
(α = 5.0) media.

FIG. 2. A 2D Voronoi construction with shrinkage shown by the
dashed lines. The construction starts with distributing randomly a set
of points (crosses) in the domain. A Voronoi polygon is built by the
bisection of the lines joining a given point to its neighbors until a
convex hull is obtained. Subsequently the polygons are shrunk by a
size of ds/2 to obtain a new set of polygons (dashed lines), forming
void spaces for fluid flow paths.

condition, after the collision step, the distribution functions
are swapped symmetrically as

f−i = fi, (7)

where the subscript −i refers to the opposite direction to the
ith velocity.

The simulation domain consisted of a cube of 200 × 200 ×
200 LBM cells and pressure (density) boundary conditions
were applied to the surface of the cube across each of the
principal directions as explained in Ref. [19]. The relation
between the density and pressure p for this D3Q19 model
is given by the ideal gas law p = C2ρ/3. The macroscopic
velocity �vm and density ρm were measured as volume averages
over the total number of nonsolid cells (Nc) [11],

ρm =
∑

�x
ρ(�x)/Nc, �vm =

∑
�x ρ(�x)�u(�x)∑

�x ρ(�x)
, (8)

which were then used to obtain the macroscopic flux �F =
ρm�vm. It was assumed that equilibrium is reached when the

FIG. 3. Octahedral plane for the pressure gradient space. For the
simulations, eight different θ angles were considered for each aspect
ratio α.
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TABLE I. Set of parameters used in the simulations with values
given in lattice units of length (l.u.), time (t.u.), and density (d.u.).
The constant C [see Eq. (5)] was set as one. The values for piso

and pdev ensured that the simulations were conducted within the
incompressible limit and with small Reynolds numbers.

Parameter Value

δx 1.0 l.u.
δt 1.0 t.u.
τ 1.0
ds (spacing between obstacles) 8 l.u.
piso 0.02 d.u. ×C2/3
pdev 0.01 d.u. ×C2/3
ρ0 (initial density) 1.0 d.u.

following condition is met:

| �F(t) − �F(t − 500)|
| �F(t)|

< 10−5. (9)

B. Voronoi construction of porous media

The granular medium consisted of solid particles produced
by the Voronoi tessellation. As explained in Refs. [20–22],
for the construction of a granular assembly an initial cubic
grid is filled with points at random positions restricted to one
point per cell. Then the Wigner-Seitz polyhedron is calculated
for each random point. If there are the same number of cells
in the x, y, and z direction, then the construction is fairly
isotropic. By adding more cells along the z direction but
keeping the same cubic dimensions for the domain, the cells
become rectangular boxes and the obtained Voronoi polyhedra
is now deformed. The ratio between the cell numbers along the
z and the horizontal directions (α) determines the mean ratio
between the vertical and horizontal dimensions of the solid
particles. Figure 1 shows two Voronoi assemblies for α = 1.0
(isotropic) and 5.0 (anisotropic) conditions. The Voronoi
construction ensures a random division of the space, and hence,
by modifying the random seed of the original points, different
Voronoi constructions can be obtained. Because the Voronoi
space partition produces a perfect division without any voids,
each particle is shrunk by a given length ds/2 to produce
pore space for the fluid to go through. The shrunk particles
are shown in Fig. 2 for a two-dimensional (2D) Voronoi
construction as an example. As can be seen in the figure,
the fluid can flow through the paths opened by the shrinking
process. In this study, the shrinkage length ds was chosen
to be the size of eight LBM cells [i.e., 8 lattice units (l.u.)]
in a domain grid of 200 × 200 × 200 LBM cells, which was
appropriate for simulating a Stokes flow in the pore space [16].

Simulations with larger numbers of LBM cells for the domain
and hence the pore (with ds = 10 and 12 l.u., respectively)
were also conducted. Variations of the predicted permeability
simulated with the different models were small, confirming
that the simulation results were sufficiently accurate and
resolution independent.

C. Simulations

For the flow simulations eight different pressure configura-
tions were used for each aspect ratio (α) value for the porous
medium. Furthermore, each of these pressure configurations
was combined with eight random Voronoi samples. The mean
value and standard deviation of the results from these eight
simulations were calculated and used in the further analysis.
The pressure gradient �∇p was defined as the vector (px,py,pz)
where pi is the difference between the pressures at the two
pressure boundary faces of the cubic domain along the i

direction divided by the domain’s length (�pi/L). Each of
the different pressure configurations has a constant pressure
gradient norm (| �∇p| = constant) but a different angle of a
octahedral plane (see Fig. 3). To achieve this, the following
relationships were applied:

px = piso√
3

+ 2pdev sin(θ − 5π/6)√
6

,

py = piso√
3

+ 2pdev sin(θ − π/6)√
6

, (10)

pz = piso√
3

+ 2pdev sin(θ + π/2)√
6

.

The norm | �∇p| =
√

p2 + p2
dev is a function of the gradient’s

isotropic piso and deviatoric pdev components, independent of
the θ angle of the octahedral plane. The parameters used in the
simulations are given in Table I.

To determine the permeability tensor K , only three θ angles
were needed. Thus, the results with the other five angles were
used to validate the derived tensor. Darcy’s law was used for
computing K ,

K �∇p = μ�vm, (11)

where the dynamic viscosity μ is related to the kinematic
viscosity ν by the fluid’s density μ = ρmν. To illustrate
the method, the numerical results for α = 2.0 are shown in
Tables II–IV. Table II shows the components of vector μ�vm

obtained by averaging the simulated flow at all cells across
the domain for different θ values. As explained above, only
three flow vectors for three different angles θ were required to
determine K ; in the presented cases θ = 105◦, 150◦, and 195◦
were used. Table III shows the obtained K tensor, and Table IV
shows the velocity vectors calculated from the product K �∇p.

TABLE II. Components of the μ�vm vector (in units of 10−4 d.u. × l.u.3 × t.u.−2) obtained from simulations for each of the 8 θ values and
α = 2.0.

15◦ 60◦ 105◦ 150◦ 195◦ 240◦ 285◦ 330◦

μ · vx 0.1850 0.2775 0.2943 0.2257 0.1118 0.0024 0.0711 0.0193
μ · vy 0.2536 0.1460 0.0394 − 0.0037 0.0419 0.2563 0.2993 0.1497
μ · vz 0.0028 0.0109 0.0609 0.1235 0.1621 0.1038 0.0412 0.1539
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TABLE III. Calculated permeability matrix K based on simula-
tion results for α = 2.0. The nondiagonal terms are not exactly zero
but are much smaller than the diagonal components, indicating that
the simulation system is close to the principal coordinate system
as expected. Furthermore, the first two diagonal terms are very
similar but the third is notably smaller, consistent with the medium’s
anisotropic configuration. The eigenvalues of this matrix are 0.4567,
0.4436, and 0.2474 (in units of l.u.2), which is very close to the
diagonal values.

K =
⎛
⎝ 0.4492 −0.0062 0.0021

−0.0068 0.4510 −0.0006
−0.0004 0.0004 0.2474

⎞
⎠ .

Figure 4 shows for all aspect ratios the difference between
measured and predicted velocity. The relative difference
in velocity was small (<3.5%) for conducted simulations,
indicating that Darcy’s law applies in the simulated value
range of parameters. Note that the norm of a tensor |A| used
is the standard Euclidean norm (i.e.,

√∑
ij A2

ij ). Also shown
in Fig. 4 is the variation of the density ρm. Since this variation
is also small, it can be concluded that the simulations were
conducted within the incompressible limit.

III. RESULTS

As explained in the previous section, a permeability matrix
can be determined for each sample with given aspect ratio
α. The material parameters are the eigenvalues (Ki) of this
matrix. Figure 5 shows these eigenvalues for the values of α

used in the simulations. As expected, the first two eigenvalues,
corresponding with the x and y axis, are very close since
anisotropy is introduced in the discussed simulations only
along the z axis. The third eigenvalue K3 is associated with
the permeability along z. With an increasing aspect ratio α,
the solid particles become more stretched horizontally and
their surface area perpendicular to the z direction increases,
resulting in higher resistance to the flow in this direction. To
overcome the obstacles, the flow takes a larger path around
them. This is the reason why the K3 eigenvalue decreases with
the aspect ratio α. As shown in the next section, the tortuosity
behaves differently along the principal directions, which in
turn produces the anisotropy of the permeability tensor.

The evolution of Ki shown in Fig. 5 seems to be not
monotonous: At α = 3.5 a sudden variation of the trends
for all three eigenvalues can be recognized. This effect is
a consequence of the Voronoi division of space. The total
number of solid particles placed into the domain is given by
No = N3

hα where Nh is the number of particles along the
horizontal direction. In the simulations, No was set to be as

close to 1000 obstacles as possible. However, No changes
for different α. For instance, for α = 3.5 No = 1225 while
for α = 4.0 No = 864. This sudden change in the number of
particles leads to variations in the porosity since the domain’s
volume remains constant. Figure 6 shows the variation of the
porosity φ with α. A decrease in porosity is evident from
α = 3.5 to α = 4.0, illustrating the effect of the Voronoi
construction.

Before proceeding with the analysis, it is useful to check
how close the samples are to a principal system as defined by
the coordinates or axes (x,y, and z). Such a principal system
possesses a permeability tensor of only diagonal elements
given by the eigenvalues [i.e., K = K eig = diag(K1,K2,K3)].
Figure 7 shows that the relative difference between K and
K eig was less than 3.5%. Therefore it is justified to say that
the solid particle placement and configuration modeled here
ensured a sample principal system consistent with the defined
coordinates.

IV. ANALYSIS

The analysis of the simulation results is carried out based
on Eq. (1). The three geometric variables that affect the
permeability of the system are the specific area S, the
porosity φ, and the tortuosity T . Considering the dimensions
of the variables, it can be recognized that the eigenvalues
of the permeability tensor, with the dimension [L2], must
be proportional to S−2 since S is the only variable with a
dimension, [L−1]. Therefore, an equation similar to the KC
model is inferred for the eigenvalue Ki :

Ki = f (φ)S−2g(Ti), (12)

where it is assumed that the anisotropy of K depends solely on
the anisotropic nature of the tortuosity tensor T , a hypothesis
that has been proposed previously [6]. The ratio between the
smallest eigenvalue K3 and the mean horizontal eigenvalue
Kt = (K1 + K2)/2 should then be a function of the tortuosity,
independent of the specific area or porosity, that is,

K3

Kt

∼ g(Tz)

g(Tt )
. (13)

In Eq. (13) Tz is the tortuosity in the z direction, and Tt is the
mean horizontal tortuosity.

Figure 8 shows the K3/Kt ratio. The sudden changes due
to the porosity evolution shown in Fig. 5 almost disappear
and now a monotonic function is obtained, which supports the
underlying hypothesis behind Eq. (13).

It is necessary at this point to measure the tortuosity in the
different directions. From the results shown in Fig. 7, it can

TABLE IV. Components of the μ�vm vector (in units of 10−4 d.u. × l.u.3 × t.u.−2) calculated from the product K �∇p for α = 2.0. The
calculated flow vectors are identical to the simulated ones for θ = 105◦, 150◦, and 195◦ as expected by construction, and they only slightly
differ in the other cases. This confirms the validity of Darcy’s law in the tensorial form of Eq. (11).

15◦ 60◦ 105◦ 150◦ 195◦ 240◦ 285◦ 330◦

μ · vx 0.1850 0.2775 0.2943 0.2257 0.1118 0.0025 0.0711 0.0193
μ · vy 0.2538 0.1461 0.0394 − 0.0037 0.0419 0.2563 0.2994 0.1496
μ · vz 0.0028 0.0109 0.0609 0.1235 0.1621 0.1040 0.0414 0.1540
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FIG. 4. (Color online) Relative differences between the fluid
velocity simulated and calculated by Darcy’s law (circles), and
between the measured density ρm and the initial density ρ0 (squares)
for cases of different aspect ratios α.

be concluded that the simulation coordinate system is the same
as the sample’s principal system. For such a principal system,
the tortuosity tensor T must be diagonal as well. Thus by
applying the pressure gradient along each principal direction
to generate the flow and measuring the streamlines’ length
given by the flow field, the tortuosity tensor components
can be readily derived. The streamlines can be computed
by evaluating the line integral of the velocity field with a
fourth-order Runge-Kutta scheme. To obtain the velocity at
any point in the domain, a trilinear interpolation is used based
on the velocities at each cell. Figure 9 illustrates the method
to calculate the streamline length and tortuosity.

Other definitions for the tortuosity used in the literature
include the average of the streamline length weighted by the
time it takes for a particle in the streamline to move across
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FIG. 5. (Color online) Eigenvalues Ki of the permeability matrix/
tensor K found for each aspect ratio α normalized by the isotropic
permeability K0. The error bars show the standard deviations among
the simulated random Voronoi samples.
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FIG. 6. (Color online) Porosity φ versus aspect ratio α.

the domain [14]. The definition of the tortuosity may have
important consequences on the permeability tensor values,
but the general form described in Eq. (12) should remain
unchanged.

Figure 10 shows the tortuosity along the z axis (Tz) and the
average horizontal tortuosity (Tt ). It is clear that the tortuosity
component Tz increases with the aspect ratio α. For α = 5.0,
the average streamline driven by a pressure gradient across
the z direction is 1.8 times longer than the average streamline
associated with flow driven by a gradient in the x direction.
This agrees with the result shown in Fig. 11 where the effect
of a rectangular solid particle on local flows and streamlines
is evident. An anisotropic particle opposes the flow in the
z direction, lengthening the associated streamlines around it.
In an assembly of particles forming an anisotropic media, the
tortuosity is not only a function of the particle shape; pore space
morphology and flow direction also influence the tortuosity.
On the other hand, as can be seen in Fig. 10 the horizontal
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FIG. 7. (Color online) Normalized difference between the com-
puted permeability tensor K and the corresponding eigenvalue
tensor K eig.

046306-5



S. A. GALINDO-TORRES, A. SCHEUERMANN, AND L. LI PHYSICAL REVIEW E 86, 046306 (2012)

1 2 3 4 5 6
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

α

K
3/K

t

FIG. 8. (Color online) Permeability ratio, K3/Kt , versus the
aspect ratio α.

tortuosity slightly decreases as the particles become flatter and
hence provide less resistance to the fluid along the x or y

direction.
To determine the g function of Eq. (13), the relationship

between the permeability ratio and the tortuosity ratio is
examined in Fig. 12. A power function with exponent equal
to −2.0 was found to describe well the relationship, which is
consistent with the KC model of Eq. (1). This exponent value
in the KC model is based on the assumption of Poiseuille pipe
flow traversing the porous medium, which is an assumption
valid for the anisotropic medium as well, at least within the
low Reynolds number constraint applied in the present study.

To determine the porosity function f (φ), a normalization
procedure, described in the following, is applied. Based
on Eq. (12), a set of dimensionless parameters i can be
calculated based on the simulation results, which is related to

FIG. 9. A streamline is constructed by starting with a seed point
at the domain boundary. Then the pathline of the seed, representing
a streamline, is then determined by solving the differential equation
∂ �x
∂t

= �v numerically. To obtain the velocity at the integration point, a
trilinear interpolation is used with the velocities at the closest eight
LBM nodes. Once the streamline is obtained, the length is given by the
line integral, and the tortuosity by dividing the streamline length over
the straight distance between the two streamline ends (dashed line).
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FIG. 10. (Color online) Vertical Tz and horizontal Tt tortuosities
versus the aspect ratio α.

the porosity function:

i = KiS
2T 2.0

i = f (φ). (14)

The particle specific area S can be calculated based on the
simulation setup since the area of each particle is known. S

increases with the aspect ratio α as shown in Fig. 13. As
α → ∞, the volume goes to zero and S → ∞ assuming that
the surface area remains constant. However, the number of
particles is not constant, nor is the particle surface area. Thus
the same sudden decrease of S can be observed at α = 3.5 as
on the conductivity and porosity curves (Figs. 5 and 6). Note
that the trend shown in Fig. 13 is characteristic for media
generated by the Voronoi construction method used here;
other particle generation methods may lead to different S vs α

relationships.
With S, Ki , and Ti computed, Eq. (14) is used to calculate

i , which is shown as a function of the porosity in Fig. 14. The

FIG. 11. (Color online) Streamlines across a single solid particle
for a gradient across the z direction (dark) and across the x direction
(light). The aspect ratio of the particle is α = 4.0.
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FIG. 12. (Color online) Permeability ratio K3/Kt versus tortuos-
ity ratio Tz/Tt . The fitting model is given by a power function with
exponent equal to −2.0 ± 0.1.

results show that the difference due to the anisotropic medium
disappears and the parameters (i) for the three directions
behave in the same way. The KC porosity function, f (φ) =
c0φ

3/(1 − φ)2 with the shape factor c0 as a free fitting parame-
ter, appears to fit well the calculated results. In this connection,
the shape factor c0 depends on the porous media morphology.
Kozeny proposed values between 1/2 and 1/6, which have
been shown to agree with experimental results [3,6]. In the
present work, a value of c0 = 0.22 ± 0.02 was found through
curve fitting. The simulated medium built with the Voronoi
construction method appears to have a similar behavior to that
of packed spheres with similar porosity and specific area.

V. DOUBLE ANISOTROPY

Based on the above simulations that considered a single
degree of anisotropy only, a permeability model for anisotropic
porous media was established, involving a relation between the
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FIG. 13. (Color online) Specific area S versus the aspect ratio α.
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FIG. 14. (Color online) Calculated  values versus porosity. The
KC porosity function fKC(φ) = 0.22φ3/(1 − φ)2 is shown as the
fitted function.

tortuosity tensor T and the permeability K :

K = c0
φ3

(1 − φ)2S2
T−2. (15)

In this section, we discuss simulations incorporating double
anisotropy induced along the y direction as well as the z

direction. The aim of these simulations was to further test the
validity of Eq. (15). The average particle dimension along the y

direction was set to be twice as large as the average x dimension
introducing an aspect ratio β = 2. In the simulations, the
anisotropic factor β along the y direction was kept constant
and the anisotropy (α) along the z direction varied from 1.0 to
5.0 as in the simulations presented before. To validate Eq. (15),
both the porosity φ and specific area S were determined for
each simulation. The results are shown in Fig. 15. Again the
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FIG. 15. (Color online) Specific area S and porosity φ for lateral
anisotropy factor β = 2.0 and varying vertical anisotropy factor α.
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FIG. 16. (Color online) Tortuosity components for lateral
anisotropy factor β = 2.0 and varying vertical anisotropy factor α.

low number of particles produced a sudden change at various
values of α as observed before for α = 3.5 in the single
anisotropy case. For the double anisotropy model, sudden
increases of S and φ were evident at α = 2.0 and 4.0.

The third variable to be determined in order to check
Eq. (15) is the tortuosity. The same strategy used above was
applied to this case: Gradients were applied along the principal
directions with the tortuosity subsequently measured along
these directions. The results are shown in Fig. 16. In contrast
to the result shown before, the three components are different
here, although for α = 1.0 Tx and Tz are equal and Ty is
higher due to the anisotropy along the y direction (β = 2).
At this point Ty = 1.4, close to the value of Tz for the single
anisotropy case with α = 2 shown in Fig. 10, meaning that the
two cases are identical as physically expected. In addition, the
value for Tz and Tx is close to the value for Tx and Ty in Fig. 10
with α = 2 for the same reason. Furthermore, the curves of Tz

and Ty intersects at α = β = 2.0 as expected. Although the
second anisotropy factor β was kept constant, the tortuosity
along this direction decreased slightly. As the particles were
compressed along the z direction, it was easier for the fluid
to flow along the x and y directions with streamlines of less
tortuosity. The maximum value for Tz is 1.64, considerably
smaller than the maximum value of 1.8 found in the single
anisotropy simulations. Due to the reduction of the particles’
y dimension, the maximum tortuosity in the z direction is
reduced.

Finally, the results of Figs. 15 and 16 are combined with
Eq. (15) to obtain the components of the permeability tensor
for the case of double anisotropy. This permeability tensor
is compared with the values predicted by the simulations in
Fig. 17. Overall the KC model seems to agree fairly well with
the simulated permeability components. Both simulated and
calculated conductivities have peaks at α = 2.0 and 4.0 due
to the evolution of S and φ with increasing α (Fig. 15). The
difference between the three components can be related to the
tortuosities. Both Kx and Ky increased due to the decrease of
their corresponding tortuosities and the overall increase of S
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FIG. 17. (Color online) Permeability components for lateral
anisotropy factor β = 2.0 and varying vertical anisotropy factor α:
comparison between the values simulated by the LBM model and
calculated by Eq. (15).

and φ. In contrast, S and φ cannot overcome the effect of the
increase of Tz on Kz, resulting in a decreasing trend for the
permeability in the z direction.

VI. CONCLUSIONS

In the present work, LBM simulations of flow through
anisotropic porous media have been carried out. The media
were constructed with the Voronoi tessellation method in
3D, which produces a random and yet controllable internal
morphology of solid particles and associated pore space. The
assembly’s anisotropy was introduced at the particle or pore
scale by imposing a mean particle aspect ratio α. The results
were analysed based on the well-known Kozeny Carman (KC)
model, originally developed for isotropic media [Eq. (1)].
The results demonstrate that the KC model also describes
the permeability tensor K well for the simulated anisotropic
media, with the anisotropic nature represented by the tortuosity
tensor T [Eq. (15)].

This finding suggests that the assumptions made in the
formulation of the KC model hold as well for flow through
the anisotropic media simulated by the Voronoi construction
method. In particular, the flow can be assumed to behave
like the Poiseuille flow through pipes, which can represent
the streamlines shown in Fig. 11. These assumptions justify
the dependence of K on the tortuosity and the inverse of
the specific area as well as the KC porosity function f (φ) =
c0φ

3/(1 − φ)2. Although the specific area does not have a
simple analytical expression like that for the sphere case, it
can be calculated nonetheless from the area and volume of
each solid particle. The tortuosity tensor was measured in its
principal system; however, the above law is generally valid for
any coordinate system.

A more general sample with anisotropy in two directions
was used to check the validity of Eq. (15). Again the
three variables S, φ, and T were determined independently.
Equation (15) seems to agree with the measured and simulated
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permeability components in this more general case. Although
both anisotropy factors α and β were kept larger than one,
this represents a general case. Systems with anisotropy factors
smaller than one can be obtained by rotating the studied
samples because of the physical law symmetry.

Previous studies have proposed analytical relationships be-
tween the tortuosity and the porosity for isotropic media [14].
However, as the numerical results of this study show, tortuosity
is a complex function of both porosity and solid particle
morphology. Future studies should be conducted to explore
further the definition of the tortuosity tensor based on the
conductivity. In the present work, the traditional definition for
tortuosity was taken, but there are more advanced definitions in

the literature and they could affect the dependence of K on T .
Future research can also apply the methodology proposed here
to study anisotropic flow in unsaturated conditions using the
multiphase-multicomponent LBM scheme. Under unsaturated
flow conditions, the full connectivity assumed in saturated
conditions no longer applies and a percolation term may need
to be included in the conductivity tensor.
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