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Shear viscosity of dilute suspensions of ellipsoidal particles with a lattice Boltzmann method

Haibo Huang, YanFeng Wu, and Xiyun Lu
Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China

(Received 21 March 2012; published 8 October 2012)

The intrinsic viscosities for prolate and oblate spheroidal suspensions in a dilute Newtonian fluid are
studied using a three-dimensional lattice Boltzmann method. Through directly calculated viscous dissipation,
the minimum and maximum intrinsic viscosities and the period of the tumbling state all agree well with the
analytical solution for particles with different aspect ratios. This numerical test verifies the analysis on maximum
and minimum intrinsic viscosities. Different behavior patterns of transient intrinsic viscosity in a period are
analyzed in detail. A phase lag between the transient intrinsic viscosity and the orientation of the particle at
finite Reynolds number (Re) is found and attributed to fluid and particle inertia. At lower Re, the phase lag
increases with Re. There exists a critical Reynolds number Rea at which the phase lag begins to decrease with
Re. The Rea depends on the aspect ratio of the particle. We found that both the intrinsic viscosity and the period
change linearly with Re when Re < Rea (low-Re regime) and nonlinearly when Re > Rea (high-Re regime). In
the high-Re regime, the dependence of the period on Re is consistent with a scaling law, and the dependence of
the intrinsic viscosity on Re is well described by second-degree polynomial fits.
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I. INTRODUCTION

Suspended particles in flows occur in many applications and
play an important role in industry. For example, the behavior
of suspended particles may affect the quality of paper [1].
Shear viscosity of dilute suspensions of spheres has been
studied analytically by Einstein [2]. According to the theory,
the relative viscosity 〈π̄〉 in dilute suspensions of spheres is [2]
〈π̄〉 = 1 + φ〈η̄〉, where φ is the solid volume fraction and
〈η̄〉 = 5

2 is the intrinsic viscosity. The relative viscosity 〈π̄〉 is
defined as the ratio of the effective suspension viscosity νs to
the corresponding viscosity of the pure fluid νf , i.e., 〈π̄〉 ≡ νs

νf
.

The intrinsic viscosity is defined as 〈η̄〉 = 〈π̄〉−1
φ

. Later, Krieger
and Dougherty [3] extended Einstein’s formula to a larger φ

regime semiempirically. Recently, Lishchuk et al. [4] studied
the shear viscosity of bulk suspensions of spherical particles
at a low Reynolds number (Re) using a lattice Boltzmann
(LB) method. In their result, they included a correction for the
effective hydrodynamic radius of particles due to the simple
bounce-back scheme they used [4]. In the present study, such
corrections are not necessary.

For a dilute suspension of nonspherical ellipsoidal particles,
the variation of intrinsic viscosity would be more complex.
The rotational behavior of prolate or oblate spheroids at very
low Reynolds numbers has been studied theoretically for a
long time. Jeffery investigated the motion of a single ellipsoid
in shear flow while completely neglecting inertial effects [5].
He concluded that the final rotational state of an ellipsoid
cannot be determined because it depends on initial conditions.
To definitively determine the final rotational state, Jeffery [5]
hypothesized that, “The particle will tend to adopt that motion
which, of all the motions possible under the approximated
equations, corresponds to the least dissipation of energy.”
Extensive analytical investigations [6] studied the inertial
effect at Re < 1 using perturbation theory. However, their
analysis is not applicable to large-Re cases. Leal [7] reviewed
most of the previous relevant theoretical studies. There are also
some relevant experimental works in the literature. Taylor [8]

confirmed Jeffery’s hypothesis by investigating the orbit of
a prolate or oblate spheroid in a Couette flow at a very low
Reynolds number. However, Karnis et al. [9] found that even
when the inertial effect is very small [e.g., at ReO(10−3)],
nonspherical particles may adopt a motion that is different
from Jeffery’s hypothesis. For suspensions of many spherical
particles, states of maximum dissipation have been observed
experimentally [10].

Different numerical methods have also been used to study
the motion of particles in flows. However, some methods such
as Stokesian dynamics [11] are only applicable to spherical
particles and they neglect the inertial term, which may have
a significant influence on the motion of particles. For finite-
Reynolds-number flows, the Navier-Stokes equations have to
be solved. Feng et al. [12] simulated the motion of a single
ellipse in two-dimensional (2D) creeping flows using a finite
element approach. They confirmed Jeffery’s hypothesis at
Re ≈ 1. In the past 30 years, the lattice Boltzmann methods
(LBMs) have been developed into an efficient numerical tool to
study particulate suspensions [1,4,13–15]. Qi and Luo studied
the energy dissipation of a prolate spheroid at Re = 0.1 and
18 using a LBM [1]. According to their study, the numerical
results did not support Jeffery’s hypothesis. However, the
calculated intrinsic viscosities in their study [1] seem not to
be consistent with Jeffery’s study [5]. That will be illustrated
in Sec. III in detail. Here we demonstrate that our results are
much more reliable than those of Qi and Luo [1] and further
confirm that Jeffery’s hypothesis may be incorrect.

Some numerical studies investigated prolate and oblate
spheroid suspensions in 3D Couette flows for Re up to
approximately several hundred [1,15,16]. They focused on
the critical transition Re for different rotational modes, which
may depend on the initial orientation [15]. There are also some
studies that focused on the critical Re at which the particle
would stop rotating [14]. Lin et al. [17] studied the inertial
effects on the suspension of a rigid sphere in a simple shear
flow. They proposed a formula for the suspension viscosity:
νs = νf [1 + φ( 5

2 + 1.34 Re1.5)]. However, for suspensions of
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elliptical spheroids, no such formula is proposed. Here, from
our numerical results, we propose to separate the dependences
of the intrinsic viscosity and the period of the tumbling state
on Re into two regimes. In the low-Re and high-Re regimes,
they change linearly and nonlinearly with Re, respectively.
The phase lag between the transient intrinsic viscosity and the
orientation of the particle at finite Reynolds number is also
analyzed in detail.

In this study, we focus on the intrinsic viscosity of spheroids
in a 3D Couette flow for Re up to about 200. The numerical
method used in our study is based on the LBM [13,14] with
improvements in the collision model [18] and curved-wall
boundary treatment [18]. For the collision model, the multi-
relaxation-time (MRT) model [18] is used because it has better
numerical stability. For the curved-wall boundary condition, an
accurate momentum-exchange-based scheme [18] is applied.
The translational and orientational motions of the spheroid are
modeled by the Newtonian and Euler equations, respectively.
Our scheme for calculating relative viscosity was validated in
Ref. [15]. The present work is intended to provide a better
understanding of the intrinsic viscosity of dilute suspensions
of nonspherical particles. In Sec. II, the LBM and the basic
equations for the motion of a solid particle are introduced
briefly. Results and discussion on the shear viscosity of
dilute suspensions of ellipsoidal particles with different Re
and aspect ratios are described in Sec. III. Conclusions are
presented in Sec. IV.

II. NUMERICAL METHOD

In our study, the fluid flow is solved by the MRT-LBM
[18]. The following MRT lattice Boltzmann equation (LBE)
[19] is employed to solve the incompressible Navier-Stokes
equations:

|f (x + eiδt,t + δt)〉 − |f (x,t)〉
= −M−1Ŝ[|m(x,t)〉 − |m(eq)(x,t)〉], (1)

where the Dirac notation of ket |·〉 vectors symbolizes the
column vectors. The particle distribution function |f (x,t)〉
has 19 components fi with i = 0,1,2,3, . . . ,18 in our 3D
simulations because the D3Q19 velocity model is used. The
collision matrix Ŝ = MSM−1 is diagonal with Ŝ [19],

Ŝ ≡ diag(0, s1, s2, 0, s4, 0, s4, 0, s4, s9,

s10, s9, s10, s13, s13, s13, s16, s16, s16).

|m(eq)〉 is the equilibrium value of the moment |m〉. The
19 × 19 matrix M [19] is a linear transformation which is used
to map a vector |f 〉 in discrete velocity space to a vector |m〉 in
moment space, i.e., |m〉 = M|f 〉, |f 〉 = M−1|m〉. In the above
equation, ei are the discrete velocities of the D3Q19 model.
The lattice speed is defined as c = δx

δt
, where δx and δt are the

lattice spacing and time step, respectively, in LB simulations.
The matrix M , the discrete velocities of the D3Q19 model,
and |m(eq)〉 are all identical to those in Refs. [15,19].

The macrovariable density ρ and momentum jζ are ob-
tained from

ρ =
∑

i

fi, jζ =
∑

i

fieiζ , (2)
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FIG. 1. (Color online) Schematic diagram of a spheroid with
its symmetry axis in the x ′ direction in a Couette flow. Line OM
represents the intersection of the (x,y) and the (x ′,y ′) coordinate
planes. The two walls at y = −L and L move in opposite directions.
Periodic boundary conditions are applied in the x and z directions.

where ζ denotes x, y, or z coordinates. Here the collision
process is executed in moment space [19]. In our simulations,
the parameters are chosen as s1 = 1.19, s2 = s10 = 1.4, s4 =
1.2, s9 = 1

τ
, s13 = s9, and s16 = 1.98. The parameter τ is

relevant to the kinematic viscosity of the fluid with νf =
c2
s (τ − 0.5)δt and cs = c√

3
. The pressure in the flow field can

be obtained from the density via the equation of state p = c2
s ρ.

The particle’s movement and rotation are updated at each
time step through Newton’s law and Euler equations. The
prolate or oblate spheroid is described by

x ′2

a2
+ y ′2

b2
+ z′2

c2
= 1, (3)

where (x ′,y ′,z′) represents the body-fixed coordinate system
and a, b, and c are the lengths of three semiprincipal axes of a
spheroid in the x ′, y ′, and z′ directions, respectively. The spatial
orientation of any body-fixed frame (coordinate system) can be
obtained by a composition of rotations around the z′-x ′-z′ axis
with Euler angles (ϕ,θ,ψ) from the space-fixed frame (x,y,z)
that initially overlaps the body-fixed frame. The composition
of rotations is illustrated in Fig. 1. Noted that the symmetry
axis of the spheroid is in the x ′ direction.

The translational velocity U(t) of the solid particle is
determined by solving Newton’s equations [15]. The rotation
of the spheroid is determined by Euler equations, which are
written as

I · d�(t)

dt
+ �(t) × [I · �(t)] = T(t), (4)

where I is the inertial tensor. Note that in the body-fixed
coordinate system [coordinates (x ′,y ′,z′) in Fig. 1], the
tensor is diagonal and the principal moments of inertia
are Ix ′x ′ = mb2+c2

5 , Iy ′y ′ = ma2+c2

5 , and Iz′z′ = ma2+b2

5 , where
m = ρ0

4
3πabc is the mass of the suspended particle. The �

represent angular velocities and T is the torque exerted on
the solid particle in the same coordinate system. Here four
quaternion parameters [15] are used as generalized coordinates
to solve the corresponding system of equations. With the
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quaternion formulation,  in [Eq. (4)] can be solved using a
fourth-order accurate Runge-Kutta integration procedure [15].

The fluid-solid coupling in our study is based on the
schemes in Refs. [13] and [18]. The force on solid boundary
nodes is calculated through the momentum exchange scheme
[18,20], and the force due to the fluid particle entering and
leaving the solid region [13] is also considered.

A. Rotational modes and parameters in simulations

In the space-fixed coordinates, the streamwise direction
of the Couette flow is along the z direction. The velocity
gradient and the vorticity are oriented in the y and x directions,
respectively. The tumbling mode indicates a particle rotation
about its y ′ or z′ axis with the axis parallel to the vorticity
direction. The log rolling mode indicates the spheroid spin
around the evolution axis (the x ′ axis), which overlaps the x

axis.
To describe the geometry of the spheroid, “ellipticity”

is defined here to be the difference of the greatest and
least diameters divided by the greatest, i.e., ε = a−b

a
for a

prolate spheroid and ε = b−a
b

for an oblate spheroid [5]. The
computational domain in all of our following simulations has
dimension 2L in the x, y, and z directions. Two walls located
at y = −L and L move in opposite directions with speed U ,
as shown in Fig. 1. Periodic boundary conditions are applied
in both the x and z directions. To calculate the force acting
on the spheroid more accurately, grid refinement is used near
the particle. Both the fine grid and the particle are located in
the center of the domain, and the particle is immersed in the
fine grid. We use 1 l.u. and 1 t.s. to denote 1 �xf and 1 �tf ,
respectively. The fine grid has dimension L in three directions
with lattice spacing 1 l.u. The rest of the computational domain
is filled with coarse mesh and the lattice spacing �xc = 2 l.u.

and �tc = 2 t.s. The fine and coarse grids are coupled using
the scheme proposed by Filippova et al. [21].

The particle Reynolds number is defined to be Re = 4Gd2

νf
,

where G = U
L

and d is the length of the semimajor axis (i.e.,
d = a for the prolate spheroid and d = b = c for the oblate
spheroid). In all of our cases, the confinement ratio L

a
> 5 and

the volume fraction is less than 0.7%. Hence, the moving wall
effect can be neglected and the suspensions of particles can be
regarded as dilute suspensions.

In our simulations, the flow is intended to be incompress-
ible. To ensure the incompressibility condition, the maximum
velocity in the flow field should not exceed 0.1 l.u./t.s.

[15]. On the other hand, to ensure that the bounce-back
boundary condition correctly mimics the nonslip boundary
condition on the wall, τ used in the simulations should not
be too large. τf and τc are the relaxation times in the fine
mesh and coarse mesh, respectively. They satisfy the formula
1
3 (τf − 0.5)�tf = 1

3 (τc − 0.5)�tc. In our simulations, we
adopt τf < 1.3; hence the bounce back can correctly recover
the nonslip physical boundary condition. Considering the
above two effects, the parameters are chosen in the following
way. For the low Reynolds number cases, U is calculated from
the definition of Re. For example, in the case of Re = 0.5,
L = 192 l.u., a = 24 l.u., b = c = 12 l.u., τf is set to be 1.2,
and the calculated velocity of the wall is 0.004 86 l.u./t.s. For

larger Reynolds number cases, U is kept at 0.1 l.u./t.s. and
τf is calculated from the definition of Re. For example, in the
case of a prolate spheroid with Re = 30, the parameters are
L = 192 l.u., a = 24 l.u., b = c = 12 l.u., and the calculated
τf and τc are 0.74 and 0.62, respectively.

In all of our numerical tests, the velocity field was initialized
as a Couette flow with a uniform pressure field (p0 = c2

s ρ0).
The particle is released at the center of the computational
domain with zero velocity. Although the translational motion
of the particle is not constrained, the spheroid center is not
found to depart from the center of the computational domain
in all simulated cases. To make the particle enter log rolling
mode and tumbling mode quickly, it was excited by setting the
initial orientation as (ϕ0,θ0,ψ0) = (0◦,0◦,0◦) and (ϕ0,θ0,ψ0) =
(90◦,90◦,90◦), respectively.

B. Calculation of the intrinsic viscosity

From Fig. 1, we can see that the streamlines of the Couette
flow are in the z direction and that the velocity gradient is
in the y direction. The shear stress at a fluid node x can
be obtained through σ (x) = ρνf (∂yw + ∂zv), where v and
w are the velocity components in the y and z directions
at x, respectively. We note that in the MRT LBM, the
second-order moments of the distribution function are given
by pyz = �ieiyeizfi = ρvw − τc2

s ρ(∂yw + ∂zv). Therefore,
at each fluid node the shear stress is obtained through

σ (x) = ρνf (∂yw + ∂zv) = νf

τc2
s

(ρvw − pyz). (5)

In the lattice Bhatnagar-Gross-Krook (BGK) method, at
each fluid node the shear stress can be obtained by σ (x) =
ρνf (∂yw + ∂zv) = −(1 − 1

2τ
)
∑

f
neq
i eiyeiz, where f

neq
i =

fi − f
eq
i .

The energy dissipation represented by the relative viscosity
〈π̄〉 of the flow system [1] is given by

〈π̄〉 = 〈σ̄ 〉
ρνf G

, (6)

where 〈σ̄ 〉 is the temporally and spatially averaged shear stress
and G is the shear rate of the Couette flow without particles.
The transient intrinsic viscosity is defined to be

〈η(t)〉 = 〈π (t)〉 − 1

φ
, (7)

where 〈π (t)〉 = 〈σ (t)〉
ρνf G

and 〈σ (t)〉 is the spatially averaged shear
stress at time t .

To calculate transient intrinsic viscosity 〈η〉, first the drag
force acting on the flat wall is obtained through integrating
the shear stress σ (x) on moving wall nodes, which is equal to
that acting on the fluid nodes that are nearest to the wall nodes.
Then the spatially averaged shear stress 〈σ 〉 is equal to the
drag force divided by the area of the moving flat wall. After
〈η〉 is further averaged in time, 〈η̄〉 is obtained. Here we can see
that 〈σ 〉 can be regarded as the ρνf 〈Gw〉, where 〈Gw〉 is the
strength of the area-averaged shear rate near the wall. Hence,
〈Gw〉 is directly related to 〈η〉.
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FIG. 2. 〈π̄〉 as a function of volume fraction φ for a prolate
spheroid with ε = 0.8 and Re = 70.

III. RESULTS AND DISCUSSION

In this section, the intrinsic viscosities for dilute suspen-
sions of ellipsoids are studied. Here our definition of 〈η̄〉 is
based on a linear dependence of the relative viscosity 〈π̄ 〉 at low
volume fraction. In the following simulations, we make sure
that all the dependences are linear for all cases with different
ellipticity ε and Re. One example is shown in Fig. 2. Figure 2
shows the relative viscosity 〈π̄〉 as a function of the volume
fraction φ. Four cases with different small φ are simulated.
Through a linear fit of the four points, we can obtain that
〈π̄〉 = 1 + 3.1929φ.

A. Intrinsic viscosity and period

The intrinsic viscosities of dilute suspensions of prolate
and oblate spheroids at Re = 0.5 are illustrated in Fig. 3. For
the prolate spheroid, the free mode is a tumbling state [15].
To achieve log rolling mode, the x ′ axis (evolution axis)
is constrained tentatively in the x direction. For the oblate
spheroid, the log rolling mode is the free mode [15] and it is
initiated by fixing the x ′ axis in the x direction.

Jeffery [5] has given an analytical solution for suspensions
of the ellipsoidal particles with different ε. We found that
for the suspensions of both prolate and oblate spheroids,
our numerical results agree well with Jeffery’s analytical
solution [5]. From Fig. 3(a), we also found that for the prolate
spheroid at each ellipticity, the log rolling mode and tumbling
mode have the minimum and maximum analytically predicted
viscosities, respectively. By contrast in Fig. 3(b), for the oblate
spheroid, the log rolling mode and tumbling mode have the
maximum and minimum analytical viscosities, respectively.
On the other hand, at small Reynolds number, for the prolate
spheroid, the final mode is the tumbling mode [15], which
is the mode having the maximum viscosity. For the oblate
spheroid, the final free mode is the log rolling mode [15], which
also has the maximum viscosity. Hence, our results argue
against Jeffery’s hypothesis in that, rather than assuming the
least energy-dissipating configurations, the simulated particle
tends to adopt the mode with maximum dissipation. That is
also consistent with the conclusion of Mason et al., which
is obtained from the experiments of suspensions of many
spherical particles [10].

The periods of the prolate and oblate particles with different
ellipticities are illustrated in Fig. 4. The periods are also
compared with the analytical solution [5]. The analytical
solution is [5] T = 2π(a2+b2)

abG
. Again, the periods in our

simulations agree very well with the analytical ones. Here
we can see that the period increases with the ellipticity and it
increases much more quickly when ε > 0.7. We note for clarity
that in all the LBM results, the time is normalized by 1

G
.

We also notice that Qi and Luo [1] gave relative viscosities
for a prolate spheroid at Re ≈ 0.1. However, their calculated
values seem to be inconsistent with Jeffery’s analytical
solution. We demonstrate that in the following. In Ref. [1], the
parameters of the prolate spheroid are a = 12 l.u., b = c =
6 l.u., and the computational domain is 64 l.u. × 64 l.u. ×
64 l.u. The corresponding volume fraction is φ = 4

3π × 12 ×
6 × 6/(64 × 64 × 64) = 0.69%. The relative viscosities are
1.026 and 1.033 for the log rolling state and the tumbling
state, respectively [1]. The intrinsic viscosities 〈η̄〉 = 〈π̄〉−1

φ
are

1.026−1
0.0069 = 3.767 and 1.033−1

0.0069 = 4.781, respectively. However,

FIG. 3. (Color online) Intrinsic viscosities for dilute suspensions of (a) prolate spheroids and (b) oblate spheroids at Re = 0.5 for different
ellipticities.
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FIG. 4. (Color online) Period T for the prolate and oblate
spheroidal particles at Re = 0.5 for different ellipticity.

according to Jeffery’s study, the minimum and maximum
〈η̄〉 should be 2.174 and 2.819, respectively [5]. Hence, the
numerical results for ε = 0.5 in the study of Qi and Luo [1]
have large discrepancies with Jeffery’s study [5]. It is worth
noting that although the results of Ref. [1] are somewhat
different from Jeffery’s solution, the ratio of the minimum
and maximum values is consistent with that solution. It is
possible that the present interpretation of the results in Ref. [1]
is not completely correct, perhaps due to missing or incorrect
information in Ref. [1].

B. Transient property

For the log rolling mode, the intrinsic viscosity would reach
a constant value when the flow becomes steady, i.e., the angular
velocity of the spheroid becomes constant. However, for the
tumbling mode, the transient intrinsic viscosity 〈η〉 is not a
constant in a period of rotating and it varies with the particle’s
orientation. The orientation is described by angles α, β, and γ ,
which denote the angles between the x ′ axis and the space-fixed
x, y, and z axes, respectively (cos2 α + cos2 β + cos2 γ = 1).

The typical variations of the transient intrinsic viscosity as a
function of cos β for the dilute suspension of prolate spheroids
at Re ∼ O(1) and Re ∼ O(10) are shown in Fig. 5. The arrows
in the figure demonstrate the chronological order. Here we can
see that there are two peaks and two valleys in a period when
the Reynolds number is low [Fig. 5(a)] while there is only one
maximum and one minimum in a period at Re ∼ O(10). For
dilute suspension of oblate spheroids, similar behavior is also
observed. In the following, the mechanics for such different
behaviors at low and larger Re will be explored.

First, we would like to discuss the case of low Re. The
transient intrinsic viscosity, 〈η〉, the angular velocity in the x

direction, ω, and the torque and orientation as functions of
t for the suspension of prolate spheroids with Re = 0.1 and
ε = 0.5 are shown in Fig. 6. Note that the angular velocity is
normalized by G and the torque is normalized by m(Ga)2. In
the figure, to elucidate more clearly, the times A to E are labeled
in chronological order. The time from A to E is a half-period
of the tumbling state. In the discussion, we will focus on the
orientation and the torque (or the distance-averaged force). The
two features may affect the intrinsic viscosity significantly.

From the figure, we can see that when the major axis (x ′
axis) of the spheroid is parallel to the z axis, 〈η〉 reaches
a valley with a value of about 2.51 at t = 12.3 (point A).
At this orientation, the particle has a minimum effect on
〈Gw〉, and hence 〈η〉, compared to the other orientations. The
particle rotates counterclockwise (refer to Fig. 1, view in the
−X direction). When the x ′ axis approaches the y axis, 〈η〉
increases to a peak value about 3.37 at t = 15.4 (point B).
At this orientation, the torque increases to a maximum value.
From A to B, the torque is positive, which means that it would
push the particle to rotate counterclockwise. At point B, the
particle strongly hinders the Couette flow and the shear rate
near the moving walls is the strongest. After point B, the torque
decreases to a negative value, which means the hindering
effect becomes weak. Consequently, 〈η〉 becomes smaller and
reaches its second valley with 〈η〉 = 2.65 at t = 16.4 (point
C). After point C, the torque acting on the particle increases
and hence 〈η〉 increases. On the other hand, the x ′ axis becomes
closer to the z axis. That means the effect of the suspended
particle on the shear rate near the moving walls, i.e., 〈Gw〉,

FIG. 5. Transient intrinsic viscosity 〈η〉 as a function of cos β for a dilute suspension of prolate spheroids, (a) a case of low Reynolds
number (Re = 0.5, ε = 0.5) and (b) a case of larger Reynolds number (Re = 20 with ε = 0.7).
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FIG. 6. (Color online) (a) Transient intrinsic viscosity 〈η〉,
(b) angular velocity ω, (c) torque, and (d) orientation as functions
of time for a dilute suspension of prolate spheroids at Re = 0.1 with
ε = 0.5.

becomes smaller. Due to the combination of the above two
features, 〈η〉 reaches a second maximum of 3.37 at point D
and later 〈η〉 decreases to the minimum value when the x ′ axis
is parallel to the z axis.

Figure 7 shows typical variations of the intrinsic viscosity,
angular velocity, torque, and orientation as functions of time
when Re = 20 and ε = 0.7. In a half-period, there is only one
maximum value. The variation of 〈η〉 becomes simpler than
that in the low-Re case. From the figure, we can see that at
t ≈ 49, cos β = 0 and the x ′ axis is parallel to the z axis. In this
orientation, 〈η〉 should reach its minimum value because the
particle has a minimum effect on the intrinsic viscosity if the
inertia of the fluid is neglected. However, it takes until t ≈ 55
before 〈η〉 reaches its minimum value. Hence, the change of
〈η〉 is not synchronous with the change of the orientation of
the particle. We also found that the phase lag between 〈η〉min

and orientation depends on Re.
Typical curves of phase lag are shown in Fig. 8. From the

figure, we can see that the phase lag χ/π of prolate spheroids
with ε = 0.7, 0.8, and 0.9 increases with Re until Re ≈ Rea

and then it decreases. Rea depends on ε. For ε = 0.7, 0.8, and
0.9, the Rea’s are approximately 100, 60, and 30, respectively.
The dashed line in the figure is a line connecting the Rea for
different ε. There are two factors that may affect the phase lag
between 〈η〉min and cos β = 0: the particle inertia and the fluid
inertia. Note that even when the inertia of the fluid is small,
i.e., when Re is small, the inertia of the particle exits. We
note that the nondimensional maximum torque acting on the
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FIG. 7. (Color online) (a) Transient intrinsic viscosity 〈η〉,
(b) angular velocity ω, (c) torque, and (d) orientation as functions
of time for a dilute suspension of prolate spheroids at Re = 20 with
ε = 0.7.

particle decreases with Re (not shown here). This means the
inertia of the particle decreases with Re. On the other hand, the
inertia of the fluid increases with Re. The competition between
the two factors results in the behavior of the phase lag. In the
next section, we show that when Re < Rea , both the intrinsic
viscosity and the period change linearly with Re, while for
Re > Rea , they change nonlinearly with Re.

Re

FIG. 8. (Color online) Phase lag between the minimum intrinsic
viscosity 〈η〉min and cos β = 0 for dilute suspensions of prolate
spheroids (ε = 0.7,0.8,0.9) as functions of Re.
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Re

FIG. 9. (Color online) Intrinsic viscosity 〈η̄〉 and angular velocity
ω for dilute suspensions of prolate spheroids (ε = 0.5) as functions
of Re when the spheroid is constrained into the log rolling mode.

C. Re effect on intrinsic viscosity and period

In the study of Huang et al. [15], it is found that for a given
dynamical mode, the relative viscosity increases with Re when
Re < 18. Here we extend the study to higher Re and propose
a scaling law for Re ∼ O(10).

For the tentatively constrained spheroid, the x ′ axis always
overlaps the x axis and the intrinsic viscosity and equilibrium
angular velocity would change with Re. That is illustrated
in Fig. 9. When Re increases from 0.5 to 90, The angular
velocity ω would decrease from 0.5 to about 0.44 for the prolate
spheroid with ε = 0.5. That may be due to the particle and
fluid inertia. We note that the angular velocity ω = 0.5 is also
observed in the study of a spherical particle in shear flows by
Nirschl et al. [22]. Here we found that 〈η̄〉 would increase from
2.17 to 3.09. The possible reason is that the shear flow near
the particle would be retarded when the equilibrium angular
velocity becomes smaller at large Re. That may increase the
shear rate near the walls. For the oblate spheroid, a similar
variation with Re was also observed.

For the tumbling state, the scaling of the period of rotation
is [13] T = C(Rec − Re)−

1
2 , where Rec is the critical Re when

the spheroid would stop rotating. However, we found that Rec

depends slightly on the confinement ratio L
b

. In the following
simulation for an oblate spheroid with ε = 0.5, Rec is about
140. The intrinsic viscosity and period as functions of Re are
shown in Fig. 10. We can see that the period increases with
Re. For the larger Re near to Rec, the period seems close to
the scaling law found by Aidun et al. [13]. Here we found that

Re

FIG. 10. (Color online) The intrinsic viscosity 〈η̄〉 and period T

as functions of Re for the dilute suspension of the tumbling oblate
spheroid (ε = 0.5).

T = 220(Rec − Re)−
1
2 fits the high-Re section well. However,

in the lower Re section, T increases linearly with Re.
For the prolate spheroid, the situation is similar to that of

the oblate spheroid. Figure 11 shows the intrinsic viscosity
and period as functions of Re for the prolate spheroid. Both
〈η̄〉 and T change almost linearly with Re when Re < Rea .
When Re > Rea , both 〈η̄〉 and T change nonlinearly with Re.
From Fig. 11, we can see that for ε = 0.7, 0.8, and 0.9, there
is a critical Reynolds number Rec, beyond which the period
of rotation would become infinite, i.e., the particle would stop
and remain stationary in the flow. The corresponding Rec’s
are approximately 167, 120, and 75, respectively. Hence, Rec

decreases with the ellipticity ε. For ε = 0.5, due to numerical
instability, we have not been able to carry out simulations of
cases with Re > 500. At Re ≈ 500, we did not observe the
stationary state for cases of ε = 0.5. It is believed that for
ε = 0.5, they have similar behavior as ε = 0.7, 0.8, and 0.9.
The difference is that Rea and Rec are much larger than those
of ε = 0.7, 0.8, and 0.9. Here only cases Re < 200 for ε = 0.5
are illustrated.

First we analyze the linear dependence of 〈η̄〉 and T on Re
(Re < Rea). In Fig. 11, the solid lines are the linear fits. From
Fig. 11(a), we can see that for ε = 0.5 and 0.7, 〈η̄〉 increases
with Re. However, for ε = 0.8 and 0.9, 〈η̄〉 decrease with Re.
However, in Fig. 11(b), for all ε, the period increases with Re.
For Re < Rea , the scaling law is

〈η̄〉 = 〈η̄0〉 + κ1Re, T = T0 + κ2Re, (8)

TABLE I. Slopes of the linear fit for the 〈η̄〉-Re and T -Re curves (dilute suspensions of tumbling prolate spheroids).

Ellipticity ε 〈η̄0〉 κ1 (slope of the 〈η̄〉-Re curve) T0 κ2 (slope of the T -Re curve)

0.0 2.5 0.0253 12.57 0.072
0.3 2.641 0.0194 13.69 0.096
0.5 2.738 0.0130 17.06 0.117
0.7 3.116 0.002 87 22.49 0.232
0.8 3.443 −0.003 37 31.72 0.417
0.9 4.482 −0.0201 58.83 1.069
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Re Re

FIG. 11. (Color online) (a) The intrinsic viscosity 〈η̄〉 and (b) period T as functions of Re for dilute suspensions of tumbling prolate
spheroids. Solid lines represent the linear fit of the data in the section of Re < Rea .

where 〈η̄0〉 and T0 should be very close to the analytical
intrinsic viscosity and period [5], which totally neglect inertial
effects. κ1 and κ2 are the slopes of the 〈η̄〉-Re and T -Re curves,
respectively, which depend on ε. For the tumbling prolate
spheroids, κ1 and κ2 for different ε are illustrated in Table I.
From the table, we can see that the slope of the 〈η̄〉-Re curve
decreases with ε. In contrast, the slope of the T -Re curve
increases with ε.

Next we would like to discuss the nonlinear dependence
of 〈η̄〉 and T on Re when Re > Rea . For the nonlinear
regime of each 〈η̄〉-Re curve, a second-degree polynomial
fit seems appropriate. For ε = 0.7, 0.8, and 0.9, the formu-
las are 〈η̄〉 = 2.117 + 0.0239 Re − 1.105 × 10−4Re2, 〈η̄〉 =
2.748 + 0.0149 Re − 1.236 × 10−4Re2, and 〈η̄〉 = 4.077 −
0.0015 Re − 2.017 × 10−4Re2, respectively. The scaling law
of the period [13], i.e., T = C(Rec − Re)−

1
2 , is considered

next. For ε = 0.7, 0.8, and 0.9, the corresponding nonlinear
fits are T = 390(167 − Re)−

1
2 , T = 490(120 − Re)−

1
2 , and

T = 650(75 − Re)−
1
2 , respectively. They are also shown in

Fig. 11(b). The Rec’s are consistent with our numerical
simulations because when Re > Rec, the particle is found to
remain stationary in a certain orientation.

IV. CONCLUSIONS

The shear viscosity of dilute suspensions of ellipsoidal
particles is studied using a MRT LBM at finite Re. In the
investigation of energy dissipation at Re = 0.5, the maximum
and minimum intrinsic viscosities obtained from LBM are

highly consistent with the analytical solution of Jeffery. On
the other hand, our results invalidate Jeffery’s hypothesis [5]
about the particle modes self-organizing to minimize energy
dissipation.

At low Re, the temporal variation of transient intrinsic
viscosity in a period is more complex than that at high Re.
The orientation and the torque or the average force acting on
the particle are found to affect the transient behavior of 〈η〉. The
inertial effects of the particle and fluid contribute to the phase
lag between 〈η〉 and the orientation of the particle. At lower
Re, the phase lag increases with Re. When Re approaches a
critical Reynolds number Rea , the phase lag begins to decrease
with Re. The Rea is ellipticity-dependent.

The intrinsic viscosity and period as functions of Re are
also investigated. For the elliptical spheroids, in the low-Re
regime (Re < Rea), both 〈η̄〉 and the period change linearly
with Re. For the linear fit in the low-Re regime, the slopes of the
〈η̄〉-Re and T -Re curves change monotonically with ellipticity
ε. In the high-Re regime (Re > Rea), the dependence of T

on Re is consistent with the scaling law proposed by Aidun
et al. [13], and the dependence of 〈η̄〉 on Re is described well
by a second-degree polynomial.
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