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We investigate the effect of a homogeneous high-frequency stimulation (HFS) on a one-dimensional chain of
coupled excitable elements governed by the FitzZHugh-Nagumo equations. We eliminate the high-frequency term
by the method of averaging and show that the averaged dynamics depends on the parameter A = a/w equal to the
ratio of the amplitude a to the frequency w of the stimulating signal, so that for large frequencies an appreciable
effect from the HFS is attained only at sufficiently large amplitudes. The averaged equations are analyzed by an
asymptotic theory based on the different time scales of the recovery and excitable variables. As a result, we obtain
the main characteristics of a propagating pulse as functions of the parameter A and derive an analytical criterion
for the propagation failure. We show that depending on the parameter A, the HFS can either enhance or suppress
pulse propagation and reveal the mechanism underlying these effects. The theoretical results are confirmed by
numerical simulations of the original system with and without noise.
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I. INTRODUCTION

Excitability is observedin a wide range of natural systems,
including lasers, chemical reactions, ion channels, cardio-
vascular tissues, and neural systems. Excitable systems have
only one stable fixed point, but perturbations above a certain
threshold induce large excursions in phase space, which take
the form of spikes of fixed shape. Studding an excitable system
under the action of external time-dependent perturbations
is an actual problem of physics, neuroscience, physiology
and medicine. Various periodic perturbations with periods
comparable to the characteristic time scales of an excitable
system [1-6], high-frequency (HF) perturbations [7-10], and a
combination of low- and high-frequency perturbations [11,12]
have been considered in the literature. In this paper we
deal with the HF perturbations, which are of particular
interest for the problems of neural control. High-frequency
alternating currents applied directly to the nerve may produce
a reversible conduction block [7,8,13,14]. High-frequency
electrical stimulation has been also applied clinically via
deep-brain stimulation (DBS) electrodes implanted in specific
brain regions to treat movement disorders such as Parkinson’s
disease and dystonia [15,16]. Although HF DBS has become
a well recognized therapeutic procedure, its mechanism of
action is still unclear [16-18] and further investigation of
how the high-frequency stimulation (HFS) acts on excitable
systems is needed.

One of the simplest models of an excitable system that
captures many effects observed in neuronal cells is described
by the FitzHugh-Nagumo (FHN) equation [19,20]. Recently,
we exploited the FHN model to analyze the effect of a homo-
geneous HFS on nerve pulse propagation in a nonmyelinated
axon [10]. We derived analytically the main characteristics of
the traveling pulse and showed that with an increase of the
amplitude of the HFS current the pulse slows down, shrinks,
and disappears when the amplitude exceeds some threshold
value. Our analysis was based on the spatially continuous
model in which the coupling between the elements of an
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excitable medium is described by a standard diffusion term.
However, most nerve fibers are not a continuous medium but
a discrete system of periodic nodes called Ranvier nodes [21].
To model such a myelinated axon the diffusion operator in the
FHN equation has to be replaced by the difference operator.
The study of the discrete FHN equation is substantially
more difficult than that of the continuous version [22-27].
The most significant difference between the discrete and
continuous equations is that the discrete system has a coupling
threshold for propagation, while the continuous model allows
for propagation at all coupling strengths [22].

In this paper we analyze the effect of a homogeneous
HES on pulse propagation in the discrete FHN model. To
treat the problem analytically as far as possible we apply
the method of averaging [28], which allows us to reduce
the original nonautonomous system to autonomous equations.
Then we adapt theoretical approaches [21,23,26] developed
for the free discrete FHN model. As a result, we obtain the
main characteristics of the traveling pulse versus the parameter
A = a/w, which is equal to the ratio of the amplitude a
to the frequency w of the HFS, and derive an analytical
criterion for propagation failure. We reveal the significant
difference between the results of the action of the HFS on the
discrete and continuous FHN models. In the discrete model
the HFS can both enhance and suppress pulse propagation,
whereas in the continuous model the HFS can cause only
suppression.

The rest of the paper is organized as follows. In Sec. II
we discuss the model equations and present their reduced
(averaged) version. An asymptotic method for construct-
ing pulse solutions of the averaged equations is described
in Sec. III. Section IV is devoted to the analysis of
pulse characteristics versus the stimulation parameter A.
In Sec. V we confirm our theoretical findings by direct
numerical simulations of the original system and con-
sider the influence of noise. A summary is presented in
Sec. VL.
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II. MODEL EQUATIONS

We consider a one-dimensional chain of coupled excitable
elements governed by the FitzHugh-Nagumo equations [19,
20] in the presence of a high-frequency field:

Uy = f(vy) — wy + D(vpy1 — 20, + v,-1) + a cos(wt),
(la)
W, = e(vy + :3 - an)- (lb)

These equations represent a paradigmatic model of a spatially
discrete excitable medium, which is relevant for different fields
of science. To be specific here we discuss Egs. (1) in the context
of a myelinated axon subject to the HFS. Then the variable v,
denotes the membrane potential and w,, is the recovery variable
of the nth node of Ranvier, f(v,) = v, — vﬁ/3 is the cubic
source term of an ionic current, and the discrete diffusive term
with the coupling strength D is proportional to the difference
in internodal currents through a given site. The last term in
Eq. (1a) describes the current induced by HFS, where a and w
are the amplitude and the frequency, respectively. The constant
& > 0 is the ratio between the characteristic time scales of v,
and w, variables. As usual, we assume ¢ < 1, that is, fast
excitation and slow recovery. We select the parameters y and
B such that without a HFS current the neuron is in an excitable
regime. In this paper numerical simulations are performed for
y =0.8and 8 = 0.7.

The analysis of the system (1) can be greatly simplified
if we assume that the period T = 27 /w of the HFS is much
less than the characteristic time scales of the FHN axon. In this
case, the high-frequency term in Eq. (1a) can be eliminated via
atwo-scale expansion method [29] in a way similar to what has
been done in our recent paper [10] for the continuous version
of FHN equations. In the Appendix, however, we present an
alternative approach based on the method of averaging [28].
Both methods lead to the same result, but the latter is most
straightforward and allows us to define the criteria of validity
of the averaged equations in a more rigorous way.

According to the results presented in the Appendix, an
approximate solution of Egs. (1) can be written as a sum of slow
(averaged over the stimulation period) and fast (harmonic)
components

v, (1) = 0,(t) + A sin(wt), (2a)
Wy (1) X Wy(2). (2b)
The variables v, and w, satisfy the averaged equations

i_)n = f(l_)n) —w, + D(l_)nJrl - 21_)n + 'anl)v (33)
Wy = &0y + B — yiby), (3b)

which are similar to Egs. (1), but they do not contain the
HES current. The elimination of the HFS current, however,
changes the ionic current function f(v), which now takes the
form £(9,) = (1 — A?/2)d, — v>/3. The parameter A, which
is equal to the ratio of the amplitude to the frequency of the
stimulating current

A=a/w, 4)

completely defines the effect of the HFS on the averaged
neuron dynamics. When the HFS is switched off (¢ =0 or
A =0), Egs. (3) coincide with the original equations (1);
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FIG. 1. (Color online) (a) Comparison of the solutions of the
original equations (1) and the averaged equations (3). The dynamics
of the membrane potential for the 70th node of the axon obtained from
the original and averaged systems are shown by dark gray (blue)
(the HF oscillations are not resolved) and light gray (red) curves,
respectively. (b) Snapshot of a typical pulse propagating from left
to right computed from the averaged system (3). The membrane
potential and recovery variables are marked by the dots (red) and
crosses (blue), respectively. The parameters area =5, w = 10, A =
0.5, D = 0.015, and ¢ = 0.0008.

however, when the HFS is on, the term —17,,A2/2 in the
nonlinear function f(#,) modifies the nullcline of Eq. (3a)
and changes the excitability properties of the neuron (see
Ref. [10] for details). We emphasize that the approximate
solution (2) is valid only for large frequencies @ > 1 since
terms of accuracy of O(w™') are neglected. A comparison of
solutions of the original equations (1) and the averaged system
(3) is demonstrated in Fig. 1(a).

III. ASYMPTOTIC CONSTRUCTION OF PULSE
SOLUTIONS

The method of averaging has allowed us to reduce the
original problem to the analysis of the averaged equations
(3). These equations are autonomous, and we can utilize
theoretical approaches developed for the free discrete FHN
system. In the following we are interested in estimating
characteristic parameters of the propagating pulses versus the
stimulation parameter A and finding a criterion for propagation
failure. Note that if the averaged equations (3) have a solution
with a propagating pulse, then in the original system this
pulse will propagate against the background of homogeneous
high-frequency oscillations described by the term A sin(wt) in
Eq. (2a).

An asymptotic construction of pulse solutions for the free
discrete FHN equation in the limit ¢ — O is described in
Ref. [26]. The main idea is similar to Keener’s asymptotic idea
[30] developed for the FHN model with spatially continuous
diffusion. We combine these ideas with the Erneux-Nicolis
[23] perturbation theory developed for the discrete Nagumo
model to study pulse propagation in the averaged system (3).
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A snapshot of a typical propagating pulse computed from
the system (3) is shown in Fig. 1(b). The pulse profile can
be subdivided into four segments. There are two segments
in which 9, vary smoothly with n, separated by two moving
sharp fronts usually called the leading and trailing edges. We
refer to the segment between the fronts as the pulse overshoot
and to the segment following the trailing edge as the pulse
undershoot. In the latter two segments we may set v, = 0 and
D = 0 and obtain a description of slow recovery. Wave fronts
are smooth solutions v,(t) = v(z) and w,(t) = w(z) of the
continuous variable z = n — ct, where c¢ is the pulse speed.
The recovery variable w is constant at each side of the front
and the excitation variable is governed by the discrete Nagumo
equation (3a). A stable pulse is obtained when the velocity of
the leading edge is equal to the velocity of the trailing edge.

For further analysis we rewrite Eqs. (3) in a more convenient
form. For D = 0 these equations have the only fixed point
(Un, W) = (Vo, Wy), where Wy = (Vy + B)/y and Vj is the
resting potential of the neuron that satisfies the real-value
solution of the cubic equation

Vi'/3 = Vol = 1/y = A*/2) + B/y =0. (5)

We define the deviations from the fixed point as (§v,,éw,) =
Uy — Vo,w,, — Wp) and rewrite Egs. (3) for these deviations

Sl}n = F((SU,,) - 811),1 + D(8Un+1 - 281}” + 51),1,1), (63)
(Swn = 8(51)” - V5w11)a (6b)

where F(8v,) = 8v,(1 — A?/2 — V) — §v2Vy — 8v3/3 is a
cubic polynomial function. This polynomial has three real-
value roots, one of which is equal to zero. Therefore, the
polynomial F(Sv,) can be factorized as

F(8vn) = —0v,(8vy — V1)(va — V2)/3, (7

where the two other roots V| and V, of the polynomial
are positive and can be simply determined from a quadratic

equation
Via=3(—3Vo+,/12 - 6A% —3V}). (8)

Note that the middle root V, of the polynomial (7) has a
clear physical meaning. It defines an excitability threshold of
the neuron. Indeed, an uncoupled excitable element described
by the system (6) for D = 0 has the only stable fixed point
(bv,,8w,) = (0,0). If we excite the membrane potential by an
amount § v,(l), i.e., take the initial conditions (§ vg,O), then the
excitable element will generate the spike only if §v° exceeds
the threshold value V,. In the following we refer to V; as an
excitability threshold. We will see that due to the dependence
of V, on the stimulation parameter A, the HFS allows for the
efficient control of pulse propagation in the coupled excitable
elements.

We can now discuss different segments in the asymptotic
description (¢ — 0) of a pulse as follows (see Ref. [26]).

(1) The leading edge. Here the membrane potential dv,
varies rapidly, while the recovery variable is fixed at sw,, = 0,
so Egs. (6) reduce to

8 = F(80n) + D(8nst — 280, + Svn_1). 9)

This equation admits a solution in the form of a wave front
moving towards the right dv,(t) = Sv(n — ct) with speed
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¢ measured in nodes per unit time ¢. The monotonically
decreasing profile §v(z) satisfies the boundary conditions
dv(—o0) = Vi and dv(oco) = 0. Below we will use Eq. (9)
to derive the criterion for propagation failure and to estimate
the pulse speed for small and large coupling strength D.

(i1) The pulse overshoot. This is a segment between the
fronts in which the variation of the fast variable §v, can be
neglected. Taking D(§v,,+; — 26v, + dv,—1) = 0 and §v, =0
in Eq. (6a), we obtain the relationship between év, and dw,

Swy = F(8vy). (10)

The inverse relationship v, = R(6w,) can be obtained by
solving the cubic equation (10) with respect to §v,. We
numerate the roots of this equation in increasing order as
Ri(w,) < Ry(8w,) < R3(Sw,). The slow recovery variable
obeys Eq. (6b) with v, = R3(dw,):

3wn = 8[R3(6wn) - J/5wn], (1 1)

where R3(8w,) is the largest root of Eq. (10). This segment
contains a finite number of nodes. On its far right dw, = 0.
As we move towards the left, Sw, increases slowly until it
reaches a certain value 51 corresponding to that in the trailing
wave front. The value §w is determined from the condition
that the leading and trailing edges move with the same speed.
Equations (10) and (11) will be used below to estimate the
length of the pulse overshoot.

(iii) The trailing edge. Here the recovery variable is fixed at
dw, = éw, while the dynamics of the variable v, is governed
by

8, = F((SU,,) + D(Svn-H — 28V, + du,_1), (12)
where
F(8v,) = F(8v,) — 8w (13)

is a cubic polynomial with respect to §v, whose roots we
denote by R <R < R3. We are interested in solution of
Eq. (12) in the form of a moving trailing front dv,(t) =
Sv(n — ct) with the boundary conditions §v(—o0) = R; and
Sv(c0) = R3. Now the speed ¢ of the front depends on the
parameter w. To obtain the appropriate value of this parameter
the dependence ¢ = c(6w) has to be numerically estimated
from Eq. (12). Then the correct value § is determined from
the requirement c(6w) = ¢(0), which means that the leading
and trailing edges move with the same speed. As mentioned
above, the value 51 is needed to estimate the pulse length.

(iv) The pulse undershoot. This segment corresponds to
the pulse tail. Here the recovery variable obeys Eq. (6b) with
Sv, = Ri(Sw,):

dw, = e[R1(Bw,) — yow,], (14)

where R{(S§w,) is the least root of Eq. (10). Equation (14)
describes a slow relaxation of w,, from the initial state dw,, =
81 to the state dw,, = 0. We will use this equation to estimate
the length of the pulse undershoot.
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The above approximations constitute the basis for our
further analysis.

IV. PULSE CHARACTERISTICS AND PROPAGATION
FAILURE AS FUNCTIONS OF THE STIMULATION
PARAMETER A

We are seeking to define the main characteristics of the
pulse as functions of the stimulation parameter A. We are also
interested in the criterion of propagation failure. There are two
factors responsible for this phenomenon. The first is inherent
in discrete systems and may come into play if the coupling
strength D is too small and/or the excitability threshold V; is
too large. For ¢ = 0 this factor can be analyzed based on the
Nagumo equation (9). There exists a critical value D = D,
below which the leading front fails to propagate [22,23]. In
Sec. IVA we will establish the dependence of the critical
coupling D, on the stimulation parameter A.

The second factor responsible for propagation failure is
related to the finite value of &, when the recovery is not
sufficiently slow. This phenomenon also occurs in the spatially
continuous FHN system. The continuous system possesses
two pulses (one stable and the other unstable), which coalesce
at a certain critical value of ¢ = ¢, and cease to exist for
e > ¢, [10]. In the discrete FHN system, the propagation
failure occurs due to the finite number of nodes inside the
pulse [26]. With an increase of ¢, the length of the pulse
decreases and the pulse ceases to exist when its length becomes
less than the distance between the nodes. We will discuss this
type of propagation failure in Sec. IV C.

A. Propagation failure for ¢ = 0

First, we establish a criterion when the leading front
(consequently, also the pulse) cannot propagate in the system.
For ¢ =0 the leading front is governed by the discrete
Nagumo equation (9). This equation has been extensively
studied in the literature and various algorithms for finding
approximate solutions have been introduced. Here we extend
the ideas of the perturbation theory proposed in Ref. [23] and
derive a criterion for propagation failure versus the stimulation
parameter A. To simplify the analysis, we reduce the number of
parameters in Eq. (9) by the following substitutions: V,/ V| =
q,3D/V}=d, Vit/3 = 7, and 8v,/ V| = u,. Then Eq. (9)
transforms to

dun/dT = 1/’(14n) + d(un-H —2up + up_1), (15)

where

1/’(”'1) = _Mn(un - 1)(”}1 - 6]) (16)

Equations (15) and (16) contain only two parameters g and
d. To use the ideas of perturbation theory [23], we assume
that g is a small parameter compared to 1. This assumption is
satisfactory if the stimulation parameter A is not very large. In
this section we are mainly interested in values of A € (0,1.2);
then ¢ varies in the interval (0.12,0.23).

To determine the conditions for a traveling front solution,
we consider a set of N + 2 elements described by Eq. (15) for
n =1, ...,N and the boundary conditions for the first and last
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nodes as

uyg = 1, UN+] = UN. (17)

The front solution joining two stable points u, = 1 and O can
be originated by the initial condition: 4, = 0 forn =1,...,N
at t = 0. If there is no coupling between the nodes (d = 0),
the initial front remains pinned for all times r > 0. However, if
we increase d to some critical value d = d.(q), the front starts
to propagate. The critical value d. can be estimated by the
bifurcation analysis of the steady-state solutions of Eq. (15).

The idea of the bifurcation analysis can be demonstrated
with the simple example of a neuron consisting of only
three elements. In this case N =1 and we have the only
dynamic equation for u,: du;/dt = ¥ (u;) + d(1 — uy). For
d = 0 this system has two stable fixed points #; =0 and
1 and one unstable fixed point u; = g. With the increase
of d, the points u; =0 and g approach each other and
coalesce at the saddle-node bifurcation for some d = d,, so
for d > d. the only stable fixed point #; = 1 remains in the
system. The critical value d. can be determined from the
equations W = ¥ (u;) +d(l —u;) =0 and d¥,/du; = 0.
Solving these equations we obtain d, = ¢ /4. This expression
has been derived in Ref. [23]; it is valid for a neuron with
an arbitrary number of nodes with accuracy of O(g?). In
the following we refine this expression by expanding it with
higher-order terms with respect to g.

To derive higher-order terms in the expression d. = d.(q)
we have to generalize the above consideration for a neu-
ron consisting of an arbitrary number of nodes. When the
number of nodes in a neuron is N + 2 the saddle-node
bifurcation initiating the front propagation takes place in
an N-dimensional phase space defined by the state vector
X = (x1,x2,...,xy). The fixed points, having coordinates
(0,0, ...,0)and (¢,0, ...,0)atd = 0, coalesce atd = d. when
the right-hand side (rhs) of Eq. (15) and its Jacobian vanish:

Y(upy) +dwys —2uy, +u,—1) =0, n=1,...,N, (18)

V' (uy) —2d d 0 -~ 0 0
d V) —2d d --- 0 0
. =0.
0 0 0 d ¥'(uy)—d
(19)

Equations (18) and (19) together with the boundary conditions
(17) define completely the conditions of the saddle-node
bifurcation for arbitrary N.

For small g these equations can be solved by expanding
d = d.(q) and u,(q) in power series of the parameter g. The
analysis of low-dimensional cases N = 1,2 suggests thatd, =
0(g*) and u, = O(g"). This motivates the following general
expansions:

oo
dc — ZqZ-H(d(k)

k=0
Substituting Egs. (20) into Egs. (18) and (19) and equating
terms at different powers of g, one obtains the expansion
coefficients d® and u® in an explicit form. Performing this
procedure up to third-order terms in the expansion of d.., we get

o0
up =y q"H*uld). (20)
k=0
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dO =174, d0 =1/8, d® =7/64, u” =172, ul"” = 1/8,
u(lz) =5/32, and u(zo) = 1/8. As aresult we obtain the critical
value of the coupling strength up to terms proportional to ¢*:

2
q 1 T,
do=—|14+= — 21
4( +2q+16q> @D
or in original variables
v} Vs 7 (V)
D.=-2|14-—+—(=) | 22
12[ +2V1+16<V1):| @2)

Equation (22) together with Egs. (5) and (8) gives an analytical
dependence of the critical coupling strength D, on the
stimulation parameter A. This dependence is depicted in Fig. 2.
The dashed curve shows this dependence estimated from the
first-order term V22 /12 in Eq. (22), while the solid curve takes
into account all three terms in expansion (22). The critical
values of the coupling strength obtained directly by numerical
simulation of the Nagumo equation (9) are shown by symbols.
We see that the analytical formula (22) agrees well with the
numerical experiments.

An important property of the dependence D. = D.(A) is
the presence of a dip in a certain interval of A: With an increase
of A the D, first falls to a minimal value D} = D.(A*) at
A = A* and then increases for A > A*. Such a dependence
allows us to enhance the conductivity of a neuron by choosing
an appropriate value of the parameter A. Indeed, if we take the
value D of the coupling strength from the interval [ D, D.(0)],
then the pulse cannot propagate without HFS since D < D, (0).
However, if we increase A so that its value ends up in
the interval A} < A < A,, where D.(A|) = D.(A;) = D,
then the propagation becomes possible. For A > A, the
propagation will be suppressed again.

We emphasize that the effect of enhancement of pulse
propagation by HFS is an exclusive property of spatially
discrete systems. This is because the difference operator that

0.02

0.0 0.4 0.8 1.2

FIG. 2. Critical coupling strength D, as a function of the stim-
ulation parameter A. The dashed curve represents an approximation
with only the first term in expansion (22), the solid curve takes into
account all three terms in expansion (22), and asterisks show the
results of direct numerical simulation of Eq. (9). The inset shows the
dependence of the excitability threshold V, on A.
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describes the coupling between the nodes can be approximated
by the diffusion operator only in the limit D — oo, whereas
this effect takes place only for small D, when D < D.(0). For
D > D.(0), the HFS may cause only suppression.

The mechanism of enhancement of pulse propagation can
be explained as follows. If we omit higher-order terms in
expansion (22), then we reveal that the critical coupling
strength D, is proportional to the square of the neuron
excitability threshold D, o V. Therefore, the dip in the
dependence of D, on A is caused by a similar dependence
of the excitability threshold V, on A. The dependence V, =
V,2(A) is shown in the inset of Fig. 2. We see that in a certain
interval of the stimulation parameter A, the HFS reduces the
excitability threshold of excitable elements and this enhances
the pulse propagation. Similarly, the suppression of pulse
propagation for large A is explained by the sudden increase of
the excitability threshold V,(A) for A > A*.

B. Pulse speed

The speed of the pulse is determined by the discrete
Nagumo equation (9) that describes the motion of the leading
front. Analytical expressions for the front speed of the discrete
Nagumo equation have been derived for two cases: (i) for
small coupling strength, when D is close to the critical value
D, [23], and (ii) for large D, when the difference operator
in the Nagumo equation can be approximated by the diffusion
operator and a small correction term [21]. Here we utilize these
theoretical results to estimate the dependence of the front speed
on the stimulation parameter A.

For d close to d. the front speed of the Nagumo system
written in the form of Eq. (15) has been derived in Ref. [23].
In the notations of Eq. (9) this reads

~ 3D =Dy
“~ Vi{arctan[Vo/3/(D = D) /6] + 7/2}

For large D the expression for the front speed can be found
in Ref. [21]:

(23)

¢ = covV/D[1 - ti(co)c} /2D], (24)
where
co = (Vi —2V)//6 (25)

and co/D is the front speed in the spatially continuous case.
The coefficient t;(cy) depends on the front profile and can be
computed according to the algorithm described in Ref. [21]
(p- 279).

In Fig. 3 we show the dependence of the front speed on the
stimulation parameter A computed from Eqgs. (23) and (24) for
small and large values of the coupling strength, respectively.
We compare these analytical results with the results of direct
numerical simulation of Eq. (9). We see that the accuracy of
Eq. (23) is good in the regions of the parameter A, where
the front speed approaches zero, i.e., close to the thresholds
of the propagation failure, and the accuracy declines beyond
these regions. For large D the discrete system can be well
approximated by the continuous model and Eq. (24) provides
an accurate estimate of the front speed for all A.
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FIG. 3. Scaled front speed ¢ D~!/? as a function of the stimulation
parameter A for different values of the coupling strength D. The
dashed and solid curves represent analytical results obtained from
Egs. (23) and (24), respectively. The symbols show the results of
numerical simulation of Eq. (9).

C. Pulse length and propagation failure for a finite &

For the spatially discrete system, the durations of the pulse
overshoot Ty and undershoot 7y, can be estimated in a manner
similar to that in the spatially continuous case (see Refs. [21,
26]):

s dsw,
To =/ , (26)
0 S[RS(awn) - )/3wn]
0
1)
Ty =/ ddw, . 27)
sw E[R1(Bw,) — ydw,]

Equations (26) and (27) follow from Eqgs. (11) and (14), respec-
tively. The lengths of the pulse overshoot L and undershoot
Ly measured in a number of nodes per corresponding segment
can be estimated by multiplying the above times with the pulse
speed:

L S /R3 F'(8v,)d5v, %)
= C = - —_—,
o © T e )y, v, — yF(suvy)
L — /0 F'(8v,)ddv, 29
= C = — _—
v v € Jg, Sv, — Y F(Svy)

Here the integral expressions are rewritten in a form convenient
for numerical estimation. The integration variable dw, is
replaced by dv,, taking into account the relationship (10). The
F’(8v,) denotes the derivative of the function F(§v,). Note
that the lengths Lo and Ly decrease as ¢! with the increase
of ¢ and the pulse ceases to exist at some ¢ = ¢, when the
shorter length L ¢ falls below 1. This condition defines a simple
criterion for the pulse propagation failure at finite €.

In Figs. 4(a) and 4(b) we show the dependence of L on
the stimulation parameter A for different D. The solid curves
are obtained from Eq. (28), while the symbols denote the
results of direct numerical simulation of the averaged system
(3). In fact, the variable ¢L, provides an estimate for the
critical value of the parameter & at which the pulse ceases to
exist, since eLy = &, when Ly = 1. For large D [Fig. 4(a)]
the dependence of ¢, on A is monotonic and thus the HFS
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FIG. 4. (a) and (b) Length of the pulse overshoot multiplied by ¢
as a function of the stimulation parameter A for different values of
the coupling strength D. (c) Dependence of the length of the pulse
overshoot on ¢ for fixed D = 0.05 and different values of A. Solid
curves represent estimations based on formula (28), while symbols
show the results of direct numerical simulations of the averaged
system (3). The length of the pulse in (a) and (b) has been estimated
from Eq. (3) for ¢ = 0.0008.

can cause only suppression of pulse propagation. For small D
[Fig. 4(b)] the nonmonotonic dependence of ¢, on A makes
possible both effects: the enhancement and suppression of the
propagation. Note that for large D Eq. (28) approximates well
the results of the averaged system (3), while for small D the
accuracy of Eq. (28) declines.

To verify the law of proportionality Lo o ¢! anticipated
by Eq. (28), in Fig. 4(c) we present the dependence Lo on
¢ (for different values of A) on a double logarithmic scale.
Then this dependence should take the form of straight lines.
As seen from the figure, the direct numerical simulations of the
averaged equations (3) indeed support this law for sufficiently
small values of ¢.
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V. NUMERICAL SIMULATIONS OF THE
ORIGINAL SYSTEM

In the preceding section we have shown that the asymptotic
theory described in Sec. III predicts rather well the properties
of the averaged system (3) provided the parameter ¢ is
sufficiently small. We recall that the system (3) has been
derived from the original equations (1) using the method of
averaging. To support the validity of this approximation, we
now confirm the main effects of the HFS observed in the
averaged system (3) by numerical simulations of the original
system (1).

In Fig. 5 we show the solutions of Eqs. (1), which
demonstrate the effect of enhanced pulse propagation under
the action of HFS. The value of the coupling strength is chosen
sufficiently small D = 0.015 so that for ¢ = 0.0008 the pulse
cannot propagate in the free (A = 0) system. The simulations
were performed with the boundary conditions vy = v; and
vy+1 = vy. Theinitial conditions for all elements were chosen
to be equal to the fixed point of the averaged equations at the
given stimulation intensity except for ten nodes in the middle
of the sample, where the potential variable was enlarged by
2. In Fig. 5(a) the stimulation is off (A = 0) and the initial
excitation of the middle nodes dies out, while in Fig. 5(b)
the HFS with the stimulation parameter A = 0.7 cancels the
propagation failure and we observe two pulses propagating in
different directions.

In order to test the influence of noise on the above effect,
we performed simulations of the system (1) with a modified
Eq. (1b):

W, = &lv, + B — yw, +0&,(1)]. (30)

We added the white Gaussian noise term o &,(¢) with (£,(¢)) =
0 and (&,(1)&, (")) = 8,,8(t —t'). Here the parameter o

1000 2
~ 500 1
(a) (b)
0 0
1000
-1
+~ 500
-2
(c) (d)
0 J
50 100 50 100
n n

FIG. 5. (Color online) Spatiotemporal evolution of the membrane
potential (a) and (b) without noise [Egs.(1)] and (c¢) and (d) in
the presence of noise [Eqgs. (la) and (30)]. The background of
homogeneous high-frequency oscillations is excluded by subtracting
from the membrane potential the term A sin(wt) [see Eq. (2a)], i.e.,
the color encodes the value v, — A sin(wt). The values of the fixed
parameters are w = 10, N = 100, ¢ = 0.0008, and D = 0.015. The
variable parameters are (a) A = 0ando = 0,(b) A =0.7ando =0,
(c)A=0.7ando =0.1,and (c) A = 0.7 and 0 = 0.5.
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FIG. 6. (Color online) Same graphs as in Fig. 5 but the coupling
strength is larger D = 0.02 and the variable parameters are (a) A = 0
and o =0, (b) A=1.1and o0 =0, (c) A= 1.1 and o0 = 0.1, and
(c)A=1.1ando =0.5.

governs the amplitude of noise, 3, , is the Kronecker delta
function, and §(¢) is the Dirac delta function. The results of
simulations are presented in Figs. 5(c) and 5(d). The small
noise intensity o = 0.1 in Fig. 5(c) does not influence the
effect. However, sufficiently large noise may destroy the pulse
propagation. In Fig. 5(d) we see that for o = 0.5 the pulse
propagating to the right dies out, while the pulse propagating
to the left is not destroyed.

Notice that the effect of an enhanced propagation of a
harmonic low-frequency signal under the action of a HFS
has been observed in numerical simulations of the model of
Barkley et al. [31] in Ref. [11], but no theoretical treatment
of the results has been presented. Moreover, the crucial role
of the discreetness of the excitable system for the existence of
this effect has not been highlighted.

In Fig. 6 we demonstrate the effect of suppression of pulse
propagation. Here all the parameters are the same as in Fig. 5
except for the coupling strength, which is now increased to the
value D = 0.02, so that the system without HFS admits pulse
propagation. The two propagating pulses in the free system
(A = 0) are shown in Fig. 6(a). Figure 6(b) demonstrates the
propagation failure in the presence of a HFS with the parameter
A = 1.1. Figures 6(c) and 6(d) show the same effect when the
noise is superimposed upon the system. We see that even large
noise does not destroy the effect of propagation failure. This
suggests that the effect of the suppression of pulse propagation
is less sensitive to the noise than the effect of the enhancement
of propagation.

VI. CONCLUSION

We have analyzed the effect of a homogeneous high-
frequency stimulation on the simple model of a myelinated
axon described by spatially discrete FitzHugh-Nagumo equa-
tions. We have shown that, depending on the amplitude, the
HFS may either suppress or enhance the pulse propagation
through the axon. This differs essentially from the case of
unmyelinated axons described by spatially continuous FHN
equations, where the high-frequency stimulation can cause
only suppression [10].
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Our analysis is based on two main approximations. The
first utilizes different time scales of the neuron and the
high-frequency signal. Applying the method of averaging,
we eliminate the high-frequency term and reduce the problem
to the analysis of autonomous systems that describe the slow
motion. It appears that the HFS influences the slow dynamics
through a parameter A equal to the ratio of the amplitude
to the frequency of the HFS. The second approximation is
related to the solution of the averaged equations. Here we
utilize the smallness of the parameter ¢, which defines the
ratio between the time scales of the membrane potential
and the recovery variable. We adapt the asymptotic methods
developed for the free FHN system and derive the main
characteristics of the traveling pulse versus the stimulation
parameter A.

As an important result of this approach, we have established
an analytical criterion for propagation failure and revealed
the mechanism underling the effects of enhancement and
suppression of pulse propagation. We have shown that the
effects are related to the fact that the HFS with a small
parameter A reduces the excitability threshold of excitable
elements, while the HFS with large A increases the threshold.

The validity of the above two approximations is supported
by numerical simulations of the averaged equations and
the original system. We have also performed numerical
simulations of the original system with the superimposed noise
and shown that the effect of suppression of pulse propagation
is less sensitive to the noise than the effect of enhancement of
propagation.

To summarize, we have shown that the HFS is an efficient
tool to control pulse propagation in spatially discrete systems
consisting of coupled excitable elements and revealed the
mechanism of this control. Our results may be relevant
for different fields, including communication technologies,
chemistry, neuroscience, and medicine. Specifically, the ability
of HES to suppress and enhance pulse propagation in myeli-
nated axons may partially explain the dual nature (inhibition
and activation) of the effect of high-frequency deep-brain
stimulation widely discussed in the literature [16—18].
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APPENDIX: DERIVATION OF AVERAGED EQUATIONS
FOR THE DISCRETE FHN MODEL UNDER HFS

Our aim is to simplify the nonautonomous system (1) for
large frequencies w > 1, when the period of HF oscillations is
much less than the characteristic time scales of the FHN axon.
Using the small parameter w~! <« 1, we seek to eliminate
the HF term a cos(wt) and obtain an autonomous system, the
solutions of which approximate the original system. First,
we change the variables of the system (1) by using the
substitution

v, =V, + Asin(wt),

w, = W,,

(Ala)
(Alb)
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with

A=a/w, (A2)
and derive the following equations for the new variables V,
and W,,:

Vi = fIV, + Asin(wt)] — W, + D(Vyiq — 2V, + V1),
(A3a)

W, = e[V, + Asin(wt) + B — y W, 1. (A3b)
For A =0 and a =0, the systems (A3) and (1) coincide
and have identical solutions. Let us denote these solutions by
VO(t) = v2(t) and WO(¢) = w?(t), where by a zero superscript
we mean that the corresponding parameters A or a are zeros.
Our aim is to obtain an approximate solution of the system
(A3) for A # 0. If we fix the amplitude a of HFS and increase
the frequency w, the parameter A varies as O(w™"). In this case
an approximate solution of the system (A3) can be obtained
by the regular perturbation theory and presented in the form
V(1) = 02(t) + O(w™!) and W,(t) = wi(t) + O(w™'). Due
to the relation (Al) an approximate solution of the original
system (1) has the same form: v, (1) = v,?(t) + O(w™") and
w, (1) = wl(t) + O(w™'). We see that for any fixed a and
w — oo the effect of HFS on the system vanishes since
v, (1) —> vg(t) and w,(t) — wg(t).

In order to get an appreciable effect from the HFS for large
w, the parameter A must not vanish for @ — oo. This can
be achieved if with the increase of w the amplitude a will be
increased proportionally as well, a o w. In other words, we
have to assume A = O(1) and @ = O(w). These assumptions
lead to a nontrivial perturbation theory. By rescaling the time
variable t = wt (here 7 is the “fast” time) the system (A3) can
be transformed to the standard form of equations discussed in
the method of averaging [28]:

av, 1 .
g @ {f[Va + Asin(r)] = W,
T
+ D(Vig1 = 2V + V1), (Ada)
aw, _1 .
v =w ¢[V,+Asin(r)+ 8 —-yW,]. (Adb)
T

Due to the small parameter @~ « 1 the variables V, and
W, vary slowly while the periodic functions on the rhs
oscillate fast. According to the method of averaging [28],
an approximate solution of the system (A4) can be obtained
by averaging the rhs of the system over fast oscillations.
Specifically, let us denote the variables of the averaged system
by (v,,,w,). They satisfy the equations

dv, I . -
= — {flv, + Asin(¥)] — w,
dt 2w Jo
+ D(l_)nJrl - 217}1 + l_},,,])}dl?,
2

[0, + Asin(¥) + B — yw,]d?.

(ASa)

dw,

= (A5Db)
dt 2w Jy

The method of averaging states that the averaged system (A5)
approximates the solutions of the system (A4) with accuracy
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O™, ie, V, =9, + O(w™") and W, = w, + O(w™ ).
After calculating the integrals and returning to the original
time scale (the overdot denotes differentiation with respect
to the original time ¢), the averaged system (AS5) simplifies
to

Un = f(@0) = Wy + D@41 — 20, + Bp1).  (AbR)
'Dn = &(0, + :3 - an)v (A6b)
where f(v,) = (1 — A?/2)d, — > /3. Finally, the solution of
the original nonautonomous system (1) can be presented as

a sum of the solution of the averaged (autonomous) system
(A6) that describes the slow motion and the high-frequency

PHYSICAL REVIEW E 86, 046211 (2012)

term:
vy = Uy + Asin(wt) + O(@™),
w, = W, + O™ ).

(A7a)
(A7)

We stress that averaged equations (A6) depend only on the
parameter A, which is equal to the ratio of the amplitude to
the frequency of the HFS. Thus this ratio completely defines
the effect of the HFS on the averaged system’s dynamics. For
example, the effect of HFS is the same if we fix the amplitude a
and double the frequency w or fix the frequency w and halve the
amplitude a. Note that the approximation (A7) is valid for any
fixed A including the small values of this parameter; however,
as noted above, the effect of HFS vanishes for A — 0.
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