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Dynamics of a suspended nanowire driven by an ac Josephson current in an
inhomogeneous magnetic field
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We consider a voltage-biased nanoelectromechanical Josephson junction, where a suspended nanowire forms a
superconducting weak link, in an inhomogeneous magnetic field. We show that a nonlinear coupling between the
Josephson current and the magnetic field generates a Laplace force that induces a whirling motion of the nanowire.
By performing an analytical and a numerical analysis, we demonstrate that at resonance, the amplitude-phase
dynamics of the whirling movement presents different regimes depending on the degree of inhomogeneity of the
magnetic field: time independent, periodic, and chaotic. Transitions between these regimes and attractor merging
crisis are also discussed.
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I. INTRODUCTION

Over the past 15 years, nanoelectromechanical systems
(NEMS) have been widely used for the exploration of the
quantum world and for the development of new technological
applications [1–7]. Because of their size, high frequency
operation, small mass, and high performance, NEMS are
currently considered promising candidates for achieving the
quantum limit of mechanical motion. It is expected that the
quest for the quantum regime in such devices will elucidate
questions of fundamental nature in physics, for instance,
the quantum-mechanical description of macroscopic objects
[8–13]. Similarly, physical systems involving NEMS res-
onators are excellent tools for theoretical and experimental
studies of nonlinear dynamical systems [14,15]. Indeed, exam-
ples of complex dynamical phenomena in NEMS are numerous
and include chaotic behavior [16–19], bifurcation-topology
amplification [20], nonlinear switching dynamics [21], and
nonlinear frequency pulling [22], to name but a few.

By making use of the potential offered by NEMS res-
onators, Sonne et al. [23] studied the nonlinear dynamics of
a suspended carbon nanotube coupled to two voltage-biased
superconducting electrodes. In presenting their work, Sonne
and collaborators assumed that the nanoelectromechanical
junction was subjected to a homogeneous magnetic field
perpendicular to the axes of the nanowire. For such a system,
the authors demonstrated the possibility to pump energy from
the electronic subsystem into the mechanical vibrations; they
also demonstrated that the system had more than one regime of
finite-amplitude stationary nonlinear oscillations. In particular,
a region of bistability was found and the authors showed that it
should be detected in the corresponding dc Josephson current
(see discussion in Ref. [23]).

In this article, we consider the same voltage-biased nano-
electromechanical system studied by Sonne and co-workers
[23], but now extend the analysis to a case in which the
NEMS resonator is subjected to a nonuniform magnetic field.
As will be discussed in the following, inhomogeneity of
the field causes the conducting nanoresonator to execute a
whirling movement resembling a jump-rope-like motion. The
purpose of this paper is to analyze the time evolution of
the amplitude and relative phase of the nanotube whirling
motion. We will demonstrate that the coupled amplitude-phase

dynamics exhibits different stationary regimes depending
on the degree of the magnetic field inhomogeneity: time
independent, periodic, and chaotic.

The scope of this article is parallel to research conducted
by Conley et al. [24] and Chen et al. [25], who previously
investigated nonlinear and nonplanar dynamics of suspended
nanowires excited by an electrostatic force. Here, however,
we consider another type of driving mechanism: the Laplace
force, i.e., the force that acts on a current-carrying wire in
a magnetic field. This excitation mechanism to accomplish
whirling motion of suspended nanoresonators has not been
considered before.

The article is organized in the following manner. In
Sec. II, we examine the coupling between the mechanical and
electronic subsystems and introduce the model Hamiltonian
for the considered system. At the end of the section, we
derive the equations of motion governing the dynamics of the
nanoresonator driven by an ac Josephson current. In Sec. III,
we obtain the differential equations for the time evolution of
the amplitudes of the nanotube vibration and discuss their
dynamics through the analysis of the numerically computed
results. Finally, in Sec. IV, we provide the summary and
concluding remarks of this work.

II. MODEL HAMILTONIAN SYSTEM

The diagram in Fig. 1 is a schematic illustration of a super-
conducting hybrid nanostructure, a superconducting-normal-
superconducting (S-N-S) nanoelectromechanical Josephson
junction driven by a dc voltage bias V . The junction consists of
a metallic carbon nanotube of length L suspended between two
voltage-biased superconducting leads. In such a geometry, the
nanotube is simultaneously serving as a mechanical resonator
and as a weak link between the superconducting electrodes.
The phase difference between the weakly coupled leads will be
denoted by φ and, in accordance to the second Josephson re-
lation, its time evolution is φ(t) = ωJ t , with ωJ = 2 eV/h̄ the
Josephson frequency. In the layout of the system, the NEMS
junction is under the influence of an external inhomogeneous
magnetic field H, generated by a magnetic force microscope
(MFM) cantilever tip in the form of a wedge, parallel to the axis
of the nanotube at a distance d. Considering a magnetic field
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FIG. 1. (Color online) (a) Schematic diagram of the voltage-
biased S-N-S nanoelectromechanical Josephson junction considered
in the article. A doubly clamped metallic carbon nanotube suspended
over a trench of length L forms a weak link between two voltage-
biased superconducting electrodes. The junction is influenced by
an inhomogeneous magnetic field H, generated by a wedge-shaped
MFM cantilever tip at a distance d from the nanotube at rest (blue,
center, circle). (b) Nanotube displacement (green, outer, circles) in
the z-y plane induced by a Laplace force. RT is the curvature radius
of the magnetic tip.

of the form H = (0,Hy,Hz), a first order Taylor expansion of
the magnetic field yields H = [0,y∂yHy(x,0,0),Hz(x,0,0) +
z∂zHz(x,0,0)], where Hz(x,0,0) and ∂iHi(x,0,0) represent the
magnitudes of, respectively, the magnetic field z component
and the magnetic field gradients, both evaluated at the axis
of the nanotube. A straightforward calculation from the
Maxwell equation ∇ · H = 0 indicates that ∂yHy(x,0,0) =
−∂zHz(x,0,0) ≡ −H ′

z. Setting Hz(x,0,0) ≡ Hz, the magnetic
field reads as

H = (0, − H ′
zy,Hz + H ′

zz). (1)

This field is also obtained from the equation H = ∇ × A, with
the vector potential A is given by

A = −([Hz + H ′
zz]y,0,0). (2)

In this scenario, the coupling between the Josephson current
and the inhomogeneous magnetic field gives rise to a nonplanar
whirling displacement of the nanotube due to the Laplace
force. As a consequence of the motion in the magnetic field,
an electromotive force is induced along the nanomechanical
weak link and its magnitude depends on the rate of change of

the nanowire profile in the z-y plane, i.e., the rate of change
of the magnetic flux through the circuit. In this description,
now, the superconducting phase difference is not only a
function of the bias voltage, but also of the nanowire deflection
in the z-y plane. We decompose the nanotube motion in this
plane into two independent deflections y(x,t) = u0(x)a(t) and
z(x,t) = u0(x)b(t), where u0(x) is the normalized and dimen-
sionless profile of the fundamental mode in both directions.
Then, the expression for the superconducting phase difference
has the form

ϕ(t) = φ(t)

2
+ eL

4h̄
[hz + h′

zb(t)]a(t). (3)

The parameters hz = αHz and h′
z = βH ′

z are the renormalized
magnetic field and magnetic field gradient in the z direc-
tion calculated at the axis of the tube, respectively, with
α,β ∼ 1 correctional factors originating from geometrical
considerations. The nanotube mechanics is thus described
through the projection amplitudes a(t) and b(t) and for
the conjugate variables {a(t),pa(t)} and {b(t),pb(t)} [pj (t)
denoting the generalized momenta] one can formulate the
following Hamiltonian function:

H (pa,pb,a,b,t) = 1

2m

(
p2

a + p2
b

) + mω2

2
(a2 + b2)

− 2D�0 cos[ϕ(a,b,t)], (4)

where m and ω are the mass and the mechanical eigenfre-
quency of the nanoresonator, respectively. The last term in
Eq. (4) corresponds to the Josephson energy EJ [ϕ(a,b,t)],
with D the transmission coefficient of the junction and
�0 the superconducting order parameter. The equations of
motion for a(t) and b(t) are then obtained from the Hamilton
equations. Written in terms of the dimensionless deflection
coordinates Y (t) = [eLhz/4h̄]a(t) and Z(t) = [eLhz/4h̄]b(t),
the resulting set of differential equations for the nanotube
amplitudes is

Ÿ (τ ) + γ̃ Ẏ (τ ) + Y (τ )

= −ε[1 + κZ(τ )] sin (Ṽ τ + [1 + κZ(τ )]Y (τ )) , (5a)

Z̈(τ ) + γ̃ Ż(τ ) + Z(τ )

= −εκY (τ ) sin (Ṽ τ + [1 + κZ(τ )]Y (τ )) . (5b)

Here, we have added a dimensionless phenomenological
damping coefficient γ̃ = [γ /mω]. In these equations, ε =
[2eL2h2

zjc/mh̄ω2] with jc = [D�0e/2h̄], the critical current
through the junction. We also set the time scale to τ = ωt and,
consequently, Ṽ = [eV/h̄ω]. The parameter

κ = 4h̄

eLhzRT

, (6)

where RT = [hz/h′
z] denotes the curvature radius of the

magnetic cantilever tip, characterizes the degree of inhomo-
geneity of the magnetic field and will be referred to as the
control parameter. It turns out that κ determines the dynamical
behavior of the system. One can then realize the significance
of κ by considering fixed system parameters (L,hz) and by
letting RT vary. In the limit RT → ∞, the control parameter
vanishes and the equations of motion given by Eqs. (5) reduce
to the case discussed by Sonne et al. [23] where the magnetic
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FIG. 2. (Color online) Numerical simulations of Eqs. (5a) and (5b) for the time averaged coordinates Y and Z as a function of the driving
voltage Ṽ . The system presents a series of resonance peaks at integer values of the driving voltage and the amplitude of the nanotube is not
damped when the Josephson frequency matches the mechanical frequency. Further analysis is performed at parametric resonance Ṽ = 2. The
plots are calculated for γ̃ = 0.001, ε = 0.012, κ = 1 (L = 1 μm, hz = 40 mT, RT = 66 nm).

field is uniform and, therefore, the amplitude of the driving
force acting in the Z direction becomes zero.

III. NUMERICAL RESULTS AND DISCUSSION

For a qualitative and quantitative discussion of the
dynamic behavior of the nanowire amplitudes, we consider
the following system parameters: a carbon nanotube of radius
r = 1 nm and length L = 1 μm [26], superconducting order
parameter �0 ∼ 1 meV, Josephson critical current jc ∼ 100 nA
[27], and quality factor Q ∼ 103 [28]. We also assume that
γ̃ = 1/Q, hz ∼ 40 mT, ε = 0.012, and RT is varied from 53
to 544 nm. From Eq. (6), the control parameter will take values
in the interval 0.12 � κ � 1.25.

Numerical simulations of Eqs. (5a) and (5b) allow us to
study the time average of the nanotube deflection coordinates
Y (τ ) and Z(τ ) as functions of the driving voltage Ṽ . In
doing so, one can notice that the system response presents
a series of resonance peaks at integer values of the driving
voltage, i.e., the amplitude of the nanoresonator is not damped
provided the resonant condition is fulfilled: the Josephson
frequency matches the mechanical frequency (see Fig. 2). This
resonant phenomenon was first studied by Sonne et al. [23],
who attributed a direct resonance at Ṽ = 1 and a parametric
resonance at Ṽ = 2. Accordingly, the same conclusion can be
drawn from the results presented in Fig. 2. In the remainder
of the article, we will be mainly focusing on the parametric
regime and take Ṽ = 2. In this case, the dynamic behavior of
the amplitudes can be analyzed by postulating a solution for
both deflection coordinates in the form

Y (τ ) = Ar(τ ) cos(τ ) + Ai(τ ) sin(τ ), (7a)

Z(τ ) = Br (τ ) cos(τ ) + Bi(τ ) sin(τ ). (7b)

Here, Ai ; Bi and Ar ; Br are the in-phase and quadrature
amplitude components of the proposed ansatz for Y ; Z given
by Eq. (7), respectively. On condition that γ̃ ,ε,εκ � 1, the
four envelopes in the vector X = [Ar (τ ),Ai(τ ),Br (τ ),Bi(τ )]
vary slowly in time, i.e., dX/dτ � 1 and, an averaging method
[29] can be employed in order to derive the equation of motion
for X. By substituting the ansatz provided in Eqs. (7) into the
system of equations in Eqs. (5) and integrating over the fast

oscillations, one gets

dAr

dτ
+ γ̃ Ar

2
= ∂G

∂Ai

,
dBr

dτ
+ γ̃ Br

2
= ∂G

∂Bi

,

(8)
dAi

dτ
+ γ̃ Ai

2
= − ∂G

∂Ar

,
dBi

dτ
+ γ̃ Bi

2
= − ∂G

∂Br

,

where

G(κ) = − ε

2π

∫ π

−π

cos{[1 + κBr cos() + κBi sin()]

× [Ar cos() + Ai sin() + 2]}d  . (9)

Here, G(κ) is the generating Hamiltonian function for
Eqs. (8).

The study proceeds by performing a stability analysis based
on Eqs. (8). In general, we shall study solutions of a system
of coupled ordinary differential equations (ODEs), dX/dτ =
f(X,κ), and solutions of a system of algebraic equations
0 = f(X,κ). The discussion commences by highlighting the
symmetric nature of the stationary solutions for the algebraic
system in Eqs. (8). For the above considered system parameters
with κ = 0.12 (RT = 544 nm), numerical simulations for the

FIG. 3. (Color online) Numerical simulations for the stability
analysis of Eqs. (8). Stable and unstable stationary points are indicated
by colored and numbered diamonds (♦) and black crosses (×),
respectively. Diamonds of identical color and number indicate the
four envelopes of the stable solution Xs , crosses in the same region (I
or II) of both phase planes belong to the same unstable solution Xu.
The zero solution X ≡ 0 is unstable. Here, γ̃ = 0.001, ε = 0.012,
κ = 0.12 (L = 1 μm, hz =40 mT, RT =544 nm).
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slowly varying envelopes show that the system presents several
stationary points. Such qualitative behavior is visualized in
the phase space diagrams for the nanotube amplitudes Y

and Z in Fig. 3. There, solutions pictured by colored and
numbered diamonds (♦) and black crosses (×) correspond to
stable and unstable stationary points, respectively. Similarly,
the phase portraits are divided in two regions, denoted I and
II, by diagonal symmetry axes. The symmetry axes in the
Y and Z coordinates satisfy the relations Ai − Ar = 0 and
Bi + Br = 0, respectively. From Fig. 3, it follows that the
presented pattern of solutions has a mirror-image symmetry
with respect to the line of symmetry that divides the phase
diagrams into regions I and II, where diamonds of the same
color and number represent the four components of a stable
computed solution Xs , and crosses in the same region (I or II)
of both phase spaces account for the envelopes of an unstable
solution Xu. From a symmetric point of view, the system is
characterized by two stable and two unstable (including X ≡
0) stationary points in each region. However, the dimension-
less angular momentum of the nanowire, Lx = YdZ/dτ −
ZdY/dτ , in both regions is equal in magnitude but opposite in
sign.

TABLE I. Bifurcation pattern in the symmetric regions of solu-
tions I and II as a function of the control parameter κ. Solution
X ≡ 0 is included.

Number of Number of
κ interval stable solutions unstable solutions

κ � 0.120 2 2
0.120 < κ � 0.125 3 3
0.125 < κ � 0.140 1 3

Continuing our exploration, the computed results indicate
that the bistable regime is only attained for κ � 0.120. By
letting the control parameter increase further, bistability is
abandoned and the number of stationary solutions of Eqs. (8)
is modified as well as their stability. Indeed, Table I presents
the number of stable and unstable stationary solutions in
the interval 0.120 � κ � 0.140 in both regions for these
equations. As can be seen from the table, the system displays
a phenomenon called branching or bifurcation, which is a
distinctive fingerprint of nonlinear dynamical systems [30].
The exhibited branching pattern formation can be described

FIG. 4. Period-doubling bifurcations for different values of the control parameter. Plots are shown for the first symmetry region of both
phase spaces. Simulations were obtained for γ̃ = 0.001, ε = 0.012 (L = 1 μm, hz = 40 mT).
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FIG. 5. (Color online) Chaotic whirling motion of the suspended carbon nanotube. In the pre-crisis regime, (a) and (b) depict the two
symmetric attractors in the phase spaces for the Y component of the displacement. In (a) red lines indicate the dynamical evolution of a point
with initial conditions in the first region of symmetry, region I. Its symmetric dual is shown in (b), where blue lines represent the dynamical
flowing of the system for initial conditions in the second region of symmetry. For the Z component of the nanotube motion, (c) and (d) are
the symmetric plots for the chaotic attractors. As before, red lines in (c) and blue lines in (d) account for the evolution of a point with initial
conditions in the first and second regions of symmetry, respectively. In the crisis regime, red lines in (e) and blue lines in (f) show the single
chaotic attractor formed by the two symmetric chaotic attractors joined by a periodic orbit on the basin boundary that separates them; the plot
is for the dynamics in the Y component. Similarly, for the Z direction, red lines in (g) and blue lines in (h) indicate the attractor merging crisis.
For the plots γ̃ = 0.001, ε = 0.01 μm, hz = 40 mT).

as follows. For κ � 0.120, bistability is accompanied by two
unstable stationary points, one of them corresponds to X ≡ 0
(see Fig. 3). Once the control parameter is slightly increased
over the threshold value κ = 0.120, the nonzero unstable
stationary point becomes stable, and simultaneously, two new
unstable solutions appear and the system has now three stable
and three unstable (including the trivial solution) stationary
points. Next, by varying the control parameter in the interval
0.120 � κ � 0.125, the two original stable points and the
two unstable ones move in phase space and approach each
other. Finally, when the control parameter ranges from 0.125 to
0.140, the bistable and the created unstable solutions coalesce
into two unstable solutions. In this stage, there is only one
stable and three unstable stationary points.

It turns out that for κ > 0.140, the system leaves the regime
of equilibria and enters into the one of periodic solutions.
In fact, at the critical control parameter κ ∼ 0.150, there is
an exchange of stability from the unique stable equilibrium
to a stable limit cycle. This transformation in phase space
is performed through a Poincaré-Andronov-Hopf bifurcation
and the computed results show that the stable limit cycle grows
in phase space for 0.150 � κ � 1. Hereupon, further changes
in the control parameter will be reflected in the periodicity
of the limit cycle as it can clearly be seen in Fig. 4. In this
figure, the nanotube dynamics undergoes successive period-
doubling cascade bifurcations in the amplitude modulation
when varying κ. Due to the symmetric character of the
solutions, the results are only plotted in region I.

Period-doubling bifurcations pave the way for chaotic
dynamics [31] and for the control parameter κ ∼ 1.20; the
system is already within this regime. As it is shown in
Figs. 5(a)–5(d), two chaotic attractors coexist and they are
symmetric images of each other in the phase space. In Figs. 5(a)
and 5(b), the phase portrait for the slowly varying amplitudes
(Ar,Ai) for the Y component of the nanotube displacement
is presented. In Fig. 5(a), red lines describe the dynamical
evolution to the chaotic attractor for a point with initial
conditions in the first region of symmetry of the phase space,
region I. In this case, the attractor and its basin of attraction
are completely located in this part of the phase portrait. Its
symmetric dual is shown in Fig. 5(b), where the chaotic
attractor (depicted in blue) and its basin of attraction are
found to be in region number II; this plot was obtained
by a simple study of the evolution of a point with initial
conditions in the second region of symmetry, region II.
Similarly, the qualitative description of the Z component of
the nanotube displacement is also analyzed through the phase
flow of the slowly varying amplitudes (Br,Bi). This is shown
in Figs. 5(c) and 5(d), where the symmetric character of the
chaotic attractors is noticeable. As before, red lines indicate
the dynamics of a point with initial conditions in region I and
blue ones refer to the complex behavior of a point with initial
conditions in the second region of symmetry II. However,
there is a difference with respect to the phase portraits for
(Ar,Ai). Now, the chaotic attractors are not completely located
in each region of symmetry: they cross the symmetry line (that
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MILTON E. PEÑA-AZA PHYSICAL REVIEW E 86, 046208 (2012)

divides the phase portrait into two parts) and enter into the other
region, nevertheless, the chaotic attractors and their symmetry
are very well defined.

The occurrences of sudden qualitative changes of chaotic
attractors, as a parameter of the system is varied, are denoted
crises [32,33]. In particular, an attractor merging crisis takes
place for the studied system when the control parameter
reaches the critical value κc � 1.23. In this phenomenon,
the two symmetric attractors simultaneously touch a periodic
trajectory or orbit on the basin boundary that separates them
and merge together to form a single multipiece chaotic attractor
[34,35]. The merging crisis regime can be visualized in
Figs. 5(e)–5(h) where the phase portraits for the nanowire
amplitudes suggest that the initially disconnected chaotic
attractors, in the pre-crisis state, placed in the symmetric
regions I and II are now joined. Furthermore, the flow
diagrams for initial conditions in region I (red) and region II
(blue) indicate that the system dynamically evolves between
the two regions, i.e., the flow lines generated by Eqs. (8) and (9)
are sensitive to the initial values and are dense in both regions,
where the multipiece single attractor can be readily identified.
In order to make the attractor merging crisis clear, we study
the dynamics of the system for κ = 1.25. The phase portraits
for the Y direction have been split for two cases. Red lines
in Fig. 5(e) account for the dynamics of a point with initial
conditions in the first region of symmetry in the pre-crisis
regime, while blue lines in Fig. 5(f) describe the dynamical
evolution of a point initiated in the second region of symmetry,
region II. In a similar manner, for the Z component, red
lines in Fig. 5(g) represent the evolution of a point with initial
conditions in region I and Fig. 5(h), the evolution of a point
with initial conditions in region II.

By increasing further the control parameter, numerical stud-
ies indicate that the single attractor formed during the attractor
merging crisis is suddenly destroyed (boundary crisis) and
then, for parameter values above the crisis, points initialized
in the region previously occupied by the former attractor
appear to move in the region chaotically, but only for a finite
time (chaotic transient) [32,33]. This phenomenon occurs
at κ ∼ 1.6, however, this value for the control parameter
corresponds to a curvature radius of about RT = 41 nm,
which is outside the range of curvature radius for MFM tips
experimentally reported, 50–70 nm [36]. Due to this fact, the
analysis of the transient chaos is not discussed in detail.

IV. CONCLUSIONS

We have considered a voltage-biased nanoelectromechani-
cal Josephson junction, where a suspended nanowire is serving
as a weak link between two superconducting electrodes, in an
inhomogeneous magnetic field. For our case study, we have
assumed that the magnetic field is generated by an MFM
cantilever tip and the nanowire is in the form of a metallic
carbon nanotube. In such a scenario, the inhomogeneity of
the field in conjunction with the Josephson current flowing
through the tube gives rise to a Laplace force that induces
the nanoresonator to perform a whirling movement. We have
studied the time evolution of the amplitude and relative phase
of this nonplanar whirling motion and demonstrated that at
the parametric resonance, their coupled dynamics exhibits a
rich dynamical behavior characterized by multistability, limit
cycles, and chaos. These stationary regimes depend on the
degree of the magnetic field inhomogeneity, which in the
present case, is related to the curvature radius of the magnetic
cantilever tip.

The experimental implementation of the system considered
in the article is plausible in light of current state-of-the-art
nanofabrication techniques. For instance, Pillet and collab-
orators designed and constructed a superconducting hybrid
nanostructure that comprises a carbon nanotube suspended
between two superconductors [37]. Concerning the MFM
cantilever tip, the experimental results reported by Matveev
and co-workers in Ref. [36] suggest that it is possible to
fabricate cantilever tips coated by a magnetic film with a
curvature radius in the range of 50–70 nm with maximum
magnetic fields in the range of 40–80 mT. Due to a growing
interest in complex behavior in nanodevices [38], the nonlinear
and nonplanar phenomena exhibited by the system studied
here have potential applications in signal processing, chaotic
encryption, and random number generation [24,25].

ACKNOWLEDGMENTS

The author wishes to thank L. Y. Gorelik for suggesting the
problem, as well as to G. Sonne, J. Atalaya, T. Antosiewicz,
T. Ericsson, and M. Jonson for fruitful discussions. Financial
support from the Swedish Research Council (VR) is gratefully
acknowledged.

[1] H. Craighead, Science 290, 1532 (2000).
[2] M. L. Roukes, Sci. Am. 285, 42 (2001).
[3] M. L. Roukes, Phys. World 14, 25 (2001).
[4] A. N. Cleland, Foundations of Nanomechanics: From Solid-State

Theory to Device Applications (Springer, Berlin, 2003).
[5] A. Cho, Science 299, 36 (2003).
[6] K. L. Ekinci and M. Roukes, Rev. Sci. Instrum. 76, 061101

(2005).
[7] M. Poot and H. S. van der Zant, Phys. Rep. 511, 273 (2012).
[8] A. J. Legget, J. Phys.: Condens. Matter 14, 415R (2002).
[9] M. P. Blencowe, Phys. Rep. 395, 159 (2004).

[10] K. C. Schwab and M. L. Roukes, Phys. Today 58(7), 36 (2005).

[11] I. Katz, A. Retzker, R. Straub, and R. Lifshitz, Phys. Rev. Lett.
99, 040404 (2007).

[12] A. Cho, Science 327, 516 (2010).
[13] M. Aspelmeyer, Nature (London) 464, 685 (2010).
[14] R. Lifshitz and M. Cross, Reviews of Nonlinear Dynamics and

Complexity (Wiley, Weinheim, 2009), Chap. 1, pp. 1–52.
[15] J. F. Rhoads, S. W. Shaw, and K. L. Turner, J. Dyn. Syst., Meas.,

Control 132, 034001 (2010).
[16] R. B. Karabalin, M. C. Cross, and M. L. Roukes, Phys. Rev. B

79, 165309 (2009).
[17] F. N. Mayoof and M. A. Hawwa, Chaos, Solitions Fractals 42,

1860 (2009).

046208-6

http://dx.doi.org/10.1126/science.290.5496.1532
http://dx.doi.org/10.1038/scientificamerican0901-48
http://dx.doi.org/10.1126/science.299.5603.36
http://dx.doi.org/10.1063/1.1927327
http://dx.doi.org/10.1063/1.1927327
http://dx.doi.org/10.1016/j.physrep.2011.12.004
http://dx.doi.org/10.1088/0953-8984/14/15/201
http://dx.doi.org/10.1016/j.physrep.2003.12.005
http://dx.doi.org/10.1063/1.2012461
http://dx.doi.org/10.1103/PhysRevLett.99.040404
http://dx.doi.org/10.1103/PhysRevLett.99.040404
http://dx.doi.org/10.1126/science.327.5965.516
http://dx.doi.org/10.1038/464685a
http://dx.doi.org/10.1115/1.4001333
http://dx.doi.org/10.1115/1.4001333
http://dx.doi.org/10.1103/PhysRevB.79.165309
http://dx.doi.org/10.1103/PhysRevB.79.165309
http://dx.doi.org/10.1016/j.chaos.2009.03.104
http://dx.doi.org/10.1016/j.chaos.2009.03.104


DYNAMICS OF A SUSPENDED NANOWIRE DRIVEN BY AN . . . PHYSICAL REVIEW E 86, 046208 (2012)

[18] M. A. Hawwa and H. M. Al-Qahtani, Comput. Mater. Sci. 48,
140 (2010).

[19] E. Kenig, Y. A. Tsarin, and R. Lifshitz, Phys. Rev. E 84, 016212
(2011).

[20] R. B. Karabalin, R. Lifshitz, M. C. Cross, M. H. Matheny, S. C.
Masmanidis, and M. L. Roukes, Phys. Rev. Lett. 106, 094102
(2011).

[21] Q. P. Unterreithmeier, T. Faust, and J. P. Kotthaus, Phys. Rev. B
81, 241405 (2010).

[22] M. C. Cross, A. Zumdieck, R. Lifshitz, and J. L. Rogers, Phys.
Rev. Lett. 93, 224101 (2004).

[23] G. Sonne, R. I. Shekhter, L. Y. Gorelik, S. I. Kulinich, and
M. Jonson, Phys. Rev. B 78, 144501 (2008).

[24] W. G. Conley, A. Raman, C. M. Krousgrill, and S. Mohammadi,
Nano Lett. 8, 1590 (2008).

[25] Q. Chen, L. Huang, Y. C. Lai, C. Gragobi, and D. Dietz, Nano
Lett. 10, 406 (2010).

[26] R. Saito, G. Dresselhaus, and M. Dresselhaus, Physical Prop-
erties of Carbon Nanotubes (Imperial College Press, London,
1998).

[27] A. Y. Kasumov, R. Deblock, M. Kociak, B. Reulet, H. Bouchiat,
I. I. Khodos, Y. B. Gorbatov, V. T. Volkov, C. Journet, and
M. Bughard, Science 284, 1508 (1999).

[28] B. Witkamp, M. Poot, and H. van der Zant, Nano Lett. 6, 2904
(2006).

[29] A.H. Nayfeh, Perturbation Methods (Wiley, New York,
2000).

[30] R. Seidel, Practical Bifurcation and Stability Analysis: From
Equilibrium to Chaos (Springer, New York, 1994).

[31] J. Argyris, G. Faust, and M. Haase, Philos. Trans. R. Soc., A
344, 207 (1993).

[32] C. Grebogi, E. Ott, and J. A. Yorke, Phys. Rev. Lett. 48, 1507
(1982).

[33] C. Grebogi, E. Ott, and J. A. Yorke, Phys. D (Amsterdam) 7,
181 (1983).

[34] K. T. Chau and Zheng Wang, Chaos in Electric Drive Systems:
Analysis, Control and Application (Wiley, Singapore, 2011).

[35] Edward Ott, Chaos in Dynamical Systems (Cambridge Univer-
sity Press, Cambridge, UK, 2002).

[36] V. N. Matveev, V. I. Levashov, V. T. Volkov, O. V. Kononenko,
A. V. Chernyh, M. A. Knjazev, and V. A. Tulin, Nanotechnology
19, 475502 (2008).

[37] J.-D. Pillet, C. H. L. Quay, P. Morfin, C. Bena, A. Levy Yeyati,
and P. Joyez, Nat. Phys. 6, 965 (2010).

[38] M. G. E. da Luz and C. Anteneodo, Philos. Trans. R. Soc., A
369, 245 (2011).

046208-7

http://dx.doi.org/10.1016/j.commatsci.2009.12.020
http://dx.doi.org/10.1016/j.commatsci.2009.12.020
http://dx.doi.org/10.1103/PhysRevE.84.016212
http://dx.doi.org/10.1103/PhysRevE.84.016212
http://dx.doi.org/10.1103/PhysRevLett.106.094102
http://dx.doi.org/10.1103/PhysRevLett.106.094102
http://dx.doi.org/10.1103/PhysRevB.81.241405
http://dx.doi.org/10.1103/PhysRevB.81.241405
http://dx.doi.org/10.1103/PhysRevLett.93.224101
http://dx.doi.org/10.1103/PhysRevLett.93.224101
http://dx.doi.org/10.1103/PhysRevB.78.144501
http://dx.doi.org/10.1021/nl073406j
http://dx.doi.org/10.1021/nl902775m
http://dx.doi.org/10.1021/nl902775m
http://dx.doi.org/10.1126/science.284.5419.1508
http://dx.doi.org/10.1021/nl062206p
http://dx.doi.org/10.1021/nl062206p
http://dx.doi.org/10.1098/rsta.1993.0088
http://dx.doi.org/10.1098/rsta.1993.0088
http://dx.doi.org/10.1103/PhysRevLett.48.1507
http://dx.doi.org/10.1103/PhysRevLett.48.1507
http://dx.doi.org/10.1016/0167-2789(83)90126-4
http://dx.doi.org/10.1016/0167-2789(83)90126-4
http://dx.doi.org/10.1088/0957-4484/19/47/475502
http://dx.doi.org/10.1088/0957-4484/19/47/475502
http://dx.doi.org/10.1038/nphys1811
http://dx.doi.org/10.1098/rsta.2010.0301
http://dx.doi.org/10.1098/rsta.2010.0301



