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The fact that the elements in some realistic systems are influenced by each other indirectly through a common
environment has stimulated a new surge of studies on the collective behavior of coupled oscillators. Most of
the previous studies, however, consider only the case of coupled periodic oscillators, and it remains unknown
whether and to what extent the findings can be applied to the case of coupled chaotic oscillators. Here, using the
population density and coupling strength as the tuning parameters, we explore the synchronization and quorum
sensing behaviors in an ensemble of chaotic oscillators coupled through a common medium, in which some
interesting phenomena are observed, including the appearance of the phase synchronization in the process of
progressive synchronization, the various periodic oscillations close to the quorum sensing transition, and the
crossover of the critical population density at the transition. These phenomena, which have not been reported
for indirectly coupled periodic oscillators, reveal a corner of the rich dynamics inherent in indirectly coupled
chaotic oscillators, and are believed to have important implications to the performance and functionality of some
realistic systems.
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I. INTRODUCTION

Many complex systems in nature can be described as an
ensemble of coupled oscillators, and the collective behavior
of such systems has been a subject of continuous interest
in nonlinear science [1–4]. In neural and biological sys-
tems, a typical collective behavior observed is the coherent
motion of the oscillators, e.g., the synchronization, which
has been widely regarded as having important implications
to the function and performance of the systems [5,6]. To
study the synchronization behaviors, a simple yet efficient
approach is to consider an ensemble of directly coupled regular
oscillators, and investigate how the system is transited from
the nonsynchronous to the synchronous states as a function
of certain system parameters [4]. For instance, in the classical
Kuramoto model where an ensemble of phase oscillators with
distributed frequencies is directly coupled in a global fashion,
it has been found that as the coupling strength exceeds some
critical value, the phase of the oscillators will be gradually
aligned to the same dynamical state [7–10]. This scenario of
progressive synchronization transition, however, is drastically
changed when the oscillators are coupled indirectly—another
important approach in studying the synchronization of coupled
systems [11–22]. For instance, in systems such as bacteria [12]
and yeast cells [13], the elements are not influenced by each
other in a direct fashion, but rather through the common
environment indirectly. In such kinds of systems, a common
finding is that, as the population density of the element exceeds
some threshold value, the system will be suddenly switched
from the quiescent state to the state of synchronized oscillation
for all the elements, i.e., the quorum sensing phenomenon [12].
Although of different coupling fashion, the two approaches do
share some common features in the synchronization transitions
[14], and are often compared with each other in exploring the
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synchronization dynamics [13]. In particular, by a chemical
experiment of indirectly coupled regular oscillators, it has been
shown that both synchronization scenarios, i.e., progressive
synchronization and quorum sensing, can be observed in the
same dynamical system [15].

In previous studies of indirectly coupled systems, the
oscillator dynamics is mostly taken as periodic and the chaotic
case is much less considered. (In Refs. [23,24], the authors
have investigated the indirectly coupled chaotic oscillators
from the viewpoint of synchronization control). As chaos
is ubiquitously observed in realistic systems, it is natural to
check whether the previous findings established on periodic
oscillators [13–15] stand still for chaotic oscillators. Previous
works on directly coupled chaotic oscillators have shown that
their collective dynamic is much more complicated and offers
even richer phenomena [25–28]. For instance, depending on
the coupling strength and coupling function, the directly
coupled chaotic oscillators could present various synchronous
forms, including the complete synchronization [26], the phase
synchronization [27], and the generalized synchronization
[28], etc. In comparison to directly coupled chaotic oscillators,
the collective behavior of indirectly coupled chaotic oscillators
is largely unknown. It is thus intriguing to see whether the
rich synchronization phenomena observed in directly coupled
chaotic systems can be found in indirectly coupled systems as
well, and, if yes, what are the roles that these synchronization
forms play in the transition of the system collective behaviors.
(For the transition of the collective behaviors in directly
coupled chaotic oscillators, please refer to Ref. [25], and
references therein.)

In addition to the theoretical interest, the study of indirectly
coupled chaotic oscillators may also have implications for
the functioning and operating mechanisms for some realistic
systems, e.g., the emergence of the robust rhythms in biological
organisms [29]. For rhythms generators such as the central
pattern generator, or the cardiac pacemaker and the circadian
clock, the systems are composed of thousands of clock cells
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which normally possess the irregular dynamics. An interesting
phenomenon observed in experiments is that, coupled through
the common medium, the system could output a robust and
regular collective behavior. By studying the indirectly coupled
chaotic oscillators, we also wish to gain some insight into the
functioning of this kind of system.

Interested by the above questions, in the present work
we conduct a systematic analysis on the collective behavior
of an ensemble of chaotic oscillators coupled through a
common medium, with special attention being paid to the
phenomena arisen by the chaotic feature of the oscillators.
Our study shows that, while sharing the similar scenarios
of synchronization transitions as the periodic oscillators,
the chaotic oscillators do possess some unique features and
present some new phenomena. Specifically, in the process
of progressive synchronization we find that the oscillators
reach the state of phase synchronization, i.e., the phases of
the oscillators are well constrained while their amplitudes
remain uncorrelated [27]. In addition, in the quorum sensing
transition, we find that the trajectories of the oscillators become
highly regular, despite the chaotic nature of the oscillators.
More interestingly, we find that at the quorum sensing
transition, the critical population density that characterizes
the transition is not monotonically increased with the coupling
strength, which is very different from the situation of coupled
periodic oscillators. Our findings reveal the rich and unique
dynamics arisen by chaotic oscillators, which are necessary
and important complements to the current knowledge on the
collective behaviors in indirectly coupled systems.

The rest of the paper is organized as follows. In Sec. II, we
will give our model of indirectly coupled chaotic oscillators.
In Sec. III, using the population density as the parameter, we
will investigate systematically the transitions of the system
collective behavior, including the progressive synchronization
and the quorum sensing. In Sec. IV, we will give a global
picture on the transitions, with special attention being paid to
the crossover of the transition boundary for quorum sensing.
Moreover, by a simplified model, we will also give a physical
explanation to this phenomenon. Finally, in Sec. V we will
give our discussions and conclusion.

II. THE MODEL

We consider an ensemble of chaotic oscillators diffusively
coupled to a homogeneous common medium, with the time
evolution of the system as described by the following set of
ordinary differential equations [13]:

dzi

dt
= F(zi ,pi) + K(Z − zi), i = 1,2, . . . ,N, (1)

dZ
dt

= ρ

N

N∑
i=1

K(zi − Z) − JZ. (2)

Here, the vector zi denotes the state of the ith oscillator in
the system, with i = 1,2, . . . ,N , and N is the system size.
The vector Z represents the state of the common medium.
In cellular systems, zi and Z represent the chemical concen-
trations in the intracellular and extracellular compartments,
respectively [13]. For each of the N oscillators, as shown in
Eq. (1), its evolution is governed by two terms. The term

F(zi ,pi) governs the intrinsic dynamics of the oscillator, with
pi the bifurcation parameter. To have chaotic oscillators, we
choose pi from the chaotic regime. The other term in Eq. (1),
K(Z − zi), accounts for the diffusion signals that the oscillator
receives from the medium, where K is the diagonal matrix that
defines the strength of the couplings. Similarly, the evolution
of the medium is also determined by two terms. The term
Z̄ = (ρ/N )

∑N
i=1 K(zi − Z) in Eq. (2) represents the speed

of the signals sent out from the oscillators and that are
accumulated in the medium solution. The other term, −JZ,
accounts for the inflow and outflow of the medium, with J
the diagonal matrix characterizing the losses of the medium
signals.

A key parameter in Eq. (2) is ρ, which characterizes the
population density of the oscillators in the system. For cellular
systems, we have ρ = Vcyt/Vx , with Vcyt and Vx the total
cytosolic and the extracellular volumes, respectively [13,14].
Let v̄ be the averaged cytosolic volume for the individual
cells, then we have ρ = Nv̄/Vx = nv̄, with n = N/Vx the real
density of the cells. Since v̄ is a constant for the chosen type of
oscillators, following the traditions in quorum sensing studies
[13,14], here we simply use ρ as the oscillator population
density. By this definition of ρ, it is straightforward to see that
the exchange of the signals between the oscillators and the
medium is balanced, as Z̄Vx = −v̄

∑N
i=1 K(Z − zi).

The above model captures the essence of many chemical
and biological systems, where the system elements influence,
and in turn are influenced by the environment medium through
the diffusions, e.g., the coupling between the catalytic mi-
croparticles and the surrounding catalyst-free reaction solution
[15], or the coupling between the Escherichia coli cells and the
environmental autoinducer molecule [19]. It should be noted
that the present model assumes a homogeneous distribution of
the medium, i.e., the common medium, and also assumes an in-
stant coupling between the oscillators and the medium, i.e., no
time delay. These assumptions are reasonable for chemical and
biological systems, as a homogeneous medium could be real-
ized by either stirring the solution (in chemical systems) or the
fast diffusion of the small molecules (in biological systems).

To solidify the study, in the following we will adopt
the chaotic Rössler oscillator as the intrinsic dynamics
of the elements, using one variable to describe the state of
the environmental medium. Specifically, the set of equations
we are going to investigate are

ẋi = −ωiyi − zi + k(e − xi),
(3)

ẏi = ωixi + ayi, żi = 0.4 + (xi − 8.5)zi,

and

ė = ρ

N

N∑
i=1

k(xi − e) − Je. (4)

In Eqs. (3), the parameter ωi represents the intrinsic frequency
of the ith oscillator, which, in general, should be different
from each other. Here, for the sake of simplicity, we set ω to
be identical, ωi = ω = 1 (the nonidentical case will be briefly
discussed later). With a = 0.15, the dynamics of the isolated
oscillator is chaotic, with the largest Lyapunov exponent ∼1.2.
Our main task in the present work is to study how the collective
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behavior of the indirectly coupled chaotic oscillators will vary
with the parameters ρ (the population density) and k (the
coupling strength).

III. THE TWO TYPES OF TRANSITIONS

We start by investigating the transition of the system
dynamics at some selected coupling strength. Specifically,
by a weak coupling, we will check the transition scenario
from the nonsynchronous to synchronous states as a function
of the population density ρ, whereas by a strong coupling,
we will explore the transition scenario from the quiescent to
oscillatory states. For the former, special attention will be
paid to the synchronization form appearing in the transition
process, whereas for the latter, we will focus on the emergence
of the synchronous periodic motions. Throughout the paper,
we will fix the size of the system at N = 1 × 103, except
when specifically mentioned, and set the relaxation parameter
as J = 0.1. Equations (3) and (4) are integrated by the fourth-
order Runge-Kutta method, with the time step �t = 1 × 10−3.
Random initial conditions are used for the oscillators, and a
transient period of t = 1 × 103 is discarded when analyzing
the properties of the system collective behaviors.

A. Progressive synchronization at weak couplings

We first check the transition of the system dynamics as a
function of ρ under a weak coupling strength, k = 2 × 10−2.
To have a quick look at the picture of the transition, we plot in
Fig. 1 the evolution of the system dynamics for two selected
population densities. With a small population density, ρ =
0.5, it is shown in Fig. 1(a) that the trajectories of the (five)
oscillators, which are randomly chosen from the system, are
widely separated from each other, indicating the absence of
synchronization among the oscillators. The widely separated
trajectories, however, are significantly constrained when the
population density is large. For instance, by ρ = 3.8, we plot
in Fig. 1(b) the trajectories for the same group of oscillators.

FIG. 1. By a weak coupling strength k = 2 × 10−2, the time
evolution of five oscillators that are randomly chosen from the system
under a lower population density ρ = 0.5 (a) and a larger population
density ρ = 3.8 (b). (c) The time evolution of the common medium
e, under the population densities ρ = 0.5 (dashed line) and ρ = 3.8
(solid line).

It is found that the phases of oscillators are well locked to
each other, while their amplitudes remain uncorrelated. These
are the typical features for phase synchronization [27] that
have previously been observed in the directly coupled chaotic
Rössler system [30].

Accompanied with the phase constraint of the oscillators,
the behavior of the environmental medium is also significantly
changed. As depicted in Fig. 1(c), when the phases of the
oscillators are not synchronized, e.g., ρ = 0.5, the value of
e remains around 0 throughout the evolution (dashed line),
whereas when phase synchronization is reached, e.g., ρ = 3.8,
the medium is found to be oscillating with a pronounced
amplitude (solid line). Moreover, for the latter case it is
found that despite the chaotic feature of the oscillators, the
motion of the medium is highly regular. The regular motion of
the medium could be understood by the mean-field behavior
of the oscillators. In Ref. [30] the authors have studied the
collective behavior of a large ensemble of globally and directly
coupled nonidentical chaotic oscillators, and found that when
the oscillators are synchronized in phase, the mean field of
the oscillators will present a highly regular motion. As shown
in Fig. 1(b), under the parameter ρ = 3.8 the phases of the
oscillator are well locked, which, according to Ref. [30], will
generate a highly regular mean field. As one observes from
the right-hand side of Eq. (4) that the other term related to
the common medium e is linear, the oscillation of the medium
thus is governed by the regular mean-field motion.

How is the state of phase synchronization reached, and what
is the role it plays in the transition of the system dynamics? To
address these questions, we go on to investigate the transition
of the system dynamics as a function of the density parameter.
Following the tradition of quorum-sensing studies, we measure
the degree of phase synchronization of the oscillators by the
following order parameter [15,31]:

R =
〈∣∣∣∣∣N−1

N∑
j=1

exp[iθj (t)] −
〈
N−1

N∑
j=1

exp[iθj (t)]

〉 ∣∣∣∣∣
〉

, (5)

with 〈· · ·〉 representing the time average over a period of t =
2 × 103. It is straightforward to see that if the oscillators are
out of phase from each other, we have R = 0, e.g., the case
shown in Fig. 1(a), whereas if the oscillators are of perfect
phase synchronization, we have R = 1, e.g., the case shown
in Fig. 1(b). (Following the tradition, we also set R = 0 if the
oscillators are quenched from oscillation, which we will meet
later in the transition under strong couplings.)

By the same coupling strength as used in Fig. 1, we plot in
Fig. 2(a) the variation of the order parameter R, as a function of
the population density in the range of ρ ∈ [0,5]. It is observed
that as ρ increases, the value of R is progressively increased
from 0 to 1. In particular, at ρ = ρp ≈ 3.0 we have R ≈ 1,
indicating a strong constraint of the phases of the oscillators.
This fashion of progressive transition is very similar to the
scenario of directly coupled phase oscillators [4]. Progressive
transition is also observed in the dynamics of the medium. In
Fig. 2(b), we plot the variation of the time-averaged oscillation
amplitude of the medium 〈Ae〉, as a function of ρ. It is seen
that just like the phase order parameters, the value of 〈Ae〉 is
also progressively increased.
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FIG. 2. By k = 2 × 10−2, the variation of (a) the phase order
parameter R and (b) the averaged amplitude of the medium oscillation
〈Ae〉, as a function of the population density ρ. For ρ > ρp ≈ 3.0,
we have R ≈ 1, indicating a strong constraint of the phases of the
oscillators, i.e., reaching the state of phase synchronization.

B. Dynamical quorum sensing at strong couplings

We next investigate the transition of the system dynamics
as a function of ρ under a strong coupling strength, k = 1.0.
When ρ is very small, from Eq. (4) we know that due to the
large relaxation term −Je, the medium will be finally ceasing
from the oscillation, i.e., reaching the steady state e = 0. In
this case, the coupling term in Eq. (3) becomes −kxi , which
will suppress the oscillation of the oscillators. Once k is larger
than some critical value kc, the oscillators will be stopped from
oscillation and, as a consequence, the system will be ceased
to the quiescent state xs . In Fig. 3(a), by a small population
density (ρ = 0.2), we plot the time evolution for some typical
oscillators in the system, in which the ceasing of the oscillators
to the quiescent state is evident.

The quiescent state, however, becomes unstable when the
population density is large enough. In Figs. 3(b) and 3(c),

FIG. 3. By a strong coupling strength k = 1.0, the time evolution
of five oscillators chosen randomly from the system, with the popu-
lation density as (a) ρ = 0.2, (b) ρ = 2.0, and (c) ρ = 6.5. In (a), the
oscillators finally cease from oscillation, and reaching the quiescent
state. In (b), the oscillators are synchronized to a periodic-1 trajectory.
In (c), the oscillators are synchronized to a chaotic trajectory.

FIG. 4. By k = 1.0, the variation of (a) the phase order parameter
R, and (b) the averaged amplitude of the medium oscillation 〈Ae〉,
as a function of the population density. For the quiescent state, we
have R = 0. Quorum sensing occurs at about ρq ≈ 1.8, where R is
switched from 0 to 1 and 〈Ae〉 is starting to increase from 0.

we plot the time evolution for the same set of oscillators as
plotted in Fig. 3(a) under the parameters ρ = 2.0 and ρ = 6.5,
respectively. It is seen that under these densities, the oscillators
are oscillatory and synchronized.

To obtain the details about the transition from the quiescent
to the synchronous oscillatory states, we again monitor the
variations of the phase order parameter R, and the averaged
medium amplitude 〈Ae〉, as a function of ρ in the regime of
strong couplings. The numerical results are plotted in Fig. 4,
where the coupling strength is taken as k = 1.0. In Fig. 4(a),
it is seen that as ρ exceeds the critical density ρq ≈ 1.8, R

suddenly jumps from 0 to 1, indicating the switch from the
quiescent to the oscillatory and synchronous states at this point.
Accompanied with the oscillation of the oscillators, the value
of 〈Ae〉 is also increased from 0 at ρq , reflecting the onset of
oscillation for the medium at this critical density. Moreover, as
ρ increases from ρq , the value of 〈Ae〉 is gradually increased,
indicating that the oscillation is enhanced by increasing ρ.
This phenomenon, observed in Fig. 4, is much like the quorum
sensing phenomenon observed in the bacteria system, where
each population of elements undergoes a sudden change in
their behaviors, i.e., showing a supercritical increase of the
concentration of a signaling molecule in the extracellular
solution [12]. For this reason, we call the transition shown
in Fig. 4 the quorum sensing transition. This observed sudden
transition shares the same features with the oscillator death
(OD) transition [32,33], which is just expressed in a different
context.

An interesting phenomenon in the above quorum sensing is
that, at the boundary of the transition, the synchronous motion
of the oscillators is highly regular, despite their chaotic nature.
For instance, by ρ = 2, the oscillators are observed to oscillate
with the period-1 motion [Fig. 3(b)]. The periodicity of the
synchronous motion, however, is subjected to the change of
the population density. For instance, increasing ρ to 6.5, in
Fig. 3(c) it is seen that the synchronous motion becomes
chaotic, which resumes the chaotic nature of the individual
oscillator. To check out the variation of the synchronous
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FIG. 5. For the simple case of N = 2 indirectly coupled chaotic
Rössler oscillators, and by the coupling strength k = 1, the variation
of the synchronous motion as a function of ρ. The method of Poincaré
surface of section has been employed in plotting this bifurcation
diagram, where xmax is the local maxima of the variable x1 of the
synchronous motion.

motion, by employing the simple case of N = 2 oscillators,
in Fig. 5 we plot the bifurcation diagram of the synchronous
oscillation as a function of ρ. (Here we wish to note that
in experimental realizations the variation of ρ could be
accomplished by effectively changing either the averaged
cell volume v̄, or the total extracellular volume Vx .) Very
interestingly, it is found that the oscillation undergoes a
standard period-2 bifurcation. The above results (in Figs. 4
and 5) thus suggest that besides inducing the quorum sensing,
the population density also plays a role in adjusting the motion
of the synchronous oscillation.

The finding that the synchronous motion varies with ρ

might have implications for the functioning of some realistic
systems, e.g., the robust rhythm appearing in biological
systems. Taking the circadian clock residing at the suprachias-
matic nuclei in mammalian brains as an example [34], in this
system, due to the intrinsic nonlinear dynamics, the behavior
of the individual neuron is normally irregular or chaotic.
However, when a population of such neurons is coupled
together, they could generate very robust and regular collective
behaviors [29]. Since one way of coupling the neurons is the
diffusion of certain chemical elements with the environmental
medium, this system thus might be regarded as an ensemble
of indirectly coupled irregular oscillators. If this is the case,
then the numerical results shown in Fig. 5 indicate that for the
system to output a regular synchronous motion of a specific
period, the number of neurons should be restricted to within
a certain range. For instance, in our model of coupled Rössler
oscillators, if the period-2 oscillation is desired, from Fig. 5
we know that the value of ρ should be chosen within the range
(3.20,4.82).

IV. THE GLOBAL PICTURE

From the mathematical point of view, the value of ρ simply
reflects the coupling strength that the medium is influenced by
the oscillators, which is similar to the role of k in Eq. (3). It is
therefore expected that by varying k, the collective behavior
of the system will be undergoing similar transitions as for

varying ρ. A question naturally arises: How are these two
parameters related, and how do they jointly determine the
system dynamics? In particular, in the transition to the quorum
sensing, how is ρq dependent on k? To answer this question,
it is necessary to have a global analysis on the transitions
of the system dynamics, i.e., analyzing the transitions in the
two-dimensional space spanned by ρ and k. As shown in the
previous section, the scenario of the transition is strongly
dependent on the value of k. More specifically, when k is
smaller than some critical value kc, the system is oscillatory
and, with the increase of ρ, experiences progressive transition,
whereas if k is larger than kc, the system is quiescent and, with
the increase of ρ, undergoes the quorum sensing transition. For
the model investigated here, numerically we find kc ≈ 0.15.
Regarding this clear difference, in analyzing the transitions in
the two-dimensional parameter space, we will treat the two
regimes k < kc and k > kc separately.

In the regime of k < kc, i.e., the progressive transition, the
system is oscillatory and the role of the coupling is mainly
for constraining the motion of the oscillators to that of the
media. This is similar to the function of the population density,
which is also used to improve the correlation between the
media and the oscillators. For this reason, it is straightforward
to predict that with the increase of the coupling strength k,
the critical population density ρp, characterizing the phase
synchronization in the progressive transition will be mono-
tonically decreased. This prediction is verified by numerical
simulations, as shown in Fig. 6, where the order parameter
R is plotted as functions of ρ and k in a wide range of the
parameter space. In Fig. 6, it is shown clearly that in the regime
of k < kc, as k approaches kc, the boundary of the transition
is gradually shifted up, indicating the decreased ρp at larger
k. It should be noted that there exists another critical coupling

FIG. 6. (Color online) For N = 100, the order parameter R, as
functions of the coupling constant k and the population density ρ.
The boundaries of the progressive and quorum sensing transitions
are denoted by, respectively, the dashed and dash-dotted curves. For
k < k1 ≈ 1 × 10−2, the system cannot be synchronized whatever the
population density takes. For k1 < k < kc ≈ 0.15, with the increase
of k, the critical population density characterizing the progressive
transition ρp is monotonically decreased. For k > kc, the critical
population density characterizing the quorum sensing transition ρq ,
is first increased and then decreased, with the maximum density ρmax

q

locating at k2 ≈ 0.3.
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strength, k1 ≈ 1 × 10−2, below which the system cannot be
synchronized whatever the population density takes. The
existence of k1 is understandable, as it stands for the minimum
coupling strength required by the medium to constrain the
oscillators. From the viewpoint of chaos synchronization, this
can also be understood as the critical coupling strength that
the oscillators are used to synchronize with the medium in a
generalized fashion, i.e., the generalized synchronization [35].

We next investigate the dependence of the critical density
ρq on the coupling strength in the regime of k > kc, i.e.,
the boundary of the quorum sensing transition. In previous
studies of coupled regular oscillators, a general observation
about the quorum sensing transition is that as the value of
k increases, the necessary population density for saving the
system from the quiescent state will also be increased; that is,
the value of ρq is monotonically increased with k [15]. This
relationship, however, is drastically changed in the system of
coupled chaotic oscillators. As can be found in Fig. 6, as k

increases from kc, the value of ρq is first increased and then
decreased, with the maximum density ρmax

q ≈ 2.75 locating
at about k2 ≈ 0.3. The decreased ρq in the region of k > k2

seems to suggest that despite the increased damping, the deeply
quenched system (with larger k) is easier to save from the
quiescent state, which is quite contrary to the results obtained
in coupled regular oscillators [15]. In what follows, we again
adopt the simple model of N = 2 indirectly coupled chaotic
oscillators, and explore the underlying mechanism for the
nonmonotonic relationship between ρq and k in the quorum
sensing transition.

Assume that under a strong coupling both oscillators are
ceased to the steady state xs = (xs,ys,zs), e.g., ẋs = 0 for
Eqs. (3) and (4), then the critical population density for quorum
sensing ρq is identified as the point where the steady state
becomes unstable. To test the stability of the steady state,
we add a small perturbation δx = (δx,δy,δz) onto it, and
check the evolution of this perturbation. In its linearized form,
the perturbation will be evolved according to the equation
δẋ = Aδx, with

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−k −1 −1 0 0 0 k

1 0.15 0 0 0 0 0
zs 0 xs − 8.5 0 0 0 0
0 0 0 −k −1 −1 k

0 0 0 1 0.15 0 0
0 0 0 zs 0 xs − 8.5 0

kρ/2 0 0 kρ/2 0 0 −kρ − J

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(6)

the Jacobi matrix evaluated on xs . Let λ1 be the largest
eigenvalue of the matrix A, then whether the steady state xs is
stable is determined by the sign of Re(λ1): If Re(λ1) < 0, the
quiescent state is stable, otherwise it is unstable. Thus, for the
given coupling strength k, the critical population density ρq

can be obtained by requiring Re(λ1) = 0. Numerically, we
find that the steady state of the chaotic Rössler oscillator
is (xs,zs) ≈ (7 × 10−3,4.7 × 10−2). Inserting this into the
requirement of Re(λ1) = 0, we then are able to obtain the
equation for ρq and k. This equation contains high-order
polynomials, and is difficult to solve analytically. By numerical
simulation, we plot the variation of ρq as a function k in Fig. 7.

FIG. 7. For the simplified model of N = 2 chaotic Rössler oscil-
lators, the variation of the critical population density characterizing
the quorum sensing transition ρq , as a function of the coupling
strength k. The maximum critical density ρmax

q ≈ 2.75 locates at
about k ≈ 0.3. The solid curve represents a fitting of the numerical
data (symbols) for better visualization.

It is seen that at about k2 ≈ 0.3, the maximum critical density
ρmax

q ≈ 2.75 does exist.
The existence of ρmax

q at k2 can be heuristically explained,
as follows. For the medium to be oscillatory, a necessary
condition is that during the system evolution, the driving
signal ρk

∑
i(xi − e)/N is able to overcome the damping force

−Je [see Eq. (4)]. That is, the time average of the driving
signal F = ρkF ′ = ρk

∑
i〈xi − e〉/N should be larger than

some threshold value Fc (which is determined jointly by the
relaxation parameter J and the medium dynamics). At the
transition boundary, numerically we find that F ′ = α + βk−γ ,
with the fitted parameters α ≈ 2.8 × 10−4, β ≈ 10−4, and
γ ≈ 1.45 (Fig. 8). Inserting this into the function of F and
requiring F = Fc, after some algebra, we obtain the following

FIG. 8. For N = 2 oscillators, the variation of the critical driving
signal, F ′ ≡ ∑

i〈xi − e〉/N , as a function of the coupling strength
k. The symbols are the numerical results calculated at the boundary
of quorum sensing transition, which are fitted to the function
Fc = α + βk−γ (the solid curve), with α = 2.8 × 10−4, β = 10−4,
and γ = 1.45.
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relation between ρq and k:

ρq = Fc/[k(α + βk−γ )]. (7)

By requiring ∂ρq/∂k = 0, we finally have

k2 = [β(γ − 1)/α]1/γ ≈ 0.28, (8)

which is very close to the numerical result in Figs. 6 and 7.
The physical meaning of k2 is the following: When k < k2,
as k increases, the value of F ′ is quickly decreased (roughly
with a power-law scaling), which makes kF ′ become smaller.
Since ρq = Fc/(kF ′), the critical density thus increases with
k. However, when k > k2, as k increases, the value of F ′
is only slightly decreased (see Fig. 8). In this case, to keep
ρqkF ′ = Fc, we need to decrease the value of ρq . As a balance
of the two trends, there appears the maximum critical density
ρmax

q .

V. DISCUSSION AND CONCLUSION

The present work is a necessary and nontrivial extension
to the previous studies of indirectly coupled systems. Prior
to our work, most of the studies on indirectly coupled
systems had been concentrated on the periodic oscillators,
and it is poorly known whether the findings obtained can
be extended to the chaotic oscillators. The current study,
while confirming the general scenarios of synchronization
transition observed in the periodic systems, also discloses
some unique properties belonging exclusively to the chaotic
systems, such as the appearance of phase synchronization,
the emergence of the periodic collective behaviors, and the
crossover of the critical population density in the quorum
sensing transition. Considering the ubiquitous existence of
chaos in nature, these findings thus will extend our knowledge
on the collective behaviors of indirectly coupled systems, as
well as giving indications to the performance and functioning
of some realistic complex systems, e.g., the generation of
robust rhythm in indirectly coupled irregular oscillators.

It is worth noting that the above findings are general
and can be observed in other chaotic systems as well. For
instance, we have checked the synchronization transitions of
the nonidentical system, in which the intrinsic frequency ωi

of the Rössler oscillators is randomly chosen from the range
[0.99,1.01]. In this case, the two types of synchronization
scenarios are still clearly observed. Comparing to the identical
case, the main difference is that in the nonidentical case
the critical coupling strength that characterizes the phase
synchronization, i.e., the value of k1, is increased. In addition
to the Rössler oscillator, we have also tested the model of the
chaotic Hindmarsh-Rose oscillator, which has been widely
used in literature for modeling the spiking-bursting behavior
of the membrane potential of the neuron. Again, we find the

two types of scenarios for synchronization transition. It should
be pointed out that due to the complicated dynamics, at the
current stage we are not able to give a rigorous analysis on
the bifurcation diagrams for the indirectly coupled Rössler
oscillators (see Fig. 5). Also, due to a lack of a relationship
between the medium state and oscillator variables, we cannot
predict exactly the values of k2 and ρmax

q (as the values Fc and
F ′ cannot be analyzed). It is our hope that these questions can
be addressed by further studies, e.g., an investigation on the
constraint between the oscillators and the medium.

Our findings might be first testified by chemical and biolog-
ical experiments. For chemical systems, it is well known that
chaotic behaviors can be observed in chemical reactions, e.g.,
the Belousov-Zhabotinsky (BZ) reaction [36,37]. Meanwhile,
the chemical elements generated at different areas of the
system can be well diffused into the medium environment.
This makes it possible to design a similar experiment like the
one used in Ref. [15], with the periodic chemical particles now
replaced by the localized chaotic BZ oscillations. For biolog-
ical systems, it has been shown that under certain conditions
the glycolytic oscillation of the yeast could be chaotic [38]. It
will be interesting to check whether a population of chaotic
glycolytic oscillators coupled via a common medium could
present the periodic collective behaviors. Meanwhile, it will
also be interesting to see, by chaotic oscillators, whether
the system could present the progressive synchronization
transition—the scenario that has not been reported for the
periodic biological oscillators in previous studies.

In summary, by employing chaotic oscillators, we have
revisited the transition of the collective behaviors in indirectly
coupled systems, in which some interesting phenomena dif-
ferent from traditional studies have been observed, including
the emergence of phase synchronization in the progressive
transition, the generation of synchronous periodic oscillation
nearby the quorum sensing transition, and the crossover of
the critical population density under strong couplings. Our
findings highlight the unique and rich dynamics in indirectly
coupled chaotic oscillators, which are necessary and important
complements to the current knowledge.
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