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To derive tests for randomness, nonlinear-independence, and stationarity, we combine surrogates with a
nonlinear prediction error, a nonlinear interdependence measure, and linear variability measures, respectively.
We apply these tests to intracranial electroencephalographic recordings (EEG) from patients suffering from
pharmacoresistant focal-onset epilepsy. These recordings had been performed prior to and independent from our
study as part of the epilepsy diagnostics. The clinical purpose of these recordings was to delineate the brain
areas to be surgically removed in each individual patient in order to achieve seizure control. This allowed us to
define two distinct sets of signals: One set of signals recorded from brain areas where the first ictal EEG signal
changes were detected as judged by expert visual inspection (“focal signals”) and one set of signals recorded
from brain areas that were not involved at seizure onset (“nonfocal signals”). We find more rejections for both the
randomness and the nonlinear-independence test for focal versus nonfocal signals. In contrast more rejections
of the stationarity test are found for nonfocal signals. Furthermore, while for nonfocal signals the rejection
of the stationarity test increases the rejection probability of the randomness and nonlinear-independence test
substantially, we find a much weaker influence for the focal signals. In consequence, the contrast between the
focal and nonfocal signals obtained from the randomness and nonlinear-independence test is further enhanced
when we exclude signals for which the stationarity test is rejected. To study the dependence between the
randomness and nonlinear-independence test we include only focal signals for which the stationarity test is not
rejected. We show that the rejection of these two tests correlates across signals. The rejection of either test is,
however, neither necessary nor sufficient for the rejection of the other test. Thus, our results suggest that EEG
signals from epileptogenic brain areas are less random, more nonlinear-dependent, and more stationary compared
to signals recorded from nonepileptogenic brain areas. We provide the data, source code, and detailed results in
the public domain.
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I. INTRODUCTION

Nonlinear signal analysis comprises a wide variety of mea-
sures that allow one to extract different characteristic features
of dynamical systems underlying experimental signals [1].
Applications to signals measured from the brain, for example,
contribute to our understanding of brain functions and mal-
functions and thereby help to advance cognitive neuroscience
and neurology [2,3]. In particular electroencephalographic
(EEG) recordings from epilepsy patients attract researchers’
interest. In some epilepsy patients the diagnostics requires
to record the EEG directly from the surface of the brain
or from deeper brain structures. The clinical purpose of
these intracranial recordings is to localize the brain areas
where seizures start and to assess whether the patient can
benefit from the neurosurgical resection of these parts of
the brain. From the physics’ point of view, these recordings
reveal intriguing dynamics not only during acute epileptic
seizures but also during the seizure-free interval. Therefore,
such intracranial recordings from epilepsy patients are a
prominent and challenging field of applications for nonlinear
signal analysis [4]. There is growing evidence that this
interdisciplinary analysis can contribute valuable diagnostic
information about the localization of the epileptic focus even
from the seizure-free interval [5–9]. This is highly important,

because each seizure is a potentially health impairing event and
epileptologists strive to minimize the number of seizures that
have to be recorded for diagnostic epilepsy surgery evaluation.

Univariate nonlinear measures estimate features such as the
dimensionality, predictability, or entropy of individual dynam-
ics X from single signals x. Pairs of signals x and y measured
simultaneously from two dynamics X and Y are analyzed using
bivariate nonlinear measures to detect interactions between the
dynamics. However, both univariate and bivariate nonlinear
measures have an important limitation. While they are sensitive
to characteristic features of nonlinear dynamics they often lack
specificity. The problem is that nonlinear measures are strongly
influenced by linear correlations of the signals, and arbitrary
degrees of linear auto- and cross-correlation can, for example,
be obtained for linear stochastic processes. For EEG signals
cross-correlation can reflect the underlying dynamics but can
likewise be caused by volume conduction or the reference
montage.

This lack of specificity can be addressed with the concept
of surrogates, first origins of which can be found in studies
of electrocardiographic [10] and electroencephalographic [11]
signals. Originally devised as a test for nonlinearity in univari-
ate dynamics [12], the concept of surrogates has become a very
versatile tool in signal analysis. Different types of surrogates
can be generated for univariate [12–14] as well as for bivariate
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or multivariate signals [15–19]. While classically surrogates
are combined with nonlinear measures, their combination
with linear measures [9,20–25] is equally straightforward and
useful. Exploiting these different variations of the concept of
surrogates one can test a wide variety of null hypotheses about
the dynamics underlying experimental signals.

Surrogate signals are generated by randomizing the original
signals. This randomization is constrained such that selected
properties of the original signals are preserved. In particular,
the composition of the maintained properties can be adapted to
the different null hypothesis [26]. A discriminating statistics,
which has to be sensitive to at least one signal property that
is not consistent with the null hypothesis, is calculated for
both the original signal and the surrogates. If the result for the
original deviates from the distribution of the values obtained
from the surrogates, the null hypothesis is rejected.

As a concrete example suppose that we have calculated
some low value of a nonlinear prediction error (Ref. [1] and
references therein) from an experimental signal. We wonder
whether our result indicates nonlinear deterministic structure
of the underlying dynamics or simply reflects the signal’s linear
autocorrelations. Since we cannot answer this question based
on the nonlinear prediction error alone, we generate a set of
surrogate signals of the original signal. The surrogates are
constrained to have the same linear autocorrelations as the
original signal but to be otherwise random. We calculate the
nonlinear prediction error also for the surrogate signals and test
whether the original result is inside or outside the surrogates’
result range. If it is outside, the linear autocorrelations are
not sufficient to explain the low value of the nonlinear
prediction error, and the dynamics is not consistent with
a stationary linear stochastic process. This does not prove
that the dynamics is nonlinear deterministic. The surrogates’
null hypothesis is composed of various assumptions, and the
violation of any of these assumptions renders it incorrect.
In consequence different alternative models remain for our
dynamics. To further narrow down these alternatives we can
proceed and analyze our signal with other types of surrogates in
combination with other nonlinear or also linear measures [27].

There is growing evidence that the additional informa-
tion gained by surrogates can be decisive for a successful
characterization of EEG recordings of epilepsy patients
[5–9,11,20,23–25,27–32]. Investigating intracranial peri-
seizure EEG recordings in rats, Pijn et al. [11] were the first
to combine a nonlinear measure and surrogates to analyze
recordings from the brain. Casdagli et al. [5] and Andrzejak
et al. [6] combined different univariate nonlinear measures
and surrogates to analyze intracranial EEG recordings from
patients with unilateral medial temporal lobe epilepsy. In both
studies rejections of the null hypothesis of a linear stochastic
process were prevalent in signals measured in the seizure-
generating brain area. Extending earlier work of Ref. [21],
Rummel et al. [23] combined the linear cross-correlation with
univariate surrogates to extract the “genuine cross-correlation”
between individual channel pairs. In comparison to the raw
cross-correlation, the genuine cross-correlation better assessed
spatiotemporal interaction patterns from an intracranial peri-
seizure EEG recording of an epilepsy patient. In particular, the
genuine cross-correlation revealed the strong involvement of
focal signals in these interactions. In Ref. [27] this concept was

extended by including mutual information as nonlinear bivari-
ate interrelation measure as well as multivariate surrogates.
Rejections of the null hypothesis of linear interrelations were
found predominantly for the EEG recorded in epileptogenic
brain areas as well as during epileptic seizures.

In a study of continuous EEG recordings of the seizure-free
interval in 29 patients with medial temporal lobe epilepsy
Andrzejak et al. [7] tested a variety of univariate measures.
They showed that combinations of nonlinear measures with
univariate surrogates allowed to localize the epileptic focus in
a high percentage of cases. Importantly, this approach clearly
outperformed the use of nonlinear measures without surrogates
as well as linear measures. Recently Andrzejak et al. [8]
showed that these findings carry over to bivariate signal
analysis. Based on the same EEG recordings they showed that
a combination of a nonlinear interdependence measure with bi-
variate surrogates excels nonlinear interdependence measures
without surrogates as well as the linear cross correlation in
localizing the epileptic focus. In both studies more rejections
of the surrogate null hypotheses were obtained for the EEG
recorded in the focal as compared to the nonfocal EEG. The
authors concluded that focal EEG signals were distinct from
nonfocal EEG signals in that they are less consistent with an
underlying linear stochastic process and rather reflect some
properties of a coupled nonlinear deterministic dynamics [8].

However, as indicated above, the rejection of a surrogates’
null hypothesis always leaves one with different alternative
interpretations. As already indicated by Andrzejak et al. [7,8],
apart from nonlinear determinism their results could be ex-
plained by the nonstationarity of the EEG. The assumption of
stationarity is included in the null hypotheses of the univariate
and bivariate surrogates used in these studies. Therefore, if
the focal EEG was more nonstationary than the nonfocal
EEG and if this nonstationarity favored the rejection of the
null hypotheses tested with univariate or bivariate nonlinear
measures that were used in these studies, this could explain
the increased rejection rate found for the focal EEG.

Another important open question is whether univariate and
bivariate surrogate analysis can provide much nonredundant
information about the dynamics underlying the EEG. In the
first place univariate and bivariate nonlinear signal analysis
measures extract in general independent aspects of the dynam-
ics. For example, we can have two low-dimensional nonlinear
deterministic dynamics. This structure would be detected by
any sensitive univariate nonlinear measure. However, that
does not imply whether or not there is dependence between
these two dynamics to be detected by bivariate measures.
The dynamics may or may not be coupled. On the other
hand, any nonrandom structure in either dynamics violates
both the univariate and bivariate null hypothesis. Whether the
hypotheses are actually rejected due to this nonrandomness
in turn depends on the type of the univariate and bivariate
measures used to test the hypothesis.

Therefore, our first objective is to assess the influence
of nonstationarity on a univariate randomness test and a
bivariate nonlinear-independence test in application to focal
and nonfocal EEG signals. We base the randomness test on a
nonlinear prediction error and univariate surrogates, and the
nonlinear-independence test on a nonlinear interdependence
measure and bivariate surrogates. As stationarity test we use
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a combination of linear fluctuation measures with univariate
surrogates. Our second objective is to study whether the
rejections of the univariate randomness test and the bivari-
ate nonlinear-independence test correlate across signals. To
minimize the influence of nonstationarity and the differences
between the focal and nonfocal dynamics, we restrict this part
of the study to focal signals for which the stationarity test was
not rejected.

II. METHODS

A flowchart providing an overview of the different steps of
analysis described in this section is provided in Appendix C.

A. Presurgical epilepsy diagnostics

We included intracranial EEG recordings from five epilepsy
patients. These recordings were performed prior to and
independently from our study as part of the epilepsy diag-
nostics in these patients. All five patients had longstanding
pharmacoresistant temporal lobe epilepsy and were candidates
for epilepsy surgery. Noninvasive studies had not allowed
for unequivocal localization of the brain areas from which
seizures originated (“seizure onset zone”), and all patients
underwent long-term intracranial EEG recordings at the De-
partment of Neurology of the University of Bern. Multichannel
EEG signals were recorded with intracranial strip and depth
electrodes all manufactured by AD-TECH (Racine, WI, USA).
An extracranial reference electrode placed between 10/20
positions Fz and Pz was used. EEG signals were either sampled
at 512 or 1024 Hz, depending on whether they were recorded
with more or less than 64 channels. Based on these intracranial
EEG recordings the brain areas where seizures started could
be localized for all five patients. In addition, these areas
were found in parts of the brain that could be surgically
resected without the danger of neurological deficits that would
be unacceptable for the patients. All five patients had good
surgical outcome. Three patients attained complete seizure
freedom, and two patients only had auras but no other seizures
following surgery, corresponding to class 1 and 2 according
to the “International League Against Epilepsy” classification
of surgical outcome [33]. Retrospective EEG data analysis
has been approved by the ethics committee of the Kanton of
Bern. In addition, all patients gave written informed consent
that their data from long-term EEG might be used for research
purposes.

B. Preprocessing of EEG signals

All EEG signals were digitally band-pass filtered between
0.5 and 150 Hz using a fourth-order Butterworth filter. Forward
and backward filtering was used in order to minimize phase
distortions. Those EEG signals that had been recorded with
a sampling rate of 1024 Hz were down-sampled to 512 Hz
prior to further analysis. EEG signals were then re-referenced
against the median of all the channels free of permanent
artifacts as judged by visual inspection. There is no reference
that can be considered “best” on general grounds. Rummel
et al. [34] investigated the impact of six common EEG
references on bi- and multivariate correlation measures for the
example of scalp montages. The global average clearly intro-

duces correlation, however, in a controlled way. The median
reference was not investigated in this publication. However,
as compared to the mean it has the additional advantage that
the rank of the correlation matrix remains full. In consequence,
the amount of artificially introduced correlation is even smaller
than for the global average reference.

C. Composition of sets of EEG signals

As “focal EEG channels” we defined all those channels
that detected first ictal EEG signal changes as judged by
visual inspection by at least two neurologists who are also
board-certified electroencephalographers. KS was always one
of the experts. Though visual analysis is not a fully objec-
tive approach, joint-analysis with fellow neurologists allows
reducing subjective interpretation. Furthermore, visual EEG
analysis is currently still the most important technique for
clinical decision making (see Sec. II A). All other channels
included in the recordings were classified as “nonfocal EEG
channels.” We randomly selected 3750 pairs of simultaneously
recorded signals x and y from the pool of all signals measured
at focal EEG channels. For that purpose, we at first divided the
recordings into time windows of 20 seconds, corresponding to
10 240 samples. Recordings of seizure activity and three hours
after the last seizure were excluded. For each individual signal
pair we then randomly selected one of the five patients, one of
this patient’s focal EEG channels (for the signal x), one of this
channel’s neighboring focal channels (for the signal y), and
one time window included in this patient’s recordings. This
random sample was drawn without replacement and using
a uniform random number generator. Before being included
into the database, the signal pair was visually inspected.
In case, it contained prominent measurement artifacts, the
signal pair was discarded. Moderate contaminations by power-
line noise at 50 Hz, however, were not used as exclusion
criterion. No clinical selection criteria such as the presence
or absence of epileptiform activity were applied. Finally, the
focal EEG signal pairs were stored in the order in which
they were drawn. Their origin (patient, channel, window)
was not stored. In the same way we randomly selected 3750
pairs of nonfocal signals measured at nonfocal EEG channels.
Exemplary pairs of signals are shown in Fig. 1 along with
the outcomes of the different tests described below (see also
Sec. V).

D. Surrogate signals

For the different hypotheses tests described below we
used univariate [13] and bivariate surrogate signals [16].
Univariate surrogates are generated from univariate signals.
Accordingly, given the pair of signals x and y, univariate
surrogate signals are generated by randomizing both individual
signals separately. The randomization is constrained such that
the surrogates have the same autocorrelation and amplitude
distribution as the original signals. Any potential nonlinear
deterministic structure or nonstationary features of the original
signals are destroyed. Pairs of bivariate surrogate signals
are generated by randomizing the pair of original signals
jointly. Like in the univariate case, the surrogates have the
same autocorrelation and amplitude distribution as the original
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FIG. 1. Exemplary pairs of nonfocal signal pairs (a–c) and focal signal pairs (d–f). The test outcomes for these signals are (a) S0, UX
0 , UY

0 ,
B0; (b) S0, UX

0 , UY
1 , B1; (c) S1, UX

1 , UY
1 , B1; (d) S0, UX

0 , UY
0 , B0; (e) S0, UX

1 , UY
1 , B1; (f) S1, UX

0 , UY
0 , B0.

signals. Beyond that the pair of surrogates also has the same
cross-correlation as the original pair of signals. Again any
potential nonlinear deterministic structure or nonstationary

features of the original signals are destroyed. Furthermore,
any signature of nonlinear interdependence between x and y

is removed.
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The null hypothesis tested by univariate surrogates H0,univ

is that the dynamics is a stationary linear stochastic correlated
Gaussian process. The measurement function by which the sig-
nal was derived from the dynamics is invertible but potentially
nonlinear. The autocorrelation, mean, and variance of the
underlying Gaussian process are such that the measurement
results in the autocorrelation, and amplitude distribution of
the observed time series. The null hypothesis of the bivariate
surrogate signals H0,biv is a generalization of the univariate
version: The dynamics is a stationary bivariate linear stochas-
tic correlated Gaussian process. The measurement functions
by which the pair of signals was derived from the dynamics
are invertible but potentially nonlinear. The autocorrelation,
cross-correlation, mean, and variance of the underlying
Gaussian process are such that the measurement results in the
autocorrelation, cross-correlations and amplitude distribution
of the observed time series.

We generated the surrogates signals using an iterative
algorithm proposed for the univariate case in Ref. [13]
and generalized to the bivariate case in Ref. [16]. Detailed
descriptions of these algorithms can be found in these original
references or in Ref. [35] (see also Sec. V).

E. Randomness tests: UX
0 and UY

0 versus UX
1 and UY

1

The randomness test is based on a nonlinear prediction error
N (Ref. [1] and references therein) and univariate surrogates. It
is carried out separately for the signals x and y. The nonlinear
prediction error N aims at a distinction between stochastic
and deterministic dynamics. For this purpose, it quantifies
the degree to which similar present states are mapped to
similar future states of the dynamics. The dynamics is at
first reconstructed from the signal using delay coordinates,
and similarity of states is assessed by spatial proximity in
the reconstructed state space. For a detailed description of
the algorithm used to calculate the measure N we refer to
Ref. [6] (see also Sec. V).

For periodic dynamics the nonlinear prediction error N

takes values of zero. The other extreme is uncorrelated white
noise for which N values around one are obtained. When
calculated for a signal from a deterministic dynamics and
for a stochastic signal that has the same autocorrelation like
the deterministic signal, lower nonlinear prediction errors
are typically obtained for the deterministic signal. However,
stochastic but strongly autocorrelated signals can result in
lower N values than weakly autocorrelated deterministic
signals. Hence, only a combination of the nonlinear prediction
error and surrogates can serve as randomness test.

To calculate N we low-pass filtered the signals with a cut-
off frequency of 40 Hz (eighth-order Butterworth filter) and
subsequently down-sampled the signals by a factor of four,
resulting in a sampling time of 7.8 ms. Subsequently, the state
space was reconstructed using an embedding dimension m and
time delay τ . The parameters of the nonlinear prediction error
are the number of nearest neighbors k, the prediction horizon
H , and the Theiler correction window W . In Secs. III A–III B,
we show detailed results obtained for m = 8, τ = 4 sampling
times, k = 5, H = 4 sampling times, and W = 19 sampling
times. The parameter dependence of the results is summarized
in Appendix A.

We calculated the nonlinear prediction error N for the signal
x and for 19 univariate surrogate signals generated from it. We
rejected the randomness test if the result for the signal was
lower than the minimal result across all 19 surrogate signals.
Accordingly, the randomness test has a significance level of
α = 0.05. The outcome of a rejection of the randomness test
for x is denoted by UX

1 . If the N value of at least one surrogate
was lower than the one for the original signal, the randomness
test for x was not rejected. This outcome is denoted by UX

0 .
All steps were carried out analogously but independently for
y resulting in the two possible outcomes UY

1 and UY
0 .

F. Nonlinear-independence test: B0 versus B1

For the nonlinear-independence test we use a nonlinear
interdependence measure L and bivariate surrogates. The non-
linear interdependence measure L aims at a characterization
of couplings between two dynamics X and Y from the analysis
of a pair of signals measured from them [36]. Like a number of
related approaches [1,18,37–42], the measure L quantifies
the probability with which similar states of one dynamics
are mapped to similar states of the other dynamics. Like
for the nonlinear prediction error, the dynamics are at first
reconstructed from the signals x and y using delay coordinates,
and similarity of states is assessed by spatial proximity in
the respective reconstructed state spaces. Due to an unbiased
normalization and the use of a rank-based statistics, the
measure L offers a higher sensitivity and specificity for
directional couplings than a number of previous approaches
[36].

In its elementary form this approach provides two di-
rectional measures: L(X|Y ) and L(Y |X). Both directional
measures take values distributed around zero for signals of
independent realizations of independent dynamics. For weak
couplings from X to Y the measure L(X|Y ) increases while
L(Y |X) remains close to zero. Analogously, weak couplings
in the other direction can be detected from an increase of
L(Y |X) and L(X|Y ) being close to zero. Once the coupling
is strong enough to induce a synchronized motion of X and
Y , both measures attain high values, and the upper bound of
L(Y |X) = L(X|Y ) = 1 is reached for identical synchroniza-
tion. Accordingly, the difference L(X|Y ) − L(Y |X) can be
used to characterize the direction of the coupling, as long as
the coupling is not strong enough to induce synchronization.
Following Ref. [8] we restrict ourselves to the characterization
of the overall strength of the nonlinear dependence and use the
nondirectional symmetrized version of the measure:

L = L(X|Y ) + L(Y |X)

2
. (1)

For a detailed description of the algorithm used to calculate L

we refer to Ref. [36] (see also Sec. V).
To calculate the nonlinear interdependence measure L

we used the same filtering and down-sampling as for the
nonlinear prediction error. We also used the same parameter
values for the embedding dimension m, time delay τ , number
nearest neighbors k, and the Theiler correction window W .
No prediction horizon H is needed for the measure L.
Accordingly, results of the nonlinear-independence test shown
in Secs. III A–III B are obtained for m = 8, τ = 4 sampling

046206-5



ANDRZEJAK, SCHINDLER, AND RUMMEL PHYSICAL REVIEW E 86, 046206 (2012)

times, k = 5, and W = 19 sampling times. The parameter
dependence of our results is summarized in Appendix A.

Apart from a coupling between nonlinear deterministic
dynamics, cross-correlations resulting from superpositions of
independent dynamics can result in high values of L. Accord-
ingly, only a combination of the nonlinear interdependence
measure L with bivariate surrogates can be used as nonlinear-
independence test. Therefore, we calculated the measure L

for the original pair of signals x and y and for 19 pairs of
surrogate signals. We rejected the nonlinear-independence test
if the result for the pair of original signals was higher than the
maximal result across all 19 pairs of surrogate signals, again
corresponding to a test with a significance level of α = 0.05.
The outcome of a rejection of the nonlinear-independence
test is denoted by B1. If the result of at least one pair
of surrogates exceeded the results for the pair of original
signals, the nonlinear-independence test was not rejected.
This outcome is denoted by B0. We use the term “nonlinear-
interdependence test” instead of just “independence test” since
the null hypothesis includes linear cross-correlation between
the two signals.

G. Stationarity test: S0 versus S1

For the stationarity test we combine an amplitude-
stationarity test and frequency-stationarity already used in
[6], and a correlation-stationarity test. Since these tests are
nonstandard and somewhat ad hoc, we provide the full
formulas here. Given the pair of signals x and y of 10 240
samples each, the following steps are carried out. At first the
signal are both normalized to zero mean and unit variance.
Then both are divided into 16 nonoverlapping subsegments
of length 640 samples: xi,j and yi,j for i = 1, . . . ,16 and
j = 1, . . . ,640. For each subsegment we calculate the average
absolute deviation across the amplitudes

Axi
= 1

640

640∑
j=1

|xi,j − xi,j |, (2)

where the overbar denotes the mean across the samples of
segment i. Ayi

is calculated analogously. Furthermore the
mean frequency is determined from

Fxi
=

∑320
k=1 fkSxi

(fk)∑320
k=1 Sxi

(fk)
, (3)

where Sxi
(fk) denotes the amplitude of the Fourier transform

of the subsegment i at frequency fk . Fyi
is calculated analo-

gously. The equal-time cross-correlation coefficient between
corresponding segments of x and y is calculated using

Ci = 1

640

640∑
j=1

(xi,j − xi,j )(yi,j − yi,j )

σ (xi,j )σ (yi,j )
, (4)

where σ (·) denotes the standard deviation across the samples
of segment i.

The fluctuation of these quantities across subsegments is
quantified using the average deviations

R(Ax) = 1

16

16∑
i=1

|Axi
− 〈Axi

〉|, (5)

where the brackets 〈·〉 denote the mean across the segments,
R(Ay),R(Fx),R(Fy),R(C) analogously. R(Ax) and R(Fx) are
calculated for the signal x and 99 univariate surrogates
generated from x, R(Ay) and R(Fy) in turn for y and 99
univariate surrogates of y. The quantity R(C) is calculated
for the pair of signals x and y and 99 bivariate surrogates
generated from them.

The stationarity test is designed to be very strict. To reject
it, it is sufficient that one of the five values obtained for the
original signals [R(Ax), R(Ay), R(Fx), R(Fy), and R(C)] is
outside the range of its surrogates. This outcome is denoted by
S1. We use a higher number of 99 surrogates to avoid that the
chance level of this combined test exceeds 5%. If we regard
the amplitude-stationarity test, frequency-stationarity, and
correlation-stationarity test as independent, the significance
level of the stationarity test is 1 − 0.995 = 0.049. The outcome
that the stationarity test is not rejected is denoted by S0.

H. Outcomes: Counts, probability estimates, and terminology

We denote the counts of the different test outcomes
across signal pairs by c(·). Since we have two univariate
randomness tests, one bivariate nonlinear-independence test,
and one stationarity test, we can have up to four arguments
for the counts. Whenever we refer to marginal counts, we
suppress all arguments over which the sum was taken,
e.g., c(UX

0 UY
0 B1S1) + c(UX

1 UY
0 B1S1) + c(UX

0 UY
0 B0S1) +

c(UX
1 UY

0 B0S1) = c(UX
0 UY

0 S1) + c(UX
1 UY

0 S1) = c(UY
0 S1). In

consequence, when we refer to the sum of all counts
marginalized over all tests, we use no argument for c.

From the outcome counts c(·) we define estimates of
probabilities p(·) and conditioned probabilities p(·|·). For the
sake of brevity we often drop the term estimate. We, however,
have to keep in mind that these values derived from outcome
counts are subject to fluctuations caused by the finite sample
size. Confidence intervals of these probability estimates are
derived in Appendix B.

Like the counts of outcomes, the derived probabilities can
have up to four arguments. Among the arguments can be none,
one, or both outcomes of the two univariate randomness tests,
e.g., p(B1), p(UX

1 |B1), p(UY
1 |B1UX

0 ), respectively. Recall,
however, that our database is constructed to be symmetric with
regard to the univariate properties of X and Y . Accordingly all
probabilities that have at least one univariate randomness test
outcome among the arguments are paired. The definition of
one paired probability can be transformed to its counterpart
by exchanging the symbols X and Y . The values of both
probabilities are identical, e.g., p(UX

1 |B1) = p(UY
1 |B1), or

p(UY
1 |B1UX

0 ) = p(UX
1 |B1UY

0 ). The values of our estimates of
these probabilities coincide, except for fluctuations caused by
the finite sample. To avoid redundancies, we therefore show
only one of the paired probabilities, namely, the one where
the outcome of X occurs alone or first, e.g., p(UX

1 |B1) or
p(UX

1 |B1UY
0 ). Importantly, that does not mean that we pool

across the two univariate randomness tests to improve the
statistics. We cannot pool across these two tests since they
cannot assumed to be based on independent samples. (In
Secs. III B4–III B5 we study the actual dependence between
the two univariate randomness test outcomes.)
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To compare probabilities we use the relative difference:

D(p1,p2) = p1 − p2

p1 + p2
. (6)

Evidently this quantity is bounded by [−1,1], positive and
negative values of D(p1,p2) are obtained for p1 > p2 and
p1 < p2, respectively. Confidence intervals for this quantity
are derived in Appendix B.

As indicated above and further discussed in Sec. IV, the
outcomes B1 and B0 can indicate but cannot prove nonlinear-
dependence and nonlinear-independence, respectively. The
same holds for UX

1 , UY
1 versus UX

0 , UY
0 with regard to

nonrandomness and randomness, as well as for S1 and S0

with regard to nonstationarity and stationarity. This has to be
kept in mind when we use these terms in the following.

III. RESULTS

A. Focal versus nonfocal signals: Randomness, nonlinear
independence, and stationarity

In this section we compare the rejection counts of the
randomness tests and the nonlinear-independence test for
the focal and nonfocal signals. We use the index f and
n, respectively, to distinguish between these signal classes.
In formulas the index a is used as place holder for both:
a = {f,n}.

1. More focal nonrandomness and nonlinear dependence

Estimates of the rejection probabilities for the randomness
and nonlinear-independence test are given by, respectively,

pa

(
UX

1

) = ca

(
UX

1

)
ca

, (7)

pa(B1) = ca(B1)

ca

. (8)

Figure 2(a) shows that all estimates are clearly above the
chance level of 5% and that rejection probabilities for the non-
linear-independence test are higher than the ones for the
randomness test. More importantly, for both tests we obtain
higher rejection probabilities for the focal signals as for the
nonfocal signals.

2. More nonfocal nonstationarity

The estimates of the rejection probabilities for the station-
arity test are

pa(S1) = ca(S1)

ca

. (9)

Figure 3 shows that in contrast to the randomness and
nonlinear-independence test, more rejections of the station-
arity test are found for the nonfocal signals.

3. Impact of nonstationarity stronger for nonfocal signals

Does the stationarity test outcome have an influence on
the rejection probabilities of the randomness and nonlinear-
independence tests? To address this question we con-
trast the overall probability pa(UX

1 ) with the conditioned

probabilities:

pa

(
UX

1

∣∣S1
) = ca

(
UX

1 S1
)

ca(S1)
, (10)

pa

(
UX

1

∣∣S0
) = ca

(
UX

1 S0
)

ca(S0)
. (11)

We furthermore compare pa(B1) to the corresponding con-
ditioned probabilities, which are defined analogously to
Eqs. (10) and (11). For the nonfocal signals a rejection of
the stationarity test increases the rejection probabilities for
both the randomness and the nonlinear-independence test
substantially [Fig. 2(c)]. In contrast, for the focal signals
a rejection of the stationarity test has almost no impact
on the rejection probabilities for the randomness test. It
does increases the rejection probability for the nonlinear-
independence test, however, to a lesser extent than for the
nonfocal signals, as evidenced by the D values displayed in
Figs. 2(c)–2(d).

Keep in mind that the results shown in Figs. 2(c)–2(d)
are not a consequence of the ones shown in Fig. 3. The
different stationarity test rejection probabilities found for the
nonfocal versus nonfocal signals do not imply what happens
with the rejection probabilities of the other tests, given that the
stationarity was rejected or was not rejected.

4. Increased contrast between focal and nonfocal signals for
stationary signals

Results of the previous section imply that the contrast be-
tween the focal and nonfocal signals, found by the randomness
test and the nonlinear-independence test [Fig. 2(a)], changes if
we exclude signals for which the stationarity test was rejected.
Specifically, regarding Figs. 2(c)–2(d), we expect that this
contrast increases. Indeed, Fig. 2(b) shows that the D values
obtained for the quantities conditioned on that the stationarity
test is not rejected are substantially higher than those for the
unconditioned counterparts shown in Fig. 2(a).

B. Dependence between nonlinear independence
and randomness tests: Stationary, focal signals only

In this section we study the dependence between the
randomness and the nonlinear-independence test outcomes.
Results of Sec. III A show that the focal and nonfocal signals
have different statistical properties with regard to these two
tests. Therefore, to isolate the dependence between the tests,
we restrict the following analysis to focal signals. To simplify
the notation we drop the index f . Furthermore, Sec. III A3
shows that the outcome of the stationarity test influences
the rejection probabilities of the randomness and nonlinear-
independence tests. Even though this influence is weaker for
the focal signals, we restrict our analysis further by excluding
those signals, for which the stationarity test was rejected.
Thereby we aim to minimize the influence of nonstationarity.
After this reduction of our data base we are left with 2000
focal signal pairs. In consequence, all subsequent expressions
are conditioned onS0. We suppress this conditioning argument
to simplify the notation. Note that it is a pure coincidence that
we have a round number of exactly 2000 focal signal pairs for
which the stationarity test was not rejected.
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FIG. 2. (a) More focal nonrandomness and nonindependence. Comparison of rejection probabilities for nonfocal (light gray) and focal
signals (dark gray) for the randomness test (left) and nonlinear-independence test (right). (b) Increased contrast between focal and nonfocal
signals for stationary signals. Composed like panel (a), but here the analysis is restricted to signals for which the stationarity test was not
rejected. (c) Impact of nonstationarity for nonfocal signals. Comparison of probabilities of the outcome that the randomness test is rejected (left)
and the outcome that the nonlinear-independence test is rejected (right). Probabilities are conditioned on that the stationarity test is rejected
(black) or not rejected (white). For gray bars the stationarity test outcome is marginalized out. (d) Impact of nonstationarity for focal signals.
Composed like panel (c), but here for focal signals. Graphical elements: bars: rejection probability estimates; error bars: 95% confidence
intervals; vertical lines: significance level of the tests; D values: determined according to Eq. (6) for the pair of probabilities above which they
are displayed, along with 95% confidence intervals (see Appendix B for confidence intervals).

1. More nonlinear dependence for nonrandom signals

Does the rejection probability of the nonlinear-
independence test depend on the outcomes of the randomness
tests? To address this question we compare the conditional
probability

p
(
B1

∣∣UX
0 UY

0

) = c
(
UX

0 UY
0 B1

)
c
(
UX

0 UY
0

) (12)

to the analogously defined conditional probabilities
p(B1|UX

1 UY
0 ), and p(B1|UX

1 UY
1 ). Figure 4(a) shows that already

the rejection of one of the two randomness tests increases
the rejection probability of the nonlinear-independence test.
The rejection of both randomness tests further increases this
probability.

We find however also that even if no randomness test
is rejected, there is a substantial probability to reject the
nonlinear-independence test: p(B1|UX

0 UY
0 ) is very far from the

chance level. Accordingly, the rejection of the randomness test
is not necessary for the nonlinear-independence test rejection.
Furthermore, even if both randomness tests are rejected, there
is a substantial probability not to reject the bivariate test:
p(B1|UX

1 UY
1 ) remains clearly below one. Hence, the rejection

of the randomness test is not sufficient for the rejection of the
nonlinear-independence test.

2. Nonrandomness does not cause false positive detections
of nonlinear dependence

We showed in the previous subsection that the rejection of
the randomness tests is not sufficient for the rejection of the
nonlinear-independence test. Nonetheless, results displayed in
Fig. 4 could suggest that nonrandomness in X or Y , and even
more so in X and Y , favors the rejection of the nonlinear-
independence test, even if X and Y are independent.

To test this possible conjecture we generated independent
signals by breaking the pairing between the x and y signals.
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FIG. 3. More nonfocal nonstationarity. Comparison of the rejec-
tion probabilities of the stationarity test for the nonfocal (light gray)
and focal signals (dark gray). All graphical elements like in Fig. 2.

Instead of pairing the signal x(l) with its simultaneously
measured counterpart y(l), we paired it with some other y(k �=l)

signal, which was selected without replacement from the pool
of all remaining y signals. (Accordingly, the upper indexes l,k

refer to the number of the signal within all 2000 stationary focal
signals. They do not refer to samples within individual signals.
The signal samples were not shuffled.) We then repeated the
analysis for these shuffled signal pairs. In particular, we again
excluded all signals for which the stationarity test was rejected.
The shuffled signal pairs have the same statistical properties
with regard to the randomness test as the nonshuffled pairs.
However, the shuffling destroys any potential dependence.
Figure 4(b) shows that for these shuffled signal pairs, the
rejection probability of H0,biv is very close to the chance
level of 5%. In all cases, the confidence intervals include this
significance level. In particular, no evident dependence on
the outcome of the randomness test is found. Hence, the
nonlinear-independence test is not rejected for independent
X and Y .

3. More nonrandomness for nonlinear dependent signals

To study in which way the rejection probabilities of the
randomness test depend on the outcomes of the nonlinear-
independence test, we use the conditional probability

p
(
UX

1 UY
1

∣∣B1
) = c

(
UX

1 UY
1 B1

)
c(B1)

(13)

as well as the analogously defined conditional probabilities
p(UX

1 UY
1 |B0), p(UX

0 UY
0 |B1), p(UX

0 UY
0 |B0), p(UX

1 UY
0 |B1), and

p(UX
1 UY

0 |B0). We find that the rejection of the nonlinear-
independence test increases the probability to reject the
randomness test (Fig. 5). In particular, the probability to reject
both random tests jointly is increased substantially, while
the probability to reject just one randomness test is only
moderately increased.

Furthermore, we find that even if the nonlinear-
independence test is not rejected, there is a high probability to
still reject at least one of the randomness tests, p(UX

0 UY
0 |B0)

stays clearly below one. Hence, the rejection of the nonlinear-
independence test is not necessary for the randomness test re-
jection. Furthermore, even if the nonlinear-independence test is
rejected, there remains a substantial probability p(UX

0 UY
0 |B1)

to accept both randomness tests. Therefore, the rejection of the
nonlinear-independence test is not sufficient for the rejection
of the randomness test.

4. UX
1 and UY

1 are dependent

Assume that UX
1 and UY

1 were independent events with a
certain probability q. In this case we expect p(UX

0 UY
0 ) ≈ (1 −

q)2, p(UX
1 UY

0 ) ≈ p(UX
0 UY

1 ) ≈ q(1 − q), and p(UX
1 UY

1 ) ≈ q2.
However, results displayed in Fig. 5 suggest that p(UX

1 UY
1 )

is too high compared to p(UX
1 UY

0 ) to be consistent with
this assumption of UX

1 and UY
1 being independent events.

Direct evidence for their dependence can be obtained from
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(a):    Original signal pairs
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(b):    Shuffled signal pairs

FIG. 4. (a) More nonlinear dependence for nonrandom signals. Comparison of the rejection probabilities for the nonlinear-independence
test conditioned on that no randomness test is rejected (left), one randomness test is rejected (middle) and both randomness tests are rejected
(right). (b) Nonrandomness does not cause false positive detections of dependence. Composed like panel (a), but here for shuffled signal pairs.
All graphical elements like in Fig. 2.
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FIG. 5. More nonrandomness for nonlinear dependent signals. Comparison of probabilities of the joint outcome that no randomness test is
rejected (left), one randomness test is rejected (middle), and both randomness tests are rejected (right). We show these probabilities conditioned
on that the nonlinear-independence test is rejected (black) or not rejected (white). For gray bars the nonlinear-independence test outcome is
marginalized out. All graphical elements like in Fig. 2.

the conditional probabilities:

p
(
UX

1

∣∣UY
1

) = c
(
UX

1 UY
1

)
c
(
UY

1

) (14)

and the analogously defined p(UX
1 |UY

0 ). If UX
1 and UY

1
were independent events, we expect p(UX

1 |UY
1 ) ≈ p(UX

1 |UY
0 )

and accordingly D[p(UX
1 |UY

1 ),p(UX
1 |UY

0 )] ≈ 0. However, this
relation clearly does not hold [Fig. 6(a)], providing direct
evidence for the dependence of UX

1 and UY
1 .

5. The dependence of UX
1 and UY

1 depends on B1

To quantify the degree of dependence between UX
1 and

UY
1 we contrast the conditional probability p(UX

1 |UY
1 ) with the

probabilities that are additionally conditioned on the nonlinear-
independence test outcome:

p
(
UX

1

∣∣UY
1 B1

) = c
(
UX

1 UY
1 B1

)
c
(
UY

1 B1
) (15)

and p(UX
1 |UY

1 B0) defined analogously. Figure 6(b) shows that
the dependence between the randomness test outcomes across
X and Y is increased if the nonlinear-independence test is
rejected.

IV. DISCUSSION

For both the randomness test and the nonlinear-
independence test we obtain more rejections for the focal
signals as compared to the nonfocal signals (Sec. III A1). These
findings are consistent with previous findings of Refs. [5–7]
and [8,23,27], respectively. An important potential confound-
ing variable in such results derived from surrogate tests is
nonstationarity. Since stationarity is included in H0,univ and
H0,biv, nonstationarity can cause the rejection of the random-
ness and the nonlinear-independence test. While the potential
effect of nonstationarity is often discussed or stationarity of the

signals is sometimes even used as an inclusion criterion for the
signals, results of Secs. III A2–III A4 for the first time assess
the impact of nonstationarity on the rejection probabilities
of a randomness and nonlinear-independence test applied to
EEG time series. Regarding the high rejection rates of the
stationarity test (Sec. III A2), we should recall that we designed
this test to be very strict. To reject it, it is sufficient to reject the
frequency-stationarity test or the amplitude-stationarity test
for x or y or the correlation-stationarity test for the pair x

and y. Nonetheless, rejection rates around 50% reflect that on
the time scale of the analysis window our EEG signals show
strong fluctuations of the frequencies, amplitude magnitudes
and correlations. These fluctuations exceed in a large fraction
of signals those found for the surrogates leading to the high
rejection rates of the stationarity test.

It is important, however, to keep in mind that also our
stationarity test is based on a null hypothesis test. Accord-
ingly, for the principal reasons outlined in the introduction,
its rejection cannot prove that the underlying dynamics is
nonstationary. Consider for example the following simple
stationary stochastic process. The first variable ui counts the
number of events emitted by a homogeneous Poisson process
up to time index i. The second variable vi is set to zero if
ui is even and set to one if ui is odd. The third variable is
defined as wi+1 = 0.5wiui + ξi , where ξi is Gaussian white
noise. Evidently, depending on the ratio between the Poisson
process rate and the window length the stationarity test can be
rejected when applied to w. Another example is a signal from
the deterministic Lorenz dynamics. This dynamics involves
two time scales, fast oscillations within individual wings and
slow switchings between the wings of the butterfly attractor. In
the case these irregular switches occur seldom with regard to
the window length used for the stationarity test, the test can be
rejected. In both examples the dynamics are stationary, but the
stationarity test can be rejected depending on the ratio between
the long time scales of the dynamics and the window length
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FIG. 6. (a) UX
1 and UY

1 are dependent. Comparison of probabilities of the outcome that the randomness test is rejected for X. We show these
probabilities conditioned on that the randomness test for Y is rejected (black) or not rejected (white). For gray bars the randomness test outcome
for Y is marginalized out. (b) The outcomeB1 enhances the dependence betweenUX

1 andUY
1 . Comparison of the probabilities that the randomness

test for X is rejected given that it has been rejected for Y . We show these probabilities conditioned on that the nonlinear-independence test is
rejected (black) or not rejected (white). For the gray bar the nonlinear-independence test outcome is marginalized out. Accordingly this bar is
a replica of the black bar in panel (a). All graphical elements like in Fig. 2.

used for the stationarity test. However, in fact these rejections
are not false but true positive rejections. The stationarity test is
a test of H0,univ based on a measure of nonstationarity. In both
examples, the dynamics are not consistent with H0,univ, both
processes are nonlinear. The Lorenz dynamics is moreover
deterministic. Accordingly, the rejection of the test is correct in
both examples. It would be incorrect, however, to interpret this
rejection as proof for the nonstationarity of the dynamics. On
the other hand, whatever causes the fluctuations of the mean
frequency, mean amplitudes, and linear correlations of the
EEG signals, their effect is that the signals seem nonstationary
on the time scale of the analysis window. After all that is
what counts when the EEG signals are used as input for the
randomness and nonlinear-independence test. In that sense we
interpret results of Sec. III A2 to indicate nonstationarity.

Due to the intermittent occurrence of epileptiform activity
during the seizure-free interval one might expect that focal
signals are less stationary than nonfocal signals. However, in
consistency with an early study of Wang and Wieser [43],
we in fact find more nonstationarity for nonfocal signals than
for the focal signals. Another important finding is that the
impact of the rejection of the stationarity test on the rejection
probabilities of the other tests is distinct for focal versus non-
focal signals (Sec. III A3). For nonfocal signals the rejection of
the stationarity test increases the rejection probabilities for the
randomness and the nonlinear-independence test substantially.
For focal signals the rejection of the stationarity test increases
the rejection probabilities for the nonlinear-independence test,
while for the randomness test even a slight decrease of the
rejection probability is found. Overall the impact is clearly
weaker for the focal versus nonfocal signals. As a consequence,
the contrast between the focal and nonfocal signals, found
by the randomness test and the nonlinear-independence test,
enhances when we exclude signals for which the stationarity
test is rejected (Sec. III A4). Certainly these findings deserve
further investigation. How can one characterize these different

ratios and types of nonstationarity found for the focal and
nonfocal signals (cf. Ref. [44])? Do these findings depend on
different recording locations (temporal lobe, occipital lobe,
parietal lobe, frontal lobe, hippocampal formation)? Do these
findings depend on the time scale used for the stationarity test?
These questions are beyond the scope of the present study and
are left for future studies, to which everyone is invited to
contribute (see Sec. V).

In summary of Sec. III A, nonstationarity is indeed a
confounding variable for the randomness and nonlinear-
independence test. However, once we control for it, the signifi-
cance of the main result, namely, the contrast between the focal
and nonfocal signals obtained by these tests, is actually further
enhanced. So, while we challenged the conclusion of Ref. [8]
in the introduction, our results further support it. Accordingly,
in keeping with Ref. [8] we interpret the results of Sec. III A
to reflect an increased level of synchronization of groups of
neurons induced by epilepsy during the seizure-free interval.
This increased synchronicity can have different manifestations
on different spatial scales of neuronal organization. For
univariate focal signals recorded by individual contacts it can
cause the rejection of the randomness test. For bivariate focal
signals recorded by pairs of contacts it can cause the rejection
of the nonlinear-independence test. Across these spatial scales
this focal synchronicity can result in an EEG that is less
consistent with a linear stochastic process and more consistent
with a coupled nonlinear deterministic dynamics. These results
for the seizure-free interval complement studies which provide
evidence for nonlinear deterministic dynamics in epileptic
seizures (e.g., Refs. [11,35,45]). We do not imply that epilepsy
induces a transition from a pure linear stochastic process to a
pure coupled nonlinear deterministic dynamics. Rather our
interpretation is that the EEG reflects the superposition of
these two types of dynamics and that epilepsy strengthens the
coupled nonlinear deterministic fraction. This strengthening
and the complexity of the coupled nonlinear deterministic
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fraction will vary across different signal pairs, so that the
randomness and nonlinear-independence tests are rejected
only for a portion of the signals.

It is important to note, however, that also the present results
can not yield a proof for an underlying nonlinear deterministic
dynamics. As stated in the introduction, the reason is that the
null hypotheses H0,univ and H0,biv are composed of a number
of distinct assumptions, and the violation of any of these
assumptions renders these hypotheses wrong. In consequence
the rejection of the randomness test cannot prove that the
dynamics is nonlinear deterministic, and the joint rejection
of the randomness test and the nonlinear-independence test
cannot provide a proof for a coupled nonlinear deterministic
dynamics. We provided strong evidence against that our results
are caused by the nonstationarity of the dynamics. Thereby we
provided evidence against one, but only one, alternative to the
conclusion of an underlying nonlinear deterministic dynamics.
Many alternatives remain, such as a nonlinear or non-Gaussian
stochastic process. To test for these is left for future work.

In Sec. III B we only included focal signals for which the
stationarity test was not rejected in order to assess the cor-
relation between the randomness and nonlinear-independence
test outcomes. We find that the rejections of the randomness
test and nonlinear-independence test are positively correlated
across signals (Secs. III B1 and III B3). In particular, the
rejection of the nonlinear-independence test increases the
probability that the randomness test is rejected for both x and
y. Analogously the outcomes of only one or both randomness
tests being rejected both increase the rejection probability of
the nonlinear-independence test. In particular, the increase
is stronger when both randomness tests are rejected. These
findings provide further support for the conclusion drawn from
Sec. III A that the focal EEG contains a nonlinear deterministic
part. This violates both H0,univ and H0,biv, and both null
hypotheses are wrong and should be jointly rejected. On the
other hand, we find that the rejection of the randomness test
is neither necessary nor sufficient for the rejection of the
nonlinear-independence test. Analogously the rejection of the
nonlinear-independence test is neither necessary nor sufficient
for the rejection of the randomness test. This indicates
that the features induced by epilepsy become sometimes
predominantly evident from the structure of individual signals
and sometimes rather manifests themselves in the nonlinear
interdependence between signals.

Extending results for mathematical model systems [36,46]
and time-shifted surrogates of EEG signals [8], results of
Sec. III B2 confirm the excellent specificity of the mea-
sure L. They show that the rejection probability of the
nonlinear-independence test obtained for independent signals
is consistent with chance level. This holds regardless of
whether the randomness test is rejected for none, one, or
both univariate signals. Let us suppose that the rejection of
the randomness tests is caused since X and Y are a pair of
nonlinear deterministic but independent dynamics. Despite
being independent, the individual dynamics’ deterministic
structure violates H0,biv. However, due to the high specificity
of the particular nonlinear interdependence measure L it takes
values distributed around zero for independent dynamics,
regardless of possible deterministic structure in the univariate
signals. Accordingly, for a pair of nonlinear deterministic

but independent dynamics, values distributed around zero are
obtained for the original signals and for the surrogates. In
consequence, the nonlinear-independence test is not rejected.
Thanks to this high specificity an nonlinear-independence test
based on this measure and surrogates can indeed provide
specific information about the interrelation of the two dynam-
ics and is not influenced by the structure of the individual
dynamics.

The dependence between the randomness test outcomes
across x and y (Sec. III B4), which is further increased if
the nonlinear-independence test is rejected (Sec. III B5), is
plausible. We only included signals that where measured from
neighboring contacts. EEG signals measured from neighboring
contacts are frequently but not necessarily strongly correlated.
Hence, these are not independent measurements, and the
randomness test derived from these signals cannot be expected
to be independent. The increase of this dependence upon
rejection of the nonlinear-independence test is analogous to the
finding that a nonlinear-independence test rejection increases
the probability that the randomness test is rejected for both x

and y (Secs. III B1 and III B3).
Our results show that the randomness test and nonlinear-

independence test extract nonredundant information from
focal EEG signals. In consequence, both tests can contribute
different aspects to a thorough characterization of EEG signals
measured from epilepsy patients. Both tests can help to
distinguish focal and nonfocal signals. Importantly, for both
tests this contrast is enhanced when we include only signals for
which the stationarity test was not rejected. Future work shall
study how combinations of the tests used here and potential
further tests can be optimized to localize brain areas where
seizures originate without the necessity to observe actual
seizure activity.

Recordings from the brain have always been a chal-
lenging application for nonlinear signal analysis. Problems
encountered in the study of brain signals often promoted the
improvement of existing nonlinear measures, the development
of new measures, or even new concepts such as surrogates.
Our results provide further evidence that the benefit of this
interdisciplinary field is mutual. The application of nonlinear
signal analysis can provide valuable clinical information.

V. Sharing of data, source code, and results

The data, source code, and detailed results are provided in
Ref. [47]. The data comprises all EEG signals analyzed here.
The source code includes the algorithms for the calculation
of the measures N and L, the generation of the univariate
and bivariate surrogates, as well as for the stationarity test.
The outcomes of the stationarity test, randomness test, and
nonlinear-independence test are given for each individual pair
of EEG signals. In this way, the interested reader can inspect
the data and the corresponding results without the need to rerun
the analysis. The detailed results also allow one to determine
whatever joined or conditioned rejection probability which can
be of interest but was not included here. This resource of data,
source code, and results can be extended in all aspects. We
therefore invite the scientific community to contribute further
results obtained with other measures for the data studied here,
or further data to be evaluated with the tests used here.

046206-12



NONRANDOMNESS, NONLINEAR DEPENDENCE, AND . . . PHYSICAL REVIEW E 86, 046206 (2012)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(a)

re
la

tiv
e 

di
ffe

re
nc

e 
of

re
je

ct
io

n 
pr

ob
ab

ili
ty

 e
st

im
at

es

0

0.1

0.2

0.3

0.4

0.5

0.6
(b)

re
la

tiv
e 

di
ffe

re
nc

e 
of

re
je

ct
io

n 
pr

ob
ab

ili
ty

 e
st

im
at

es

0

0.2

0.4

0.6

0.8

1

1

1

2 12...

2

2 12...

4

2 12...

8

2 12...

1

5

2 12...

2

2 12...

4

2 12...

8

2 12...

1

10

2 12...

2

2 12...

4

2 12...

8

2 12...

τ=

k=

m=

(c)

re
je

ct
io

n 
pr

ob
ab

ili
ty

 e
st

im
at

es

FIG. 7. (Color online) (a) D[pf (B1),pn(B1)] (red circles) and D[pf (B1|S0),pn(B1|S0)] (blue crosses) in dependence on m, τ , and k.
(b) D[pf (UX

1 ),pn(UX
1 )] (red circles) and D[pf (UX

1 |S0),pn(UX
1 |S0)] (blue crosses) in dependence on m, τ and k for a fixed H = 4 sampling

times. (c) Dependence of p(B1|UX
0 UY

0 ) (green squares, always below red circles), p(B1|UX
1 UY

0 ) (red circles), and p(B1|UX
1 UY

1 ) (blue crosses) in
dependence on m, τ , and k for a fixed H = 4 sampling times. Note the different scaling of the y axes of the different panels. In all panels the
parameter setting used in the main text is indicated by the vertical line.
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APPENDIX A: PARAMETER DEPENDENCE

For the nonlinear prediction error and the nonlinear interde-
pendence measure, underlying the randomness and nonlinear-
independence test, respectively, we varied the parameters of
the embedding dimension within m = [2,4,6,8,10,12] and the
time delay within τ = [1,2,4,8] sampling times. The number
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of nearest neighbors was varied within k = [1,5,10]. The
nonlinear prediction error has the prediction horizon H as addi-
tional parameter which we varied within H = [1,2,4,8,16,32]
sampling times. The Theiler correction window was fixed to
W = 19 sampling times. For the stationarity test the only
parameter is the number of subsegments. We did not vary
this parameter but fixed it to 16 according to Ref. [6].

In general, the rejection probabilities of the randomness
test and the nonlinear-independence test depend on the
different parameters. However, our main findings, derived
from comparisons of these probabilities, show only a weak
parameter dependence. Deviations are mostly found for small
values of m and τ . In this context we should note that the
temporal distance between the first and last entry in delay
coordinate vectors is given by (m − 1)τ , and a sufficient value
of this so-called embedding window is necessary to properly
reconstruct complex dynamics.

An exhaustive description of the dependence of all re-
sults on all parameters would be far too lengthy. There-
fore we restrict ourselves to three representative examples.
Figure 7(a) shows the dependence of D[pf (B1),pn(B1)] and
D[pf (B1|S0),pn(B1|S0)] on m, τ , and k. We see that across
all parameter values:

D[pf (B1|S0),pn(B1|S0)] > D[pf (B1),pn(B1)] > 0. (A1)

This means that more nonlinear-independence test rejections
are always found for focal versus nonfocal signals. Further-
more, this contrast is always increased when the analysis is
restricted to signals for which the stationarity test was not re-
jected. Both D[pf (B1),pn(B1)] and D[pf (B1|S0),pn(B1|S0)]
tend to decrease for increasing k. With regard to increasing m

and τ these quantities either increase or show a dependence of
∩ shape.

For the randomness test we have the additional parameter of
the prediction horizon H . Figure 7(b) shows the dependence
of D[pf (UX

1 ),pn(UX
1 )] and D[pf (UX

1 |S0),pn(UX
1 |S0)] on m,

τ , and k for a fixed H = 4 sampling times. We see that for this
value of the prediction horizon across all values of the other
parameters:

D
[
pf

(
UX

1

∣∣S0
)
,pn

(
UX

1

∣∣S0
)]

> D
[
pf

(
UX

1

)
,pn

(
UX

1

)]
> 0

(A2)

This means that, at H = 4, for the randomness test more
rejections are found for the focal signals across all parameter
combinations. This is in agreement with findings for the
nonlinear-independence test. Again this contrast is increased
across all parameter values when the analysis is restricted
to signals for which the stationarity test was not rejected.
Both D[pf (UX

1 |S0),pn(UX
1 |S0)] and D[pf (UX

1 ),pn(UX
1 )] tend

to decrease for increasing m, increasing τ , and decreasing
k. Similar results are found for smaller and higher values
of the prediction horizon H . Only for H = 1,m = 4,τ =
1,k = 5 and H = 1,m = 4,τ = 1,k = 10 we found nega-
tive D[pf (UX

1 ),pn(UX
1 )] values. For all other 430 parameter

combinations we found positive D[pf (UX
1 ),pn(UX

1 )] values.
D[pf (UX

1 |S0),pn(UX
1 |S0)] is positive for all 432 parameter

combinations and higher than D[pf (UX
1 ),pn(UX

1 )] for 421
parameter combinations. The remaining 11 combinations for
which the exclusion of nonstationary signals did not increase

TABLE I. Exceptional parameter combinations for which
we obtain the atypical result D[pf (UX

1 |S0),pn(UX
1 S0)] <

D[pf (UX
1 ),pn(UX

1 )].

H m τ k

1 2 2 1
1 2 4 1
1 2 4 5
2 2 1 1
2 2 2 1
2 2 1 5
2 2 2 5
2 2 1 10
32 6 2 1
32 2 8 1
32 8 8 10

the contrast between the focal and nonfocal signals found
by the randomness test are listed in Table I. We see that
these exceptions are mostly found at small values of H

in combination with small values of m and τ , or at high
values of H . Accordingly many of the exceptions listed
in Table I can be attributed to an insufficient reconstruc-
tion of the dynamics caused by too short an embedding
window.

As third example we show the dependence of
p(B1|UX

0 UY
0 ),p(B1|UX

1 UY
0 ) and p(B1|UX

1 UY
1 ) on m, τ , and

k, again for a fixed H = 4 sampling times [Fig. 7(c)].
Without exception we find p(B1|UX

0 UY
0 ) < p(B1|UX

1 UY
0 ), and

p(B1|UX
0 UY

0 ) < p(B1|UX
1 UY

1 ) is found with the only exception
of H = 4,m = 2,τ = 4,k = 5. Again this exception is found
at small values of the embedding window. Accordingly, the
fact that the rejection of the randomness and nonlinear-
independence test are correlated is found across almost all
parameters shown in Fig. 7(c). The additional finding that the
outcome of both randomness tests being rejected increases
the rejection probability of the nonlinear-independence test
more than the outcome of only one randomness test being
rejected (p(B1|UX

1 UY
0 ) < p(B1|UX

1 UY
1 )) is found only for high

enough values of the embedding window (m − 1)τ . This again
points to the importance of an embedding window of sufficient
length to properly reconstruct complex dynamics. Very similar
results are found for prediction horizons higher or lower than
H = 4.

APPENDIX B: CONFIDENCE INTERVALS

We use[
p − 1.96

√
p(1 − p)

n
, p + 1.96

√
p(1 − p)

n

]
(B1)

as approximation to the 95% confidence interval for our
probability estimates p(·). Suppose that we carry out n

Bernoulli trials with parameter p0. That means we make n

independent trials where the probability to get a positive result
in an individual trial is p0 and to get a negative result is
1 − p0. Then the total count of positive trial results follows
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a binomial distribution with mean np0 and standard deviation√
np0(1 − p0). For large np0 this binomial distribution can be

approximated with a normal distribution with the same mean
and standard deviation. Accordingly, the fraction of positive
trial results, corresponding to our p, follows approximately
a normal distribution with mean p0 and standard deviation

σ0 =
√

p0(1−p0)
n

. Replacing the unknown p0 by our p derived
from the sample to estimate σ0 and using the inverse of
the standard normal distribution function �−1(1 − 0.05/2) =

1.96 results in the confidence interval boundaries given
above.

Confidence intervals for the quantity D(p1,p2) in Eq. (6)
can be derived as follows. Let u and v be two independent
normally distributed random variables with means μu, μv

and standard deviations σu, σv . Let the random variable d be
defined as

d = u − v

u + v
, (B2)

FIG. 8. Flowchart of the steps of analysis. The numbers refer to sections of the main manuscript. The unidirectional arrows emphasize
that our analysis is sequential. Lower blocks have no influence on upper blocks. In particular, our data analysis has no influence on any aspect
of the EEG recordings carried out during the presurgical epilepsy diagnostics. Likewise our results have no influence on the selection of the
EEG signals. Arrow (a) is used to emphasize that the definition of the focal and nonfocal channels is fully determined through the information
derived prior to and independent from our data analysis during the presurgical epilepsy diagnostics.
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the distribution function F (z) of which is

F (z) = P

(
u − v

u + v
� z

)
(B3)

= P [u − v � z(u + v)] (B4)

= P [u(1 − z) − v(1 + z) � 0]. (B5)

The left-hand side of the inequality is again a normally
distributed random variable, which we denote by w. Its mean
and standard deviation are, respectively,

μw = μu(1 − z) + μv(1 + z), (B6)

σw =
√

σ 2
u (1 − z)2 + σ 2

v (1 + z)2. (B7)

Hence the random variable W = w−μw

σw
follows a standard

normal distribution with zero mean and unit variance, and

F (z) = P
(
w � 0

)
(B8)

= P

(
W � −μw

σw

)
(B9)

= �

(
−μw

σw

)
. (B10)

Setting F (z) = 0.975 and F (z) = 0.025 we get

�−1(0.025) = −1.96 = −μw

σw

, (B11)

�−1(0.975) = 1.96 = −μw

σw

. (B12)

Solving Eq. (B11) for z, using (B6)–(B7) and defining C =
1.962, yields

μ2
u − μ2

v − C
(
σ 2

u − σ 2
v

) ±
√

4C
(
μ2

uσ
2
v + μ2

vσ
2
u − Cσ 2

u σ 2
v

)
(μu + μv)2 − C

(
σ 2

u + σ 2
v

) .

(B13)

Due to the symmetry of the problem, solving Eq. (B12) for z

leads to the same pair of solutions. The resulting z1 and z2 are,
respectively, the upper and lower boundary of the confidence
interval for d.

APPENDIX C: STEPS OF ANALYSIS: FLOW CHART

A flowchart of the different steps of analysis is shown in
Fig. 8.
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