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Global modeling aims to build mathematical models of concise description. Polynomial Model Search (PoMoS)
and Global Modeling (GloMo) are two complementary algorithms (freely downloadable at the following address:
http://www.cesbio.ups-tlse.fr/us/pomos_et_glomo.html) designed for the modeling of observed dynamical
systems based on a small set of time series. Models considered in these algorithms are based on ordinary
differential equations built on a polynomial formulation. More specifically, PoMoS aims at finding polynomial
formulations from a given set of 1 to N time series, whereas GloMo is designed for single time series and aims
to identify the parameters for a selected structure. GloMo also provides basic features to visualize integrated
trajectories and to characterize their structure when it is simple enough: One allows for drawing the first return
map for a chosen Poincaré section in the reconstructed space; another one computes the Lyapunov exponent
along the trajectory. In the present paper, global modeling from single time series is considered. A description
of the algorithms is given and three examples are provided. The first example is based on the three variables of
the Rössler attractor. The second one comes from an experimental analysis of the copper electrodissolution in
phosphoric acid for which a less parsimonious global model was obtained in a previous study. The third example
is an exploratory case and concerns the cycle of rainfed wheat under semiarid climatic conditions as observed
through a vegetation index derived from a spatial sensor.
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I. INTRODUCTION

A proper identification of chaos in nature—that is from real
observational data—is a difficult task. Most of the methods
that have been developed for its identification consist of
checking some of the properties of chaotic dynamics. A chaotic
dynamics is characterized by dynamical, geometrical, and
topological properties: unstable behaviors, fractal structure of
the flow, and stretched and squeezed structure, respectively.
These properties can be brought out using various concepts
and tools. Instability can be estimated from the spectrum
of the Lyapunov exponents [1]; geometrical structure can be
investigated from the analysis of the correlation integral [2];
topological properties can be deduced from the structure of the
embedded trajectory [3–5]. Practically, these properties can
provide important arguments for chaos. However, algorithms
associated with dynamical and geometrical properties are
often very sensitive to noise, which strongly limits their
validity when analyzing data stemming from real world or
experimental conditions. Moreover, these analyses are not
sufficient to reveal chaos. Actually, chaos requires two es-
sential conditions: The first one is an underlying determinism,
another one is the high sensitivity to initial condition. The
dynamical and geometrical analysis can allow for validating
the second condition only. Similarly, topological analysis can
lead to a powerful way to characterize the type of chaos and
to identify and understand the behavior in terms of trajectory,
template, and knot. However, none of them can guarantee the
determinism of the ongoing processes.

The question of the determinism is a hard question.
Relatively few methodologies have been used to investigate
the field. Determinism relates to the uniqueness and causal
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determination of states from time t to time t + dt . As a
consequence, the ability to link dynamically the successive
infinitesimal states of a system might be a reasonable proof
of determinism. Methods based on the one-step prediction,
such as the surrogate data analysis [6], have been suggested.
This technique is known to exhibit a high robustness to
noise. It also performs well at revealing underlying nonlinear
processes but cannot be used to determine if a dynamics is
deterministic or not [7]. Another approach based on noise
titration was introduced in [8]. This method also showed a most
efficient ability to investigate the strength of nonlinearities
underlying dynamics. However, the approach is not always
able to distinguish colored noise from deterministic chaos [9].

Another very interesting approach was introduced in the
early 1990s [10]. Instead of investigating determinism from
the one-step predictions, this approach consists of verifying
that the tangent of the trajectories reconstructed in the phase
space is a function of position in phase space. By construction,
such an approach can guarantee local determinism in the phase
space but not global since it does not allow for checking
the coherency of the deterministic behaviors between all
consecutive tangents. The global approach aims at finding
an algebraic link between the current state of a variable and
its current derivatives [11] or between the current state of a
variable and its previous visited states [12]. In this sense, it also
belongs to the latter approach [10]. However, by requiring the
existence of a continuous correspondence between derivatives
and the model state, global modeling goes further since
guaranteeing the coherency of the dynamics inside the whole
reconstruction. The global approach allows for a strong
guarantee of the existence of a link between infinitesimal
states. At present, the global approach appears to be the most
robust manner to probe and reveal the determinism of an
underlying dynamics from experimental or observational time
series. Therefore, associated with dynamical, geometrical,
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TABLE I. Synthetic presentation of the previously published and presently obtained global models in terms of number of monomial in the
analytic solution, nominator’s and denominator’s maximum polynomial degree.

Analytic solution Polynomial solution Rational solution Previous 3D models PoMoS and GloMo

(Existence) (No. of terms) Nominator Denominator No. of terms No. of terms Degree
(degree) (degree)

Rössler-x2 Yes 9 2 0 9 7 2
9 2

Rössler-x1 Yes 2 1 33 10 3
9 4

13 4
Rössler-x3 Yes 2 2 Nonea 30 5
I(t) No 52 21 4
v(t) No None 15 3

aNo direct 3D global model could be obtained yet. However, solutions could be obtained by overdimensioning (4D) the model formulation [47],
by using an ad hoc approach based on fixed points coordinates [48] or by using the very constraining Ansatz library [46].

or topological considerations, it appears as a powerful tool
for the identification of chaos from real observations. The
approach has been applied successfully to very different types
of systems and data sets including, mostly, synthetic time series
generated numerically from chaotic attractors [11–13] as well
as real measurements gathered from controlled experiments
[14–18]. Few examples could be obtained from real world
measurements: One global model was obtained in astronomy
for sunspot cycles [19]; another one in ecology for the
Canadian lynx cycle [20].

Chaos has been one important source of research and
development in the last decades. Many packages and libraries
dedicated to the analysis of chaos from time series have been
developed, among which is the TISEAN software [21]. This
software provides a set of preexisting methods organized into a
standardized framework—and published as such—which does
not incorporate tools for global modeling. The methodology
of global modeling requires specific developments. To our
knowledge, there is no software or libraries available at present
that include reliable tools for global modeling of chaos. One
objective of this work is to introduce a couple of tools named
Polynomial Model Search (PoMoS) and Global Modeling
(GloMo) [22] to present their algorithms and their practical
originality and to show their efficacy based on specific exam-
ples taken from various contexts. The present algorithms were
developed as packages under R language [23,24]. The aim of
these two algorithms is to investigate global models from time
series. Both of them deal with ordinary differential equations
of polynomial formulation. The first algorithm, PoMoS, is
built to find the optimal terms in the polynomial formulation
of the model. The second algorithm, GloMo, estimates the
parameterization based on a Gram-Schmidt procedure [11]
and also provides basic tools for visualization and analysis.

The paper is built as follows. First, the background of
global modeling is briefly recalled in Sec. II. A description
of PoMoS and GloMo algorithms is given in Sec. III. Three
examples taken as benchmarks are presented in Sec. IV: The
first example is based on the Rössler model whose variables
offer very different levels of difficulty when attempting global
modeling. A second example is based on an experimental
data series resulting from the electrodissolution of copper in

phosphoric acid. The last example relates to the dynamics of
rainfed wheat as observed from satellite remote sensing in
Morocco. For each system, the ability to retrieve the dynamics
from single time series is tested. Results are discussed in
Sec. V and compared to previous results when available (a
simplified summary of the analytical solutions, and previously
and presently obtained models is given in Table I). Conclusions
are presented in the last section.

II. THEORETICAL BACKGROUND

One powerful result in the theory of nonlinear dynamical
systems comes from the possibility to reconstruct a trajectory
equivalent to the original set of variables from one single
variable. This result has been expressed mathematically in
a theorem by Takens [25]. The differential embedding is one
of the methods enabling the reconstruction of such a trajectory
from one single time series [26]. For a time series x(t), this
method consists of representing an original time series as a
function of its successive derivatives as follows:

y = [x,ẋ,ẍ, . . . ,x(n)], (1)

where ẋ, ẍ, and x(n) are the first, second, and nth derivatives
of x(t), respectively. When n equals to the dimension of the
underlying dynamics, the reconstruction is generally complete.
If so, the reconstruction is thus called an embedding and the
associated dimension is called the embedding dimension de.
One classical way to estimate de is the global false neighbors
method [27]. However, the true embedding dimension is often
difficult to estimate surely [28]. Therefore, the dimension of
the global model may also be usefully investigated with a
trial-and-error approach.

The differential formulation of a global model directly
results from the differential embedding [Eq. (1)]. A quite
general formulation of a dynamical system of n variables can
be expressed as follows:

ẋ1 = f1(x1,x2, . . . ,xn),

ẋ2 = f2(x1,x2, . . . ,xn),
(2)

. . .

ẋn = fn(x1,x2, . . . ,xn).
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Under invertible properties [29], if observed through X1 =
xi , one of the original variables of the system, the system can
be reformulated in the following canonical form:

Ẋ1 = X2,

Ẋ2 = X3,
(3)

. . .

Ẋn = F (X1,X2, . . . ,Xn) ,

where function F (X1,X2, . . . ,Xn) may be practically approx-
imated by a polynomial P (X1,X2, . . . ,Xn) of degree q since
it was shown that a polynomial enables more stable and robust
models than a rational [11]. However, it was shown that, in
practice, the structure of the polynomial has to be chosen
adequately since inappropriate combinations of terms may
lead to spurious effects or to numerically unstable solutions
[30]. Several classes of structure selection approach have
been previously applied in this context. The first and simplest
class of technique consists of removing one by one the terms
of smaller contribution [31]. The second class of technique
(initially developed for the NARMAX modeling) [32] con-
sists of removing clusters of terms presenting compensative
contributions [33]. The last class of techniques includes any
technique based on a heuristic; one of these, based on a genetic
algorithm, was applied to an ansatz model search [29].

The algorithm introduced in the present study for applying
the structure selection belongs to the last class of heuristics and
was specifically developed for global modeling. Compared to
the previously evoked case [29], its originality is to be ex-
clusively based on the binary parameterization of the model’s
structure related to the presence/absence of each monomial.
In other words, it aims at separating the identification of the
model’s structure from its precise parameterization. Another
original aspect is that it keeps all the solutions visited during the
search process in order to allow discriminating good from bad
terms a posteriori. Finally, the approach was designed with the
will to allow the user’s dynamical interactions when desired.

III. METHODOLOGY

The aim of this section is to describe the overall functioning
of the two algorithms PoMoS and GloMo, which can be used
either in a blind mode or interactively through their associated
interface.

A. PoMoS algorithm

The PoMoS tool is based on a heuristic algorithm aiming
at identifying the monomials of any polynomial ordinary
differential equations. Technically, it can be applied to single
or multiple time series. In the present case of global modeling
considered here, PoMoS is used to identify the terms of
one single polynomial P (X1,X2, . . . ,Xn) for an optimal
formulation of the dynamics, as observed from variable X1 =
xi (see Sec. II). A schematic description of the algorithm is
presented in Fig. 1. Two baskets of models are used in the
algorithm: Basket 1 collects models to be tested, basket 2
gathers the models already tested.

Initially, both baskets are empty; a set of N0 initial models
is randomly generated and put into basket 1. An iterative loop

FIG. 1. (Color online) Operating diagram of PoMoS algorithm:
(1) a set of N0 initial models is randomly generated and put in basket
1; (2) if the number of model is large enough (N > N1), models are
tested based on one chosen criterion (see the Appendix); (3) best
models are selected, whereas bad ones are rejected into basket 2;
(4) the best model is used to generate neighboring models (a model
distance is defined for this purpose) which are added into basket 1;
(5) stages (2) to (4) are repeated until the number of model in basket
1 becomes too low (N � N1); (6) the model research is thus stopped.

is thus started: N1 models are picked up from basket 1, their
suitability is estimated through a multivariate regression from
which goodness of fit is quantified through a chosen criterion.
Several criteria are provided, accounting for accuracy and size
in a competitive way (their definitions are given in Appendix).
The best model among these N1 tested models is thus identified
and is used to randomly generate N2 neighboring models.
The distance between two models is defined as the number
of polynomial terms added and removed. The best model
is put back into basket 1 together with the neighboring
models. Nonoptimal models are gathered into basket 2 for
further (concurrent or posterior) analysis. The first loop is
thus completed. Other loops are iteratively restarted until the
number of models in basket 1 becomes lower than N1. If so,
the convergence of the heuristic algorithm is considered to be
achieved. Last models available in basket 1 are thus tested and
compared, which leads to the “best” model.

Practically, the algorithm requires three input parameters:
N0 the number of models initially generated; N1 the number
of models to be evaluated at each iterative loop; and N2 the
number of models neighboring the current best model to be
added into basket 1 at the end of each iterative loop.

B. PoMoS interface

An interface is provided with PoMoS. This interface does
not simply make it possible to start and follow the model
search. It also provides interactive tools for analyzing the
current results and controlling the heuristic’s parameters (N1

and N2) during the search process.
Two main analysis tools are available during the search

process. Each of these aims at identifying current optimal
terms. Therefore, these analyses are based on the relation
between monomial attendance and the criterions of the models
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including these monomials. In order to take advantage of all the
tests performed during the heuristic process, current analyses
are based not only on the set of optimal models but on the whole
set of models already evaluated. Considering the subensemble
of models containing one chosen polynomial term, the useful-
ness of this term can be evaluated considering the distribution
of criterion values associated to this subensemble. The first
assistant tool provides this information by drawing a box plot,
for each of the terms considered in the analysis. The second
tool is based on a correlation analysis comparing the presence
of one given term with the criterion value of the associated
model’s set. Note that low values of correlation are expected
since correlation is applied to a heterogeneous set of data (one
binary variable accounting for the presence or absence of one
given monomial and one continuous variable accounting for
the model fitting).

From our experience, these two tools have proven to be good
indicators of what monomial should be kept or preferentially
thrown out. The concurrent availability of the tools when
running the algorithm is a powerful way for a human to
control the heuristic parameters as well as for a more efficient
convergence of the algorithm [34]. Indeed, the interface also
allows for a dynamical control of the polynomial terms:
Monomials can be added or removed; all terms of one generic
polynomial defined by its maximal degree can be authorized, or
specific selections of terms can be designed. Note that through
the interface, this selection can be dynamically modified
during the search process.

C. GloMo algorithm and interface

Contrary to PoMoS, which can be applied also to mul-
tiple time series, GloMo is exclusively dedicated to global
modeling from single time series. The object of this tool is
the parameterization of a polynomial P (X1,X2, . . . ,Xn) (see
Sec. II). The algorithm is built on a Gram-Schmidt procedure,
following [11]. Technically, the polynomial formulation in the
algorithm is fully generic and allows any model dimension
with any polynomial degree.

Due to the huge number of models to explore in a
global modeling approach, a search of model structures may
advantageously be explored with PoMoS (or with another
tool) as a first try. Of course, getting a model structure
may not guarantee its reliability. Actually, because PoMoS
was developed for selection among huge number of models,
the algorithm was designed based on time saving tests.
Therefore, practical tests for numerical integrability were not
implemented in PoMoS. As a consequence, most often, a
fully satisfying structure cannot be directly obtained from the
models’ structures provided by PoMoS. However, from our
experience, when a reliable model is underlying the time series,
such a model may be close to the “best” model obtained with
PoMoS. In other words, the best solution provided by PoMoS
is often a good start.

In such a context, GloMo will provide an accurate estimate
of the parameterization that will be used for testing the
practical integrability of the model. In order to control
the extension of the structure exploration, an interactive
interface was also designed. In particular, this interface allows
adding or removing polynomial terms. After each structural

change, a new identification can be performed and its relia-
bility checked in term of numerical integrability. Information
about the suitability of the monomials is also provided after
parameter identification is run. This is done by removing each
monomial one by one and comparing the fittings to the one
obtained with all the terms. Note that such suitability can
reflect the contribution of a term only in reference to the
corresponding structure. Indeed, another structure may lead
to different results. This reflects the local validity of the infor-
mation provided by this test and justifies the prior use of the
PoMoS algorithm for an overall (i.e., global in the sense used
in optimization) view of the model ensemble to be explored.

D. Experimental protocol

No full systematic protocol can be applied when trying to
get a global model with the PoMoS and GloMo algorithms
from one given time series since interactions with the heuristic
process are often very useful during a model search. Indeed,
it can be noted retrospectively that, to get a model, the stages
of the searching process are different for each case but also
that no procedure can be directly exchanged from one case
to another. However, although different for each case, some
common hints can be identified.

When applying the heuristic, one usual difficulty is to
know when to stop the research of the optimal model. This
difficulty is closely linked to the impossibility for the criteria
to discriminate properly an adequate model from a nonrobust
or from a trivial model. From our experience, Akaike-like
criteria generally allow for visiting the model space in a
somehow transversal fashion, leading to visit alternatively
large regions of nonrobustness (diverging solutions) and
smaller regions of trivialness (fixed points or periodic orbits).
Between these two types of region, some chaotic behaviors
can sometimes be found. Indeed, the boundary between such
clearly characterized regions generally appears fuzzy and
possibly complex since behaviours observed there may often
alternate discontinuously between nonrobustness, trivialness,
nontrivial (i.e., multiple) periodic orbits and, potentially,
chaos.

One consequence of this observation is that, when searching
for a model, the analysis of the successive models visited with
the heuristic—applied with human interaction or not—may
provide interesting models that the final result might have
missed, or lost. This observation can thus be turned into an
informal rule when applying PoMoS and GloMo algorithms
to time series. To reach a satisfying model, the successive
suboptimal models progressively visited by the heuristic can
be considered individually by using GloMo and checked one
by one for their robustness and nontrivialness.

When a global model is retrieved from one observed time
series, it is well known that the original dynamics is not always
precisely identified. Indeed, the dynamics identified is often
shifted in the bifurcation diagram. Among various possible
causes of this shift (sampling of the vector field in the phase
space, parameters identification process, level of noise, quality
of the model, etc.), one is the observability of the system from
the measured variable ( [35], see Sec. IV A). Practically, once
a global model is obtained, one simple way to overpass this
difficulty consists of tuning one of the model’s parameter. This
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was applied systematically here to the models obtained from
the three systems taken as a benchmark in order to evaluate
their ability to represent the original dynamics and, when
useful, to discriminate among the various models obtained.
Note that the algebraic formulation of all the global models
obtained in the present analysis is presented in [36].

E. Validation

Once a model is obtained, a validation should be performed.
Without applying model validation, only the presence of a
deterministic component in the underlying dynamics can be
reliably claimed. To validate a chaotic model, one efficient
approach consists in comparing the first return map obtained
from the model (that is the pattern generated by plotting
the coordinates Rn of the nth visiting points of a Poincaré
section as a function of the coordinates Rn+1 of the n + 1st
returning visits) to the one reconstructed from the original
signal. In practice, this requires to appropriately choose a
Poincaré section, which is not always an easy task when
dealing with noisy data, jittery behaviors, complex structures,
etc. For this reason, a precise description of each of the
Poincaré sections should be always provided. The definition
of all the sections and coordinate systems used in the present
analysis is unambiguously provided in Table II. Several levels
of validation can be reached depending on the quality of the
data and on the complexity of dynamics. (a) In the best case,
when the dynamics is precisely retrieved, the shape of the first
return maps (one obtained from the original data set, another
one from the global model) should match. If so, an analysis
of the branches’ correspondence and of the orbits’ recurrence
may be performed to verify the attractor’s structure. Such a
procedure will be described hereafter. Note that a comparison

of the bifurcation diagrams may also be applied since it is
likely to be a very strong validation technique (see [30]).
However, such a procedure may be applied only when the
original system is known, which is generally not the case with
global modeling. (b) If the structure of the global model’s
attractor is correct but the dynamical regime of the original
behaviour poorly identified, the same type of pattern will be
obtained from data and model (same number and type of
branches) but with less developed dynamics (or eventually
more, but from our experience this is more rare). (c) If the
topology is partly lost (e.g., less/more branches appear on the
first return map, even after tuning the model’s parameter), it
is most probable that the system of equation retrieved is not
equivalent to the original system, but similar only. (d) Finally,
if no pattern can be clearly compared, only the presence of
a deterministic component underlying the dynamics can be
reliably conclusive.

In the best case mentioned above—case (a) corresponding
to a quite good matching of the first return maps—a refined
level of validation may be performed. Indeed, various degrees
of reliability can be distinguished inside this former case. In a
chaotic context, the precise validation of a model is considered
to be a difficult task [5]. Indeed, due to the sensitivity to
the initial conditions, predictions can be performed over
relatively short horizons only. As a result, model validation
over long time windows becomes more difficult. However, the
existence of an attractor requires the dynamic to be ergodic
and stationary; therefore, although the trajectory might be
unpredictable, the attractor’s structure should not vary in time
and its statistical properties should remain identical. Validation
can thus be based on the statistical properties of the attractor.
And to go farther—with the aim to investigate global models’
reliability in the long term—validation may be based on the

TABLE II. Definition of the Poincaré sections used to construct the first return maps of the original and global models presented in Figs. 5,
6, 7, and 8. The Cartesian coordinates systems (O,n,va,vb) used for each Poincaré section are provided, where nis the normal to the Poincaré
section. The direction (va or vb) chosen to construct the first return map is specified. Restrictions applied to the resulting plane are also provided,
coordinates Ra and Rb referring to directions va and vb, respectively.

Poincaré section

Reference Normal Abscissa Ordinate Selected First return
Variable Model point vector n vector va vector vb zone map’s axis

Rössler-x2 Original [−0.6; 0; 0] [−0.447; −0.894; 0] [0.003; −0.001; 1] [0.894; −0.447; −0.003] Rb > −0.3 vb

9-p. “ “ “ “ “ “
7-p. “ “ “ “ Rb > + 0.1 “

Rössler-x1 Original [0; 0; 0] [−0.050; 0.999; 0] [0.998; 0.050; 0] [−0.019; −0.001; 1] Ra < + 0.3 vb

13-p. “ “ “ “ “ “
13-p.opt. “ “ “ “ Ra < + 0.2 “

9-p. “ “ “ “ Ra < + 0.3 “
Original [0; 0; 0] [1; 0; 0] [0; 0.031; 1] [0; 1; −0.031] Rb < 120 “

10-p. “ “ “ “ “ “
10-p.opt “ “ “ “ Rb < 100 “

Rössler-x3 Original [0; 0; 0] [0; 1; 0] [−1; 0; 0.002] [−0.002; 0; −1] Ra > −0.6 va

30-p. “ “ “ “ Ra > −0.49 “
30-p.opt “ “ “ “ “ “

I(t) Original [44.2; 4; 0] [1; 0.020; 0] [−0.003; 0.128; 0.992] [−0.02; 0.991; −0.128] Ra > 0 va

21-p. “ “ “ “ “
21-p.∗ “ “ “ “ “

21-p.∗opt “ “ “ “ “
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statistical properties of the populations of periodic orbits.
Since only an imperfect model can be expected in a real
context, one way to quantify global model’s reliability may
thus consist in estimating the number of periodic visit of
the attractor that can be satisfyingly performed before losing
the statistical properties of the original attractor. An iterative
procedure is thus established in order to successively check
model’s reliability after 0, 1, 2, . . ., n periodic visits of the
attractor. At the 0th iteration step, the comparison is static (it
relates to the 1-symbol length sequences) and thus basically
allows for verifying that the modeled manifold has the same
number of branch as the original data set. In practice, this step
can be performed by comparing the distribution of the orbits.
At the 1st iteration step, the comparison allows verifying that
the same branch connexions are in presence within the original
and the modeled manifolds. This can be checked by comparing
the transition matrices (matrix providing the link between
one symbol to another, thus relating to a 2-symbol-length
sequence). At larger iteration steps, the comparison will allow
refining the (long-term) validation of the model. For the
nth iteration step (n � 2), validation will be performed by
comparing the correspondence of the (n + 1)-symbol lengths
sequences. In practice, such validation procedure can be
applied iteratively, increasing the sequence’s length one by one
until the correspondence between the original and the model’s
dynamics become incomplete (correspondence is considered
to be incomplete as soon as one—or more—additional or
missing sequence is found). The last iteration for which
correspondence is fully satisfied corresponds to the horizon for
which the structure validation can be statistically performed.

Practically, transition matrices can be estimated easily once
a partition of the first return map can be performed. The
transition matrix aims to characterize here the links existing
inside the branched manifold underlying the attractor. It can be
defined in two ways. The Markov transition matrix is defined
here as the matrix describing the probability to move from one
symbol to another, each symbol corresponding to one branch
of the manifold, which can be determined from first return
map’s pattern. The binary transition matrix is a simplified
view of the Markov transition matrix that basically provides
the existence or the nonexistence of the same link. In practice,
the binary transition matrix can be directly deduced from the
Markov transition matrix by replacing nonzero values by one
and keeping the zero values as so. Note that a more detailed
description of the branched manifold may also be performed
at this step, by depicting the rotations and the intertwining
of the branches. This could be done through a complete
topological analysis [3,4] and may allow for fully checking
the attractor’s structure. However, since based on a qualitative
description of the flow’s structure, a topological analysis will
not enable checking the accuracy of the model over a time
period longer than one periodic visit of the attractor. For
long-term validation, an approach based on Markov transition
matrix should be preferred.

The comparison of the populations of periodic orbits can be
performed by comparing the symbols sequence. The following
examples are based on an alphabet of four symbols (0, 1, 2,
and 3). For the 1-symbol-length sequences, the comparison
directly results from the presence—or the absence—of a
branch existing in the original dynamics; as an example, the

percentage of correspondence will be 100% if all the branches
are retrieved, 75% if three branches are retrieved only, and
so on. For 2-symbol-long sequences, this correspondence
can be directly deduced from the binary transition matrix.
An alphabet of four symbols leads to a 4 × 4 terms matrix,
if the binary transition matrix of the original’s dynamics
equals the one corresponding to the global model, then
the correspondence is 100%; if one term differs between
those matrices, correspondence is 93.75% and so on. For
3-symbol-length sequences and beyond this correspondence
can be deduced from the number of common sequences
retrieved in both original and modeled dynamics. The longer
the symbol sequences can be retrieved, the more accurate can
be considered the model. These analyses were performed for
each of the models obtained in this work (except when the
partition of the first return map was not possible). The (Markov
and binary) transition matrices are all provided in [36]. The
boundary limits used to perform the symbols’ partition are
provided in Table III for each original data set and model. The
ability of the global models’ dynamics to represent the original
one is also provided as a percentage of retrieved sequences for
sequences of 1-symbol to 6-symbol lengths. In practice, an
iteration is considered to be validated when correspondence
strictly equals 100%.

IV. DATA

Three applicative cases are considered as benchmarks. The
first case is purely theoretic. The second case is derived from
measurements made under experimental conditions. The last
case is taken from the observation of a real environmental
system obtained from satellite remote sensing.

A. Rössler system

The Rössler system [37] is an interesting case to study since
its three variables exhibit very different levels of observability
of the underlying dynamics [35]. It is a low-dimensional
system defined as follows:

ẋ1 = −x2 − x3,

ẋ2 = x1 + ax2, (4)

ẋ3 = b + cx3 + x1x3.

Synthetic time series of variables x1, x2, and x3 were gen-
erated by integrating these equations with control parameters
(a,b,c) = (0.520,2,4) corresponding to the phase noncoherent
regime characterized by fast oscillations around an external
fixed point. Resulting time series are plotted in Fig. 2. The
reformulation of the system in a derivative form [Eq. (3)] is
obtained from the following transformation:

φP =

⎧⎪⎨
⎪⎩

X1 = xi,

X2 = fi (x1,x2,x3) ,

X3 = ∂fi

∂x1
f1 + ∂fi

∂x2
f2 + ∂fi

∂x3
f3.

(5)

When φP is invertible, the exact model function
F (X1,X2, . . . ,Xn) of the canonical formulation [Eq. (3)] can
be obtained analytically [29]. For the Rössler system, solutions
have been given in [11]. For the variable x2, the function is a
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TABLE III. Boundary limits used when partitioning the first return maps, percentage of sequences retrieved by the model for symbol
sequence of 1- to 6-symbol-length sequences, symbols retrieved, and length of the larger symbol sequences that could be validated.

Boundaries (along Ra or b) % of sequence retrieved Symbols Maximum
Between symbols Sequence’s length present / length

Model 0 and 1 1 and 2 2 and 3 1 2 3 4 5 6 retrieved validated sequence

Rössler-x2 Original 1.17 2.42 2.99 {0; 1; 2; 3}
9-p. 1.19 2.41 3.01 100 100 100 76.2 55.3 47.8 {0; 1; 2; 3} 3
7-p. 1.51 2.66 3.09 100 93.8 37.5 {0; 1; 2; 3} 1

Rössler-x1 Original 66.0 118.5 142.5 {0; 1; 2; 3}
13-p. 63.0 117.7 75 50 {0; 1; 2} 0

13-p.opt. 64.0 119.0 144.0 100 93.7 84.3 53.9 {0; 1; 2; 3} 1
9-p. 127.5 152.8 75 50 {1; 2; (3)} 0

Original 12.4 23.3 28.3 {0; 1; 2; 3}
10-p. 12.1 21.3 75 50 {0; 1; 2} 0

10-p.opt 12.0 22.8 26.8 100 100 98.4 90.6 53.5 {0; 1; 2; 3} 2
Rössler-x3 Original −0.36 −0.28 −0.26 {0; 1; 2; 3}

30-p. −0.36 −0.20 75 50 {0; 1} 0
30-p.opt −0.36 −0.19 −0.16 100 100 96.9 90.6 56.25 {0; 1; 2; 3} 2

I(t) Original 330 {0; 1}
21-p. 590 100 75 {0; 1} 1

21-p.∗ 529 100 75 {0; 1} 1
21-p.∗opt 490 100 100 100 100 100 100 {0; 1} 6

second degree polynomial, whereas for x1 and x3, functions
are rational:

F2 (X1,X2,X3) = −b + (a + c)X3 + cX1 − (ac + 1) X2

− aX2
1 − aX2

2 − aX1X3 + X2X3

+ (a2 + 1)X1X2, (6)

F1 (X1,X2,X3) = ab + cX1 + X2
1 − aX1X2 + X1X3

− (ac + 1) X2 + (a + c) X3

− bX2 + X1X2 − aX2
2 + X2X3

a − c − X1
, (7)

F3 (X1,X2,X3) = b + (c − X2) X1 − X2 + aX3 + aX2
1

+ 1

X1

[
(ab + 3X3) X2 − bX3 − aX2

2

]

+ 2X2
2

X2
1

(b − X2) . (8)

Level of observability can vary from one variable to another.
Basically, a system is fully observable from one given variable
if the full state of the system can be retrieved from it.
However, in practice, it was shown that observability could
vary by degree and an observability coefficient was introduced
[35]. Practically, observability can be estimated from the Lie
derivatives since it highly depends on the invertibility of
φP . The classification obtained for the Rössler system shows
that the variables can be ranked according to the decreas-
ing degree of observability as follows: x2�x1�x3. From a
modeling point of view, the observability coefficients bring
important information about the potential difficulty to obtain a
model.

However, this coefficient is only comparative inside one
system but cannot be applied to compare the observability of

variables between several systems [35]. Therefore, it cannot be
practically used when only one single time series is available.
Nonetheless, together with other factors such as dynamical
perturbations and noisy measurements, level of observability
may lead to easy, difficult, or impossible modeling. Therefore,
observability is assuredly one important element to keep in
mind as far as global modeling is considered. In order to better
illustrate the ability of the present tools, the phase noncoherent
regime was chosen to run the analyses. The phase noncoherent
regime is characterized by a four-branch attractor that includes
the presence of two time scales in the dynamics. This makes
the conditions much more difficult to address when trying to
capture the structure of the global mode and to reproduce the
original dynamics satisfyingly.

B. Electrodissolution of copper in phosphoric acid

Many cases of chaotic behaviors have been identified
or approached in chemical reactions and electrodissolutions.
The case of copper electrodissolution in phosphoric acid is
especially interesting here, since experiments were carefully
conducted in the 1990s from which a global model was
obtained and validated using a topological approach [14].
The time series used in the present work comes from the
same experiment. This experiment was designed and studied
in John Hudson’s group at the University of Virginia [38]. The
experimental setup consists in a copper cylinder (8.26 mm
in diameter), inserted inside a tube of Teflon (20 mm in
diameter) and rotating at a moderate speed of 4400 rotations
per minute in an 85.7% (by mass) solution of phosphoric acid.
A water bath was used to maintain the temperature at 20 ◦C.
The moderate value of rotation speed was justified by the
necessity to facilitate the contact between the reactants on the
one hand and to avoid turbulences on the other hand [39].
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FIG. 2. Original signal from the Rössler system for variables x1

(top), x2 (middle), and x3 (bottom).

The time evolution of the dissolution current I (t) was mea-
sured relatively to a reference electrode, which was separated
from the solution by a capillary.

The sampling recording was characterized by large-
amplitude oscillations of + /–15 mA (see Fig. 3) exhibiting
a chaotic phase portrait suggested by its first-return map. A
three-dimensional model was obtained from the data using the
global approach [14]. The model function was a fifth-degree
polynomial of 52 terms. The object of this revisited analysis
is to check the ability of our tool to reach a similar or a more
compact model.

FIG. 3. (Color online) Selected windows of an experimental
signal of current intensity I (t) measured in an experiment of
electrodissolution of copper in phosphoric acid obtained in John
Hudson’s group [38]. The complete data set is available on the
atomosyd Web site (http://www.atomosyd.net/).

C. Vegetation index

The Normalized Difference Vegetation Index (NDVI)
product from the Global Inventory Modeling and Mapping
Study (GIMMS) of the Global Land Cover Facility is used in
this study [40], during the period 1982–2008. It is based on the
Advanced Very High Resolution Radiometer sensor onboard
National Oceanic Atmospheric Administration satellites. The
NDVI is an efficient index for monitoring and modeling of
grasslands and grain crops in semiarid regions [41–43]. The
product used here has a 10-day sampling and an 8 × 8-km2

resolution. It is corrected from sensor degradation over time
and also accounts for atmospheric aerosols resulting from the
eruptions of the El Chichon (in April 1982) and Mt Pinatubo
(in June 1991).

The geographic area of the study is located in northern
Morocco. It is defined by a window ranging from 6.2◦W to
5.4◦W in longitude and from 34.6◦N to 35.4◦N in latitude.
Although this area includes one part of irrigated crops, rainfed
production remains the dominant part of the area of study.
A selection based on the land cover type has been applied
to the data in order to obtain a more representative signal.
The GLC2000 land cover map [44] was used for this purpose.
Once the selection applied, the signal was spatially aggregated
at the scale of the whole province by spatially averaging the
data in order to reduce the effect of noise. A Savitzky-Golay
method [45] was then applied with a 14-decade window to
filter the resulting time series and to compute the successive
derivatives with a 3-day resampling. The resulting series is
shown in Fig. 4.

V. RESULTS AND DISCUSSION

A. Rössler system

The object of this first application to the Rössler system is to
show the efficacy of the tool when considering three variables
x2, x1, and x3 [see Eq. (4)] enabling a decreasing level of
observability of the original system. For this reason, the three
variables are considered separately.

Variable x2 provides the best observability of the Rössler
system which results from the linear relation between ẋ2 and
variables (x1,x2,x3) and can be deduced from Eqs. (4) and (5)
(see [35]). Moreover, this variable also allows for a formally
exact and even basic polynomial solution. For this reason, this

FIG. 4. Vegetation index signal v(t) of rainfed wheat. The time
series was derived from the NDVI product provided by the GIMMS
[40] at 8 × 8-km2 resolution and 10-day sampling. It was obtained
by averaging the signal spatially over a window located in northern
Morroco and by applying a Savitzky-Golay filtering (details are given
in the text).
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FIG. 5. (Color online) Differential embeddings (left panels) and
first return maps (right panels) reconstructed from the original
variable x2 of the Rössler system (top panels) and from two global
models obtained from it: one nine-term model (middle panels) and
one seven-term model (bottom panels).

first analysis can be considered as a potentially prohibitive test
since it should absolutely be passed. The best model obtained
(lower Akaike Information Criterion) from x2 is obtained for
maximal polynomial degree q = 2 and corresponds exactly
to the polynomial structure F2(X1,X2, . . . ,Xn) of the formal
solution [see Eq. (6)]. Starting the structure search from q = 2
or q = 3, it can be obtained by using PoMoS or by simply
removing terms of smaller contribution one by one. Phase
portraits reconstructed from the original data (x2,ẋ2,ẍ2) are
shown in Fig. 5(a) together with the simulation obtained
from the global models Figs. 5(c) and 5(e). Global model-
ing often produces reliable model structures with imperfect
parameterization [12]. In the first case, a nine-term model
corresponding to the canonical solution [Eq. (6)] was obtained.
The development of its dynamical behavior appears fully
retrieved as illustrated by the first return maps highlighting
a quite good matching [Fig. 5(d)]. This is confirmed by the
transition matrices (see Sec. 1.1 in [36]) and by the analysis of
the populations of unstable periodic orbits for which symbolic
sequences are fully retrieved (100% of the sequences match)
until 3-symbol-length sequences (see Table III). No significant

improvement could be obtained by tuning the parameters
by hand (not shown). Such improvement may be obtained
by developing an optimization approach dedicated to this
problem. Surprisingly, a seven-term model, thus smaller than
the analytic solution [see Eq. (6)], was also obtained [Fig. 5(e)]
by removing terms b and X2 from F2(X1,X2, . . . ,Xn),
suggesting a compensative contribution of these two terms.
However, the phase portrait associated with this model of
smaller size appears incomplete, and it should be noted that it
was not found possible to adjust the dynamics to the original
behavior by tuning the parameters. The transition matrix of this
seven-term model is incomplete, leading to a short horizon of
confidence corresponding to a 1-symbol-length sequence only,
which is quite poor. Although poor in quality, this smaller
model is interesting in this analysis. Indeed, it shows that an
approximate model can lead to a viable attractor (although
incompletely reliable) of approximate dynamics characterized
by a not fully developed (and not fully developable) dynamics.
This does not prevent from obtaining a numerically robust
(although approximate) model for the original dynamics. This
model of smaller size (seven terms instead of the nine analytic
ones) is also interesting since it shows that, by oversimplifying
the canonical system, some behaviors of the original system
cannot be retrieved. Indeed, some behaviors provided by the
two missing terms are obviously lost. This also illustrates
that the principle of parsimony can apply here, but should
be applied with some caution. There is no reason to choose
the smaller solution exclusively because it is smaller; but
rather, when two solutions exhibit same behaviors, then the
smaller one should be preferred since there is no reason to
choose a more complicate one. In the present context, the
nine-term model should assuredly be preferred. These results
also show that a refined validation based on the comparison of
the populations of periodic orbits can be a powerful approach.

Variable x1 provides a moderate observability of the Rössler
system. The analytical formulation of F1(X1,X2, . . . ,Xn) also
exists for this variable and is rational [see Eq. (6)]. The
moderate level of observability results from the nonlinear
relation existing between ẋ1 and variables (x1,x2,x3) and can
be obtained from Eqs. (4) and (5) (see [35]). Since only a
polynomial formulation for the approximating function F is
permitted in the present version of the algorithm, an exact
formulation of the global model cannot be expected. However,
despite the presence of rational terms, approximate functions
of small size can be expected and were obtained with degree
3 and 4 polynomials. Phase portraits reconstructed from the
original data set and from the global models are given in
Figs. 6(a), 6(c), 6(f), and 6(h). None of these models allows for
an accurate reconstruction of the phase portraits, as confirmed
by the first return maps [see Figs. 6(b), 6(d), 6(g), and 6(i)).
At first sight, the best solution is obtained with the 13-term
model (of maximum degree q = 4) for which three of the
four branches of the first return map are directly and clearly
retrieved [see Fig. 6(d)]. A slightly less developed dynamics
is obtained for the 10-term model [of maximum degree q = 3,
Fig. 6(i)], whereas the 9-term model (of maximum degree q =
4) poorly exhibits three branches, the third one being extremely
small [Fig. 6(g), respectively]. The models’ inaccuracy is also
readable in the transition matrices (see Sec. 1.2 in [36]).
By tuning one parameter of each of these three models, it

046205-9



S. MANGIAROTTI, R. COUDRET, L. DRAPEAU, AND L. JARLAN PHYSICAL REVIEW E 86, 046205 (2012)

FIG. 6. (Color online) Differential embeddings (left panels)
and first return maps (middle column and right column panels)
reconstructed from the original variable x1 of the Rössler system
(top panels) and from three global models obtained from it: one
fourth degree 13-term model (second line panels), one fourth degree
9-term model (third line panels), and one third degree 10-term model
(bottom line panels). The first return maps reconstructed from the
models directly obtained with GloMo algorithm are plotted in the
middle column panels. The first return maps obtained after tuning
one of the parameters are plotted (when available) in the right column
panels.

was found that the 10-term model was obviously the best
approximation [Fig. 6(j)]. Indeed, the full development of
the 13-term (q = 4) model’s dynamic could only be partial
and associated with discontinuities in the first return map
[Fig. 6(e)], and it was found not possible to tune the 9-term
model (not shown). Contrarily, although not fully matching the
original first return map, a gentle development of the dynamics
was obtained with the 10-term model (q = 3), including a small
discontinuity only [Fig. 6(j)]. Moreover, it was found possible
to fully retrieve 2-symbol-length sequences with this latter (see
Table III), whereas sequences of only 1-symbol-length could
be retrieved with the 13-term model and none with the 9-term
model (see Sec. 1.2 also in [36]).

Finally, variable x3 provides the lower observability of
the Rössler system. This low observability results from the
nonlinear relations between ẋ3 and variables (x1,x2,x3) and
can be obtained from Eqs. (4) and (5) (see [35]). The analytical
formulation of F3(X1,X2, . . . ,Xn) also exists; it is rational [see
Eq. (8)] and includes degree 2 terms at the denominator. From

FIG. 7. (Color online) Differential embeddings (left panels)
and first return maps (middle column and right column panels)
reconstructed from the original variable x3 of the Rössler system
(top panels) and from the fifth degree 30-term global model obtained
with GloMo (bottom panels). In the bottom panels, the middle panel
corresponds to the first return map of the 30-term model directly
obtained from GloMo algorithm, whereas the right panel corresponds
to the modified version of the same model obtained by tuning one
parameter.

the differential embedding [Fig. 7(a)], this variable exhibits
a very spiky structure that makes global modeling especially
difficult [46]. Several solutions were yet obtained in the past
by using an overdimensioned 4D formulation [47] by using an
ad hoc approach based on fixed point coordinates [48], or by
using a very constraining structure selection with the ansatz
library [46]. However, no direct 3D global model could be
obtained yet. This difficult context is further complicated here
by the use of a phase noncoherent dynamics.

Despite the low observability and the spiky structure, a fifth-
degree polynomial approximation of 30 terms was obtained.
Phase portraits and first return maps reconstructed from the
initial data set and from the model are shown in Figs. 7(a) and
7(c). The chaotic behavior of the global model is confirmed by
the first return map [Fig. 7(d)]. Three branches are obtained
which means that a phase noncoherent regime is directly
retrieved. However, the full development of the chaos is not
obtained since only three branches appear, the third one being
partly truncated. These characteristics are directly readable in
the transition matrices (see Sec. 1.3 in [36]). A rather gentle
development of the chaos was obtained by tuning one of the
parameters [Fig. 7(e)] giving rise to the full development of the
four branches of the original data set. As a result, transition
matrices could become reliable and even; a full agreement
of the symbols sequences is found until 2-symbol-length
sequences (see Table III). Some imperfections can be noted,
however. A fuzzy behavior is visible in the first return map,
on the left side of the pattern, corresponding to the faster
oscillations, more difficult to detect. These imperfections are
likely to result from the especially acid situation characterized
by a spiky structure in a context of low observability and further
complicated by the two time scales of the phase noncoherent
regime. It is therefore a very convincing result since, at present,
no three-dimensional model could be obtained yet from this
difficult variable of the Rössler system without using strong
structure selection.
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FIG. 8. (Color online) Differential embeddings (left panels) and
first return maps (middle and right panels) reconstructed from the
original current intensity I (t) measured from an experience of
copper electrodissolution (top panel) and from the two global models
obtained from it. Both have the same structure: fourth degree 21-term
models. The parameterization of the first one (middle panel) was
obtained from the shorter time series presented in Fig. 3; and from
the longer time series for the second one (bottom panel). First return
maps directly obtained by applying GloMo algorithm are plotted in
the middle column panels. First return maps obtained after tuning one
parameter of the second model is plotted in the right column panel.

B. Electrodissolution of copper in phosphoric acid

The analysis of the time evolution of current intensity
measured from the experiment introduced in Sec. IV B has
led to a 21-term model of maximum polynomial degree q = 4.
A phase portrait obtained from the measured signal [Fig. 8(a)]
can be compared to the portrait obtained from the model
Fig. 8(c). The retrieved model exhibits the same structure.
The chaotic behavior is confirmed in both cases from the
double-branch pattern of the first return maps [Figs. 8(b) and
8(d)]. A larger central hole with a slight shift can, however, be
noted in the model, leading to a poor development of the first
branch of the first return map, and it was found not possible to
significantly develop the dynamics by manually tuning one
of the parameter (not shown). The direct consequence of
the poor development of the dynamics is easily readable in
the transition matrices (see Sec. 2 in [36]).

Therefore, another solution (21-p.∗) obtained by consider-
ing a shifted time series of longer length (see Fig. 3) was also
considered. For this reason, the two models have the same
structure and only their parameterization differs. The second
model exhibits a limit cycle [see Fig. 8(e)] very close to a
period-5 cycle as depicted in the first return map [see Fig. 8(f)].
Although less chaotic with its initial parameterization, this
other model could be efficiently tuned up, leading to a
developed chaos close to the original dynamics [Fig. 8(g)].
The transition matrix of the tuned version of this second model

(21-p.∗opt) is in agreement with the one obtained from the
original signal. Further, symbol sequences resulting from this
latter model are in agreement with the original sequences until
6-symbol-length sequences.

When only one single variable is available, the observability
coefficients of the system cannot be estimated. However, it can
be noted that, unlike Rössler-x2 or Rössler-x1 and similar to
Rössler-x3, a model was hard to find for this application, and
only a high degree polynomial solution could be obtained (q
= 4). Moreover, as found with Rössler-x3, a high sensitivity
to the time series’ window used to identify the model was
noted. Such sensitivity to the time series’ size is a common
feature of global modeling. This sensitivity results from the
identification process which is a difficult task in a context
of chaotic behavior. Indeed, when more data is available to
identify the parameterization, a more precise parameterization
may be expected. Unfortunately, more data will also lead to
more complex shapes of the objective function. In the case of a
chaotic behavior, the complexity of this shape will rapidly tend
to fractal structures that simple identification approaches may
not be able to overtake optimally. The difficulties in obtaining
a satisfying model are likely to arise from the complex shape
of the objective function complicated here by the intermediate
or poor level of observability of the system as considered from
the measurement of current intensity. This assumption may
be investigated interestingly by reconsidering the dynamics
in another experimental configuration which would involve
several electrodes simultaneously, for comparison; or by
considering other variables of the system.

C. Dynamics of rainfed wheat

The time evolution of the vegetation index (Fig. 4) intro-
duced in Sec. IV C has been analyzed, leading to one 15-term
model. The phase portraits obtained from the original data set
and from the retrieved model are shown in Figs. 9(a) and 9(b).
Some differences are noticeable that include the filtering of
short time-scale events observed in the original portrait that
may result from transitory effects associated with meteoro-
logical perturbations or to spatially differentiated behaviors
of the region of study. Another emphasized difference comes
from the higher density of trajectories observed in the center
hole of the simulated trajectory, whereas the original phase
portrait clearly exhibits an empty hole. Such differences may
result from a suboptimal parameterization. Indeed, it is well
known that global modeling may lead to a good structure
(i.e., equivalent to the original one) but to an inaccurate

FIG. 9. (Color online) Differential embeddings reconstructed
from the original vegetation index v(t) (left panel) and from the third
degree 15-term global model (right panel).

046205-11



S. MANGIAROTTI, R. COUDRET, L. DRAPEAU, AND L. JARLAN PHYSICAL REVIEW E 86, 046205 (2012)

identification of the regime: The attractor is generally not
located exactly at the same place in a bifurcation diagram of the
original system [12]. Despite the differences noticed, obtaining
such a model is quite an important point since it clearly shows
the robustness of the algorithm to get a satisfactory model
from a rather jittery time series. It is also a quite important
result from a thematic point of view since it brings a strong
evidence of a deterministic component underlying the signal
of rainfed wheat observed from space. More generally, to our
knowledge, there was previously no such strong element of
evidence of deterministic behavior underlying the dynamics
of vegetation.

The resulting attractor exhibits a complex structure, for
which no simple first return map is accessible. Its unstable
behavior is confirmed by a clearly positive first Lyapunov
exponent λ1 = +1.90 ± 0.02 [1]. These analyses provide a
strong argument for a chaotic behavior in which instability
is guaranteed by the first Lyapunov exponents and where
determinism is ensured by obtaining the (deterministic) global
model. The more in-depth analysis of the attractor will require
a dedicated study.

VI. CONCLUSIONS

PoMoS and GloMo, a couple of algorithms developed under
R language and dedicated to global modeling, is presented and
tested in this work. The tools are applied to three different
systems in order to show their capacity in providing satisfying
models of small size from single time series. Models of smaller
size are preferred for two reasons. One reason is to avoid
redundant terms that may bias the correspondence with the
original dynamics. Indeed, it is well known that the addition of
one single term in a dynamical system may completely change
the system’s behavior. Another reason is to remove spurious
terms that may foster dynamical or numerical instabilities
and potentially lead to a short- or long-term divergence.
Obtaining a model of small size is thus a powerful sign of
strength of the model. However, oversimplification should
be avoided also. Nonetheless, from our experience, obtaining
oversimplified models from global modeling appears rarer and
may be considered with less apprehension since it may lead to
simplified but more robust dynamics rather than spurious or
numerically unstable ones. In other words, but depending on
the context of application, oversimplification may lead to an
interesting solution by default, especially if no better solution
can be found.

Various levels of validation are distinguished in the paper,
and a validation method accounting for long-term dynamical
behaviors is introduced. These various levels of validation
were tested onto the global models obtained with the two
algorithms with the aim to have a significant overview of the
results. The capacity of the two algorithms was thus evaluated
not only based on their ability to reach viable models, but
also on the reliability of the models obtained, reliability being
evaluated with a refined validation technique, when possible.
The quality of a model was estimated in terms of phase
portrait, first return map, transition matrix, and population of
unstable periodic orbits. The model’s size was also considered
as an interesting criterion for comparison to the analytic or
previously published solutions. The ability of the tool was

first tested on the Rössler system, which variables exhibit
various levels of difficulty ranging from very low to high
when attempting a global modeling. The algorithms were also
tested on two sets of real observations. One set relates to
the electrodissolution of copper in phosphoric acid, which
data was obtained under experimental conditions. Another
set concerns the dynamics of rainfed wheat under semiarid
climatic conditions observed by satellite remote sensing over
northern Morocco.

It was possible to get a global model for each of the cases
considered in the study. Except for the dynamics of rainfed
wheat, all the levels of validation could be achieved (often after
applying an a posteriori parameter tuning): (a) Determinism
was shown by obtaining a global model; (b) the first return
map’s patterns could be satisfyingly compared to the one
reconstructed from the original data set (the same number
of branches could be obtained); (c) the same development
of the dynamics could be checked qualitatively (verifying
the branches’ lengths); (d) the transition matrices could be
satisfyingly compared; and (e) the symbols sequences could
be checked (until 2-symbol-length sequences, at least). These
models are more parsimonious compared to the previously
published results. Surprisingly, although not fully reliable, a
seven-term model was obtained for the first variable of the
Rössler system while a formal solution of nine monomials is
ideally known. The model obtained from the time evolution
of a current measured in an experiment of electrodissotion
also has a smaller size (21 parameters) than the previously
published model of 52 parameters. The efficiency of the
PoMoS and GloMo algorithms is powerfully exhibited by
obtaining a three-dimensional global model from the last
variable of the Rössler system (noted x3 in the present work),
which is characterized by a low observability. This result is
especially significant since no 3D model could be directly
obtained before, without using a very constraining selection
technique or a priori knowledge.

Validation could not be performed onto the model of rainfed
wheat due to the jittery structure of the phase portrait resulting
from the original signal which probably results from the noisy
conditions. Nonetheless, these new tools have permitted the
extraction of a deterministic component from the signal of
vegetation index observed from space. This is an important
result since, to our knowledge, the deterministic behavior has
never been argued with such a strong element of evidence
for any type of vegetation. This is also important since
determinism is one of the two essential conditions for chaos.
Since the dynamics captured from the vegetation index exhibits
a relatively high level of complexity which is characterized by
a chaotic regime, it offers a strong evidence for a chaotic
behavior of rainfed wheat in northern Morocco.

Finally, thanks to the two algorithms PoMoS and GloMo,
it is shown that dynamics of quite complex behaviors can be
modeled by global models of canonical form and of quite small
size: 10 terms only for the Rössler-x1 variable, 30 terms only
for the Rössler-x3 variable, 21 terms for the electrodissolution
of copper in phosphoric acid; and 15 terms for the dynamics
of rainfed wheat in northern Morocco. This latter model
also suggests that relatively complex dynamical structures
can be modeled with canonical formulation of rather small
size. Developments of global modeling were initiated in the
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early 1990s; the present results contribute to provide quite
encouraging new illustrations of the potential of the approach.
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APPENDIX

Two main optimization criteria are provided in PoMoS.
Each is expressed as the sum of two terms, one term evaluating

the maximum likelihood, another term corresponding to the
model size defined here as the model’s number of parameter.
These two terms are in competition since maximum likelihood
invariably leads to maximize the models’ size. The Akaike
Information Criterion CAIC [49] is defined as follows:

CAIC = −2 ln(L) + 2k, (A1)

where L is the likelihood and k is the number of parameters
independently adjusted within the model. In practice, L

is estimated from the residuals of the least-squares fitting.
The Bayesian Information Criterion CBIC [50] allows for a
stronger penalization of the model’s size through the following
expression:

CBIC = −2 ln(L) + k ln (n0) , (A2)

where n0 is the sample size (corresponding to the size of the
time series).

The theoretical backgrounds of the two criteria are different
since CAIC aims at finding a satisfying trade-off between
likelihood and model size, whereas CBIC aims at identifying
the true or quasitrue model. Their efficacy can vary drastically
depending on factors including the size of the sample, the
presence of the true model in the model ensemble, and the
size of this model ensemble. In practice, due to the stronger
penalization of the model size in the CBIC criterion, CBIC may
lead to subdimensioned models, whereas CAIC will generally
lead to overdimensioned ones.
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G. Gouesbet, Z. Fei, and J. L. Hudson, Phys. Rev. E 51, 4262
(1995).

[15] C. Letellier, L. Le Sceller, G. Gouesbet, F. Lusseyran,
A. Kemoun, and B. Izrar, AIChE J. 43, 2194 (1997).

[16] C. Letellier, J. Maquet, H. Labro, L. Le Sceller, G. Gouesbet,
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