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Impact of chaos and Brownian diffusion on irreversibility in Stokes flows
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We study a reversal process in Stokes flows in the presence of weak diffusion in order to clarify the distinct
effects that chaotic flows have on the loss of reversibility relative to nonchaotic flows. In all linear flows, including
a representation of the baker’s map, we show that the decay of reversibility presents universal properties. In
nonlinear chaotic and nonchaotic flows, we show that this universality breaks down due to the distribution of
strain rates. In the limit of infinitesimal diffusivity, we predict qualitatively distinct behavior in the chaotic case.
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I. INTRODUCTION

A debate persists on whether dynamical chaos is the origin
of irreversibility in the contexts of statistical mechanics [1,2]
and transport phenomena [3,4]. On the one hand, running
forward in time, chaotic systems, like the multibaker mapping,
exhibit loss of time correlation and diffusive-like dynamics [5].
On the other hand, chaos is not intrinsically irreversible, in that,
with infinite precision and in the absence of sources of random
noise, chaotic trajectories will return to their original locations
in phase space if the dynamics is reversed [6]. Experimental
studies indicate that non-Brownian particles in oscillatory
shear exhibit irreversibility and chaotic dynamics [3,4], but
the relative importance of chaos and solid body contacts in
preventing reversibility of the trajectories of the particles is
not clear [7]. A challenge in defining the impact of chaos on
irreversibility arises from the well-appreciated fact that chaotic
flows accelerate the loss of reversibility in the presence of noise
or finite precision relative to nonchaotic flows. In this paper,
we adapt an analytical treatment of mixing (simultaneous
convection and diffusion) put forth by Ranz [8] to scale the
dynamics of diffusive tracers in a reversal experiment with
respect to the characteristic rate of mixing. This approach
elucidates a unity in the evolution of convective diffusive
irreversibility in all linear flows and shows how this unity
is disrupted by the presence of the distribution of strain rates
in both chaotic and nonchaotic flows.

The reversal experiment that we consider is based on
Heller’s proposal [9,10] to use diffusive irreversibility in
time-reversible Stokes flows as a means to separate solutes
of distinct Brownian diffusivity from a mixture. Figure 1
illustrates his proposal for a mixture of two solutes: (i) stir
the mixture [yellow region in Fig. 1(a)] until the distribution
of the solute with higher diffusivity (green) has been largely
homogenized into a carrier fluid [black region in Fig. 1(a)], (ii)
“unstir” (reverse the flow) to completely undo the deformation
[Fig. 1(c)], and (iii) collect the fluid from the original
volume. The collected fluid will be partially purified of the
tracers of higher diffusivity. We call this process separation
by convective diffusive irreversibility, SCDI. In considering
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SCDI, Aref and Jones [11] defined return fraction Rf —the
fraction of diffusive tracers that return to the original volume
[Fig. 1(c)]—as a measure of reversibility. They showed that
Rf decays faster in chaotic flows relative to nonchaotic flows
for any amplitude of diffusivity and concluded that chaotic
dynamics could, in this sense, enhance separation of diffu-
sive solutes. Ottino [12] and others [13] have demonstrated
experimentally this acceleration of the decay of reversibility
by chaotic dynamics.

We now extend this investigation to ask further how
chaotic flows impact the efficiency of SCDI relative to pure
diffusion and nonchaotic flows. For this purpose, we define the
maximum differential reversibility:

φ(Dhigh,Dlow) = max

(
Rf (tstir,Dlow)

Rf (tstir,Dhigh)

)
∀tstir

. (1)

This function is the maximum ratio of return fractions of
tracers of distinct diffusivities Dhigh and Dlow with respect
to stirring time. This differential reversibility measures the
sensitivity of reversal to differences in diffusive noise (a higher
value of ϕ indicates greater sensitivity) and can serve as a figure
of merit for its efficiency for SCDI; ϕ also provides a rate
independent observable with which to compare the reversal
process in the presence and absence of chaos.

II. RANZ MODEL

We first consider SCDI in three simple cases—(i) no
flow such that the tracers evolve by pure diffusion; (ii) pure
extensional flow such that the fluid undergoes deformation
at an exponential rate; and (iii) simple shear flow such that
the fluid undergoes deformation at an algebraic rate. Pure
extension and simple shear are linear flows [14]. The work
of Ranz [8] indicates that, for weak diffusion, mixing of a
periodic array of bands of solute in linear flows [Fig. 2(a)]
can capture mixing in the more general nonlinear flows
because (1) the folding by a general flow typically results
in an approximate spatial periodicity (λ) in the concentration
field over short distances, and (2) the flow is approximately
linear over short distances. In the case of pure extension,
the evolution of these periodic strands represents mixing
by the baker’s transformation, a canonical model of chaotic
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FIG. 1. (Color online) Schematic representation of separation by
convective diffusive irreversibility (SCDI). Concentration profiles of
a one-to-one mixture (yellow) of two solutes of different diffusivities
(green = high diffusivity, red = low diffusivity) (a)–(c) State of
mixture, (a) initially segregated from miscible carrier fluid (black)
before stirring, (b) after stirring in a Stokes flow, and (c) after reversing
the flow (“unstirring”). The white dashed line in (c) represents the
original volume occupied by the mixture in which return fraction Rf

is evaluated. High diffusivity solute is distributed uniformly over the
domain in (c).

dynamics [15]. These strands, when observed in the local
frame of reference (x ′,y ′) [Fig. 2(a), in which we translate
and rotate with the strand] experience an effective rate of
extension alongy ′of α(t,γ̇ ) = −d ln[s(t)/s(0)]/dt where s(t)
is the width of the strand at time t and γ̇ is the actual strain
rate in the flow. For simple shear flow, α = γ̇ t/[1 + (γ̇ t)2] and
for extensional flow, α = γ̇ . In this local frame (x ′,y ′), the
convection diffusion equation has the form

∂c

∂t
− αx ′ ∂c

∂x ′ = D
∂2c

∂x ′2 . (2)

We nondimensionalize time and position using the Ranz
transformation:

ξ = x ′/s(t) and τ =
∫ t

0
Ddt ′/s(t ′)2. (3)

The mixing time for extension τext, simple shear τss , and pure
diffusion τd are

τext = D[exp(2γ̇ t) − 1]

2γ̇ s2
0

, τss = D[γ̇ t + (γ̇ t)3/3]

γ̇ s2
0

,

and τd = Dt

s2
0

. (4)

Physically, the mixing time τ represents the time required
for a distribution of solute undergoing pure diffusion to reach
the same state as the distribution would in the flow under
consideration after a dimensional time t . The nondimension-
alization in Eq. (3) reduces the convection-diffusion equation
(2) to a transient diffusion equation:

∂c

∂τ
= ∂2c

∂ξ 2
. (5)

The transformation to Eq. (5) indicates that the full dynamics of
convection diffusion in linear flows can be captured by a purely
diffusive process in the ξτ domain with a nondimensional
diffusivity of 1.

We can treat SCDI in these flows in a simple manner: using
Eq. (5), we model the stirring phase by tracking the evolution
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FIG. 2. (Color online) SCDI in linear flows. (a) Initial concentra-
tion distribution of a diffusive solute (red) in the frame of reference
of the strand (x ′,y ′). (b) Concentration profile c(ξ,τ ) predicted by
the Ranz model [Eq. (5)] initially (τ = 0; violet curve), after stirring,
(τstir = 0.02; gray curve), and after unstirring (τunstir = 0.04; orange
curve). Return fraction Rf is defined as the area of shaded region.
(c),(d) Decay of Rf for (c) extension (solid lines) and (d) simple shear
(dash-dot lines) as a function of total strain, γ̇ t , for four different
diffusivities [from left to right, 5.7 × 10−7 (green), 5.7 × 10−8

(brown), 5.7 × 10−9 (blue), 5.7 × 10−10 (red)]. (e) The master
return curve Rf (τstir) for all linear flows and pure diffusion. (f) The
master curve of maximum differential reversibility, ϕ [Eq. (1)] for all
linear flows plotted as a function of the ratio of diffusivities.

of the initial distribution, c(ξ,τ = 0) for τstir(γ̇ tstir,D), and
the unstirring phase by tracking the evolution of the stirred
distribution, c(ξ,τstir), for an additional τunstir(γ̇unstirtunstir,D).
Using the conditions for complete unstirring, tstir = tunstir,

and γ̇unstir = −γ̇ , we find that α(tunstir,γ̇unstir) = α(tstir,−γ̇ ) =
−α(tstir,γ̇ ). Upon integrating Eq. (3), we find thatτstir = τ unstir.
Hence the final distribution after stirring and unstirring is
simply c(ξ,2τstir). Figure 2(b) shows analytical solutions
of Eq. (5) during the evolution of the initial square wave
distribution. We evaluate Rf (τstir) in the ξτ domain as the
ratio of the integrated concentration c(ξ,2τstir) [shaded area
in Fig. 2(b)] within the interval (−0.5 � ξ � 0.5) to the
integrated initial concentration c(ξ,τ = 0) within the same
interval. Further, ϕ(Dhigh,Dlow) can be evaluated from Rf

with Eq. (1). Given the same initial condition and governing
equation, the solutions and measures of reversibility are the
same for all linear flows. Thus, using the Ranz transformation
[Eq. (3)], we elucidate a unity in the decay of reversibility Rf

and of the maximum differential reversibility ϕ(Dhigh,Dlow) in
all convection-diffusion processes that are governed by Eq. (5).
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FIG. 3. (Color online) SCDI in nonlinear Stokes flows. Evolution of concentration profiles of a one-to-one mixture of two tracers of
different diffusivities Dhigh = 5.7 × 10−7 (green) and Dlow = 5.7 × 10−10 (red), (diffusion is nondimensionalized by [H 2/Tcyc], where H is
the height of the flow domain, Tcyc is the time period of the chaotic flow) in the chaotic (first row) and the nonchaotic (second row) flows. (a)
Initial concentration profile with mixture in the lower half of the domain. (b) Schematic representation of the velocity fields used for stirring.
(c) Concentration profile after stirring for t cycles (t = 3 for chaotic, t = 73 for nonchaotic) equivalent to the same mixing time τ of 0.24
and 0.000 24 for the two diffusivities in both flows. (d) Velocity fields used for unstirring. (e) Concentration profiles after unstirring for the t

cycles. The white dashed line indicates the region where the solutes were present initially in (a). (f),(g) Individual concentration profiles after
unstirring of (f) low diffusivity solute and (g) the high diffusivity solute. These distributions in (f) and (g) add up to give (e).

To appreciate the impact of the Ranz transformation, Figs. 2(c)
and 2(d) show the rapid decay of return fraction as a function of
total strain γ̇ t in an extensional flow relative to that in a simple
shear as observed by Aref and Jones [11]. Transforming to the
τ domain in Fig. 2(e) [using Eq. (4)], the decay of Rf collapses
into a single master return curve and this collapse results in
a single master curve for differential reversibility [Fig. 2(f)].
We conclude that the exponential separation and the resulting
sensitivity to noise in chaotic flows accelerate the decay of
reversibility, but do not, on their own, disrupt the universality
observed with the Ranz transformation or change differential
reversibility relative to other linear flows.

III. NUMERICAL SIMULATION

We will now study SCDI in nonlinear velocity fields using
the chaotic sine flow [16] and the nonchaotic steady Taylor-
Green vortex flow [17] as examples (Fig. 3). In the chaotic case
[Fig. 3(b), first row], the flow switches between two orthogonal
sine flows with a period Tcyc ≡ 1 as given in Eqs. (6) and (7);
in the nonchaotic case [Fig. 3(b), second row], the two sine
flows operate continuously as given in Eq. (8),

ux = 1.75 sin(2πx); uy = 0;
(6)

nTcyc � t < 0.5(2n + 1)Tcyc; n = 0,1,2 . . . ,

ux = 0; uy = 1.75 sin(2πy);
(7)

0.5(2n + 1)Tcyc � t < (n + 1)Tcyc,

ux = 0.6125 sin(πx) cos(πy);
(8)

uy = 0.6125 sin(πy) cos(πx).

The flows evolve forward [stirring, Fig. 3(b)] for a time
t (number of cycles for chaotic case) and then backward
[unstirring, Fig. 3(d)] for the same time t . We note that this
chaotic sine flow does not contain any nonchaotic islands.
We simulate the evolution of the concentration profiles of a
mixture of solutes of different diffusivities [Fig. 3(a)] with
Lagrangian diffusive particle tracking as shown in Fig. 3.
Briefly, the Lagrangian diffusive particle tracking method
involves the following [18]: (a) populate the domain [Fig. 3(a)]
using 106 particles randomly; (b) track the positions of the
particles �x in the chaotic and nonchaotic flows by solving for
the particle trajectories d �x

dt
= �u + �B(t), where �u is the velocity

[as shown in Figs. 3(b) and 3(d)], and �B(t) is the stochastic
contribution to the velocity that represents diffusion; (c) obtain
the concentration profiles [Figs. 3(c) and 3(e)–3(g)] by binning
particle positions at chosen times.

IV. RESULTS AND DISCUSSION

A. Comparison with the Ranz model

In Figs. 4(a) and 4(b), we plot Rf (γ̇ t,D) calculated with
respect to the original volume bounded by the dashed white
lines in Fig. 3(e) for each flow. Noting the similarity in
Rf (γ̇ t,D) in Figs. 4(a) and 4(b) (chaotic and nonchaotic flows)
and Figs. 2(c) and 2(d) (extension and simple shear), we plot
Rf as a function of the mixing time τ . For this purpose, we
use τ〈γ̇ 〉 defined for linear flows in Eq. (4) (τext for chaotic and
τss for nonchaotic flows, with two parameters, the mean strain
rate 〈γ̇ 〉 that we calculate independently and the initial strand
thickness s0 as an adjustable fitting parameter). Figure 4(c)
shows that Rf (τ〈γ̇ 〉) appears to collapse for each class of flow
for a range of diffusivities (D = 5.7 × 10−7 − 5.7 × 10−10),
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FIG. 4. (Color online) Characteristics of SCDI in nonlinear
Stokes flows. (a),(b) Rf as a function of total strain (the mean strain
rate 〈γ̇ 〉 is 2.07 for the chaotic flow and 2.275 for the nonchaotic
flow) for (a) the chaotic flow [D = 5.7 × 10−7 ( ), 5.7 × 10−8

( ), 5.7 × 10−9 ( ), 5.7 × 10−10 ( )] and (b) the nonchaotic flow
[D = 5.7 × 10−7 ( ), 5.7 × 10−8 ( ), 5.7 × 10−9 ( ), 5.7 ×
10−10 ( )]. (c) Rf as a function of mixing time τ〈γ̇ 〉 [with mean
strain rates as in (b) and adjusted strand widths s0 = 0.375 H for the
chaotic (r2 > 0.99) and 1.25 H for the nonchaotic flow (r2 > 0.99)].
(d) Maximum differential reversibility ϕ as a function of the ratio of
diffusivities for pure diffusive case [black line, same as Fig. 2(e)],
chaotic flow ( ), and nonchaotic flow ( ).

but not onto the master return curve for linear flows [black
line replotted from Fig. 2(e)]. We also find that the evolution
of ϕ(Dhigh,Dlow) in chaotic flows and that in nonchaotic
flows are distinct from each other and from that in linear
flows [Fig. 4(d)]. The universal behavior of Rf and ϕ

observed for linear flows does not generalize to nonlinear
flows. Interestingly, the maximum differential reversibility is
the smallest for the chaotic case. This observation indicates
that, while chaos accelerates the absolute rate of decay of
reversibility due to diffusion, it reduces the sensitivity to
differences in diffusivity for nonlinear flows.

B. Modified Ranz model

We search for the origin of the distinct evolution of
reversibility in linear and nonlinear flows seen in Figs. 4(c)
and 4(d) in the character of the nonlinear flows. Strands
in nonlinear flows experience a distribution of local strain
rates which lead to a distribution of local mixing times g(τ ).
We generate the distribution of Lagrangian strain rates as
follows: We track the length r of 104 line elements (with initial
length r0 ≡ 1) in these nonlinear flows by solving d�r

dt
= �r · �∇ �u

along the trajectory of the center of the line elements. The
Lagrangian strain rate is extracted for each line element using
its relation to growth of line element in an extensional flow,
γ̇ (t) = 1

t
ln( r

r0
) for chaotic flows, and in a simple shear flow,
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FIG. 5. (Color online) SCDI in the limit of infinitesimal
diffusion using the modified Ranz model. (a) Mixing time distribution
g(τ ) in the chaotic flow for two diffusive solutes [D = 5.7 × 10−16

( ), D = 5.7 × 10−31 ( )] and in the nonchaotic flow for a diffusive
solute [D = 5.7 × 10−16 ( )], for τ〈γ̇ 〉 = 0.024. (b), (c) Return
fraction Rf obtained from numerical simulation as a function of
mixing time τ〈γ̇ 〉 for (b) the chaotic flow [diffusivities 5.7 × 10−7

( ), 5.7 × 10−16 ( ), and 5.7 × 10−31 ( )], and (c) the nonchaotic
flow [5.7 × 10−4 ( ), 5.7 × 10−7 ( ), 5.7 × 10−10 ( )]. Comparison
with the return fraction based on modified Ranz model RfMR(τ〈γ̇ 〉) is
shown using solid lines of the corresponding color for each diffusivity
and flow [s0 values in Fig. 3(c)]. In addition, in (b), return fraction
RfMR(τ〈γ̇ 〉) corresponding to diffusivities D = 5.7 × 10−65 ( ; D)
and D = 5.7 × 10−257 ( ; E) are plotted indicating the trend in Rf

as D → 0. (d) Maximum differential reversibility ϕ as a function of
ratio of the diffusivities. The master ϕ curve for pure diffusion ( ;
Master), the asymptotic ϕ curve for nonchaotic flow as predicted by
the modified Ranz model ( ; NC), and trends for the chaotic case for
Dhigh of 5.7 × 10−7 ( ; A), 5.7 × 10−16 ( ; B), 5.7 × 10−31 ( ;
C), 5.7 × 10−65 ( ; D) and 5.7 × 10−257 [ ; E)] as predicted by the
modified Ranz model.

γ̇ (t) = 1
t
[
√

( r
r0

)2 − 1] for nonchaotic flows. The distribution

of strain rates at any time is extracted from the ensemble of
Lagrangian strain rates at that time. Finally, using Eq. (4)
(τext for chaotic and τss for nonchaotic flow), we calculate the
distribution of mixing times g(τ ). Figure 5(a) presents g(τ )
for the chaotic and nonchaotic cases. We note that the width
of g(τ ) grows exponentially with decreasing diffusivity in the
chaotic flow whereas g(τ ) reaches an asymptotic form in the
nonchaotic flow.

To account for the impact of the distribution of strain
rates on the decay of reversibility, we propose a modified
Ranz model wherein we compute the weighted average return
fraction RfMR(τ〈γ̇ 〉) = ∫ ∞

0 Rf (τ )g(τ )dτ . Figures 5(b) and 5(c)
indicate that the modified Ranz model captures the observed
decay of Rf (τ〈γ̇ 〉) for both flows over an extensive range of
diffusivities. Thus, the modified Ranz model provides a unified
treatment of both chaotic and nonchaotic flows. We note that
return fraction in a chaotic flow with islands would decay faster
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initially due to exponential stretching of the chaotic regions as
predicted above, followed by slower diffusive decay due to the
islands [19].

C. Distinction in the zero diffusivity limit

To understand if there is a fundamental distinction between
chaotic and nonchaotic flows in the context of SCDI, we ex-
plore the evolution of return fraction in chaotic and nonchaotic
flows using the modified Ranz model in the limit D → 0.
Exploration of this limit is motivated by the observation
that, while RfMR in nonchaotic flows has already reached an
asymptotic curve (distinct from the master return curve of
linear flows) for D = 5.7 × 10−10 [Fig. 5(c)], the dependence
of RfMR on τ〈γ̇ 〉 in chaotic flows becomes increasingly weak
[Fig. 5(b)]. Based on our modified Ranz model, we can identify
the origin of this distinction of the nonlinear chaotic flow in
the persistent growth of the tails of g(τ ); this growth arises
from the strong exponential dependence of the local mixing
time τext on the strain of the fluid element. As a result of
these tails, RfMR of the global flow is the combined effect
of many fluid elements that are fully mixed, many that are
unmixed for any finite D, and a small fraction (vanishingly
small in the limit D → 0) with an intermediate state of mixing
that is sensitive to the precise value ofD. When this weak
dependence RfMR on τ〈γ̇ 〉 for chaotic flows is expressed in
terms of differential reversibility [lines labeled A, B, C, D, E
in Fig. 5(d)], the trend indicates that the efficiency of reversal
becomes completely insensitive to differences in diffusivity
(i.e., ϕ → 1 as D → 0). In comparison, the asymptotic form
of the RfMR curve for nonchaotic flows results in an asymptotic
form of differential reversibility [red line labeled NC in
Fig. 5(d); different from the master differential reversibility

curve (black line labeled Master)] at finite values of diffusivity.
Thus, in the limit of infinitesimal diffusion, the underlying
chaotic dynamics leads to complete insensitivity to different
levels of diffusion, in distinct contrast to the nonchaotic
case.

V. CONCLUSION

We have shown that, beneath the dramatically different rates
of decay of reversibility observed in chaotic and nonchaotic
flows, there exists significant unity in the evolution: (i) all
linear flows lead to a universal decay of reversibility (Rf )
when viewed in an appropriately scaled time domain, and
(ii) a simple analysis that accounts for the distribution of
strain rates successfully captures the decay in both chaotic and
nonchaotic, nonlinear flows. Interestingly though, in the limit
of infinitesimal diffusion, our analysis predicts a qualitative
distinction between chaotic and nonchaotic, nonlinear flows
with respect to differential reversibility. We emphasize that
the distinction in this asymptotic behavior arises due to
the interplay of dynamics, the distribution of rates, and
diffusion, and not due to chaos acting as an intrinsic source of
irreversibility. Finally, we note that our study indicates that a
baker’s transformation (with a single rate of strain) would be
the optimal flow with which to implement Heller’s separation
strategy with respect to both rate and efficiency.
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