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Natural discretization of pedestrian movement in continuous space
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Is there a way to describe pedestrian movement with simple rules, as in a cellular automaton, but without being
restricted to a cellular grid? Inspired by the natural stepwise movement of humans, we develop a model that uses
local discretization on a circle around virtual pedestrians. This allows for movement in arbitrary directions, only
limited by the chosen optimization algorithm and numerical resolution. The radii of the circles correspond to the
step lengths of pedestrians and thus are model parameters, which must be derived from empirical observation.
Therefore, we conducted a controlled experiment, collected empirical data for step lengths in relation with
different speeds, and used the findings in our model. We complement the model with a simple calibration algorithm
that allows reproducing known density-velocity relations, which constitutes a proof of concept. Further validation
of the model is achieved by reenacting an evacuation scenario from experimental research. The simulated egress
times match the values reported for the experiment very well. A new normalized measure for space occupancy

serves to visualize the results.
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I. INTRODUCTION

There are many approaches to modeling pedestrian dy-
namics [1-3], among which cellular automata and social
force models are particularly well established. In cellular
automata, originally employed in traffic models [4,5], virtual
pedestrians move on a fixed lattice of cells [6]. Cellular
automata models based on a floor field have been extended
to capture various characteristics of crowd movement [7-10].
The crowd dynamic strongly depends on the chosen shape of
cells in two ways: First, pedestrians are represented by the
cells. That means the dimension of cells is also the dimension
of pedestrians’ torsos. Since all cells are identical, there cannot
be any variation in size and shape among different individuals.
Compression of individuals is also impossible, contrary to
what must be expected in dense crowds. Secondly, pedestrians
step from cell to cell. Such stepwise movement seems natural
and desirable but, on a cellular grid, it does not allow for
movement in arbitrary directions. There is no reasonable
solution known to the authors that solves the first issue. The
second issue leads to several problems that can be dealt with at
a price [11]: additional complexity must be introduced into
the model that does not reflect natural phenomena, but is
necessary to overcome unnatural phenomena generated by the
model. On the plus side, cellular automata use intuitive rules
to update the system states that can be chosen to match human
choices closely. Hence, despite the obvious disadvantages,
good results can be achieved within a certain range of
applications.

Social force models have the advantage of operating
in continuous space and time [12,13]. They are inspired
by Newtonian mechanics and compute acceleration in de-
pendence of repulsive and attractive forces. Unfortunately
this introduces phenomena, like inertia or a tendency to
oscillatory movement, that are unnatural to pedestrian move-
ment. Also, overlapping is not excluded and must be dealt
with, again, at the cost of introducing further complexity
(see discussion in [14,15]). Finally, when introducing more
advanced aspects of human behavior, like the coherence of
social groups, it becomes more difficult to properly calibrate
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the model [16]. In a recent approach [17] the social force
model is restricted to dense crowds, where the dynamics
are assumed to be dominated by physical mechanisms, while
cognitive heuristics are used to determine movement in sparse
crowds.

The objective of this paper is to build a model that combines
the advantages of both models without suffering from the
disadvantages. We wish to maintain the stepwise movement
of the cellular automaton. Even more importantly, we seek a
rule based approach as we find it in both cellular automata
and cognitive heuristics. But we do not want to be bound
to a rigid spatial grid. Other works with related objectives
could achieve reasonable results for various simulation aspects
[18,19] but do not show all the characteristics we wish to
capture.

The paper is structured as follows: We describe the model
and the fundamental idea of discretizing space locally on a
circle around each moving pedestrian (Sec. IT). Then we report
measurements of step lengths in relation with the velocity
from a controlled experiment (Sec. III). In the following
section (Sec. IV) we validate the model by showing how
it can be calibrated to a given density-speed relationship.
Subsequently (Sec. V) we use the calibrated model to conduct
simulations according to a controlled experiment and describe
a normalized measure for the occupation of space to visualize
the outcome. Finally the results and the direction of possible
future work are discussed.

II. MODEL

The model proposed here is partially based on ideas known
from cellular automata, namely, the use of attractive and
repulsive potentials when choosing a direction of movement
for pedestrians [11]. The speed of movement is determined
independently. Each pedestrian has a desired speed, that is, the
speed the pedestrian would like to move at on a free plane.
Speed adjustments are possible; for instance pedestrians slow
down in dense crowds or adjust their speed in order to maintain
a group structure [20,21].
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A. Attractive and repulsive potentials circular shape for each person at this point. Other shapes,
such as ellipses, that better match the human torso, or even
individualized shapes for different body sizes can easily be
incorporated in the model. The movement is driven by the
desired speed and direction of the pedestrian. After each time
step pedestrians are informed about how much time has elapsed
and decide whether to move or not to achieve their desired
speed. The desired speed is a fixed attribute of each pedestrian,
but could also be adapted if the motivation to approach the
target increases or decreases. Note that this model does not
take into account acceleration or inertia, although it was shown
to be a measurable factor for pedestrian movement [16].

In addition to the attractive potential of the target we use two
types of repulsive potentials. The first one is carried around
each pedestrian:

An attractive force to the target is realized with a potential
that represents the propagation of a wave front and is
implemented as a floor field [22]. This is very important in
order to make pedestrians successfully skirt obstacles. If we
used the Euclidian distance along the line of sight to the target
as an attractive potential, pedestrians would get trapped by
concave obstacles. The floor field is computed with Sethian’s
fast marching algorithm on a two-dimensional grid [23,24].
We use bilinear interpolation to obtain a target potential value
P,(x) for an arbitrary point x € R? in the plane.

In contrast to cellular automata, the proposed model does
not represent pedestrians by cells, nor do they have to move
from cell to cell. Pedestrians are represented by their position
and extension in space. For simplicity we use the same

W if§,(x) < gp
Py i(x) = v, x exp[—a, x (Sp,,-(x)b"] if g, < 8pi(x) < gp+hp. (1)
0 else

P, ;(x) is the repulsive potential of pedestrian i affecting another pedestrian at position x. It depends on the Euclidian distance
8,,i(x) from x to the center of pedestrian i. The diameter of pedestrian torsos is denoted by g,. If §,,;(x) < g,, that is, if the
torso of a pedestrian at position x overlapped with the torso of pedestrian i, we set the potential at a high level 1, to assure that
stepping on another pedestrian’s torso is less attractive than any other unoccupied position. For simplicity 1, is chosen to be a
constant value. We also cut off the fast fading potential outside the torso at distance g, + h, for better computational speed and
steadier movement of pedestrians, which also leads to a more stable crowd movement.

Additional parameters are a,, b,, and v,. We use u, = 1000, v, =0.4,a,=1,b, =0.2, g, = 0.4, and h, = 1, derived
from careful visual validation to reproduce natural behavior. All distances are measured in meters. Note that more sophisticated
potential functions could easily be introduced to fine tune the repulsions and allow for partial overlapping or even compression
of the torso.

A similar formula with different parameters is used for repulsive potentials around obstacles:

Lo if 8, ;(x) < gp/2
P, j(x) = { v, x exp[—a, x 8, ()] if g,/2 < 8 ;(x) < h,. 2)
0 else

P, ;(x) is the repulsive potential induced by obstacle j, where with n — 1 other pedestrians and m obstacles in the scenario.
J,,j(x) is the distance to the closest point of the obstacle ~ With this framework more complex aspects of pedestrian
from position x. Here we use u, = 10000, v, = 0.2, a, = 3, movement, such as group structures in crowds [20,21], can
b, = 2,and h, = 6. We would like to point out that, as of today, easily be carried over.

the effect of obstacles on pedestrians, such as the distance

they keep in different situations, has not been investigated

thoroughly. Hence our validation must again be restricted to B. Natural discretization on local circles

visual comparison. The choice of 1, ensures that pedestrians So far we have values for the aggregated potential at all

do not move to positions with &, ;(x) < g,/2 where the  positions in the plane. The more repulsive the potential of a

pedestrian torso would overlap with the obstacle. position is, the higher the value of the potential function. Thus
If the obstacle potential were too strong, small corridors ~ — P can be interpreted as a utility function for the pedestrian

would be blocked by it. Therefore we choose a rather weak  in which the points on the target have the highest utility
but far reaching potential. Both kinds of potentials ensure that ~ with value zero. With this information we can use gradient
pedestrians keep a distance from each other and do not walk  descent methods to reach the minimum. Since the movement
too close to walls. This has been shown to be a emergent effect  of pedestrians is naturally stepwise, we optimize locally for the

in experiments [16]. next step. This results in a greedy algorithm without planning
For each pedestrian [ we form an aggregated potential that  for future steps. At the same time, the floor field carries global
can be evaluated at any point in the plane: information that takes into account the walking distance to the

target around obstacles on a scenario wide level. Thus local

n m minima cannot trap pedestrians who follow a greedy strategy.

Py(x) = Py(x) + Z Ppi(x) + Z P, j(x),  (3)  The only exceptions are temporary local minima created by
i=1,il =1 potentials around other pedestrians. One way to resolve these
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FIG. 1. (Color online) Left: sequence of three time steps t =
1,2,3. The pedestrian torso is depicted with the filled inner circle.
The next position has to be on the step circle around the pedestrian.
Right: discretization of the circle indicated by points. The three arrows
represent three possible choices for the next step.

is to let pedestrian agglomerations slow down the propagation
of the wavefront when computing the floor field [22].

We further simplify by taking into account only positions
that lie on a circle with radius r around the pedestrian. The
radius r corresponds to the step length of each pedestrian.
This reduces the utility function to a one-dimensional periodic
function that can be minimized very easily and cost effectively.
A simple optimization algorithm is to consider g equidistant
points on a circle and find the one with the lowest potential
value. This is computationally efficient if g is rather small, say
between 8 and 32. This kind of discretization would lead to
artifacts, if the considered points always had the same position
on the circle. Therefore we disturb the positions on the circle
with a small noise term:

2
@ = 7(1( +u), u~U(Q,1), (G))
where u is a random value uniformly distributed between 0
and 1. Finally we choose the position with the smallest value
P(xy)fork =0, ...,q. With x; = (x £,x24) we have

®)

fork =1, ..., and xo = (x1,0,%2,0) as the current position of
the pedestrian. Note that the pedestrian can also remain at the
current position xy, if it has the smallest potential value. Figure
1 illustrates the key aspects of this model. If we choose only
six possible points on the circle, that is ¢ = 6 in Eq. (4), and
set the random value # = 0, the model reproduces movement
in a cellular automaton with hexagonal cells. Four directions
yield the movement in a rectangular cellular automaton grid
with von Neumann neighborhood. Two concentric circles with
radii r and +/2r and four directions on each circle reproduce the
movement according to the Moore neighborhood (see Fig. 2).
Other optimization methods on the circle are also possible.
For instance, one could use Brent’s method [26], which does
not require the evaluation of derivatives. Furthermore less
strict constraints could be set. Several circles with different
radii would allow for different step lengths. Two-dimensional
optimization within the circle would allow any step length
smaller than the radius. With the latter, more complex
optimization choice, the model allows for movement in truly
continuous space, only limited by the numerical resolution.
Positions are updated sequentially so that collisions do not
occur. The effect of the sequential update disappears if, in
theory, the length of the simulation time step goes to zero. That
is, every pedestrian moves exactly at the time the next step is
feasible according to the current velocity. Thus, to prevent

Xk = X0 +r X (cos(p), sin(p)),
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FIG. 2. (Color online) Movement in cellular automata with
squares (left) and hexagons (right) replicated with circle discretiza-
tion. For this purpose the random disturbance of the position has to
be turned off and only positions on the circle that match the center of
cells must be allowed.

possible effects of the sequential update, one can choose a
small value for the time step. Possible effects of a greater
value could be microscopic agglomerations of pedestrians.
For instance, a pedestrian who would be allowed to move after
the pedestrian in front of him or her, in theory, might move first
due to the sequential update and thus bump into the pedestrian
in front. This would not happen if the pedestrian in front had
moved first.

With this model we obtain very realistic trajectories for the
movement of individual pedestrians (see Fig. 3).

FIG. 3. (Color online) Accumulated trajectories for simulated
pedestrians passing from left to right through a corridor with length
5 m and different widths. The first scenario (top) has a corridor width
of 0.7 m. Pedestrians cannot walk next to each other and therefore
form one lane. In the second scenario (middle), with a corridor width
of 1 m, pedestrians form two distinctive lanes at the boundaries and a
third in the middle visible at the end of the corridor. In the last scenario
(bottom), with a corridor width of 2 m, the accumulated trajectories
show two distinctive and one or two fuzzy lanes in the middle. Very
similar trajectories were observed by empirical researchers [25].
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FIG. 4. (Color online) Screen capture of the video footage used
to determine the step lengths. The length is measured from toecap to
toecap while the relevant part of the foot touches the ground. When
subjects are running it is necessary to take the measurement for each
foot at different moments, because only one foot touches the ground
at a time.

III. EMPIRICAL MEASUREMENT OF STEP LENGTHS

With discretization on a circle the radius r, which represents
the step length of a pedestrian, is a crucial parameter. Several
studies investigate the relation of step lengths to other param-
eters, and suggest a strong dependence on the speed [27-29].
If we assume that humans minimize the metabolic energy
cost while walking, the relation can also be investigated as an
optimization problem [30]. To collect data for a wide range
of speeds we carried out a controlled experiment. Fourteen
students were asked to walk, jog, and run a distance of 12 m
several times. Each subject walked on his or her own, thus
excluding any interaction among them. We measured the time
it took the subjects to cover the distance. The middle section of
the path was recorded with a video camera. This video footage
was then analyzed to retrieve the step lengths (see Fig. 4).

We investigate whether there is a correlation between
velocity and step lengths. For this purpose a linear regression
with the step length as response variable and the speed as
explanatory variable is conducted:

Ystep = Bo + B x Xspeed 1 €. (6)

The error term € is assumed to be normally distributed. The
regression yields the estimates By = 0.462 (standard error =
0.021) and B; = 0.235 (s.e. = 0.012) for the data with walking
behavior (see Fig. 5). Both estimates are highly significant
(z-test, p < 0.001). The standard error of the regression is
6 = 0.036 on 82 degrees of freedom. This result is in very
good agreement with an older study [27].

The data show a nonlinear trend in a scatter plot, when
taking into account jogging and running. Hence we propose a
second regression model for the whole data set with a quadratic
term for the speed (see Fig. 6):

Ystep = Bo + B1 x Xspeed T B2 x xszpeed + €. @)

This time we get By = 0.218 (s.e. = 0.04), B; = 0.433 (s.e. =
0.028), and ,32 = —0.032 (s.e. =0.004), again, with high
significance for all estimates (¢-test, p < 0.001). The standard
error of the regression is & = 0.07 on 107 degrees of freedom.

We conclude that the step length strongly depends on the
speed of movement. At first the step length increases linearly
with the speed, but does not increase any further after about
4 m/s. This also matches other reported diagrams [31,32].
Interestingly, taking the body height of the subjects into
account does not improve the regression model significantly
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FIG. 5. (Color online) Linear regression between step length and
speed for walking behaviors. Walking behaviors included normal and
fast walking. The slope of the regression suggests a strong linear
dependence. The dashed lines indicate the 0.9 prediction interval.

(z-test, p = 0.334). Clearly the data may be biased, because
the subjects do not represent an arbitrary crowd of pedestrians.
Also the sample is rather small in general, and sparse at high
and low speeds. Nevertheless, the results seem conclusive and
the data can be extended for other populations in order to
obtain a more representative concept.

IV. DENSITY-SPEED RELATION

The density-speed relation, given by fundamental diagrams,
is one of the most important benchmark tests for crowd
simulations, although there is an ongoing discussion on correct
shapes and measurement methods [16,25,33,34]. We conduct
simulations dedicated to measuring the density-speed relation.
Subsequently we calibrate according to a specific fundamental
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FIG. 6. (Color online) Linear regression with a quadratic speed
term for the whole data set, including running and jogging. The
dependence shows significant nonlinear behavior. At high speeds one
has to assume higher variance and thus heteroscedasticity.
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diagram, which is a proof of concept for the calibration to an
arbitrary density-speed relation. Since fundamental diagrams
are seen as an aggregated expression of socio-cultural charac-
teristics, a model should be able to calibrate according to any
reasonable measured fundamental diagram [35,36].

A. Simulation parameters and measurement methodology

For comparability we use parameters given by Weidmann
[31] for the mean (i, = 1.34 m/s) and standard deviation
(o, = 0.26 m/s) of the desired walking speed v. Obviously
this does not reflect our measurement of the mean speed
in the controlled experiment, which may be due to the
differences in the populations that were considered. However,
we use Weidmann’s mean for later consistent comparison of
our simulation measurements regarding the relation between
density and speed. The desired walking speed v; for individual
i is then chosen according to a truncated normal distribution.
It is necessary to truncate the distribution in order to prevent
implausibly small, even negative, or implausibly big values
that do not reflect natural behavior. Together we have

v; ~ Ny (y,00; —0,M,0,M), ¥

with Ny(uy,0,; —0yM,0,M) denoting a normal distribution
that is truncated at —o, M and o, M. For this we draw normally
distributed values with mean u, and standard deviation o,.
If the absolute value exceeds Mo,, we discard the value
and draw again. In the following we use M = 2, that is, two
times the standard deviation and thus o, M = 0.52 as cutoff.
Therefore we obtain values from 0.82 to 1.86 m/s as desired
walking speeds. We want to stress that, in general, parameters
should be set depending on the scenario investigated and the
available data.

The step length r is chosen according to the estimates
of the regression for walking behavior with Sy = 0.462 and
B1 = 0.235 [Sec. III, Eq. (6)]. The individual expected step
length w,, is therefore determined by the individual desired
speed v; with

wr(vi) = Po + B1 X vi. €))

Again we use a truncated normal distribution with M = 2 to
determine the individual step length ;. Here we obtain values
from p,(v;) —0.072 to w,(v;) + 0.072 m for the step length
of individual i:

ri ~ Ny(u,(v;),0,; —0,M,0.M). (10)

In scenarios with higher desired speeds of pedestrians, one
should consider the regression with the quadratic term [Sec. III,
Eq. (7)]. A further sophistication could be the dynamic adap-
tion of step lengths during the simulation according to the cur-
rent speed. In our case we only consider the desired speed of in-
dividuals and then fix the step length for the whole simulation.

We choose g = 18 as the number of possible positions on
the circle. A higher value would yield smoother movement of
pedestrians, but would also slow down computational speed.
The simulation time step for this experiment is set to the rather
big value of 0.5 s, again to speed up computation.

Two values have to be captured during simulation to obtain a
fundamental diagram: the density and the speed. We measure
as follows: First we determine the speed of each pedestrian
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FIG. 7. (Color online) Scatterplot of the density-speed relation
with a torso diameter of 0.4 m. The solid (green) line is a spline
regression through the measurement points. The dashed (red) line is
the theoretical relation given by Weidmann [31].

at a given simulation time step and then average over all
pedestrians within a certain measurement area. Since the
model is discretized in time and space, we use the history of
movement for each pedestrian. We take the distance covered
towards the target within the last five steps and divide it by the
simulation time that elapsed. In order to capture the density,
we employ Voronoi diagrams [25,37] and use the formula

_ N
SNl

where D, is the density in the measurement area, N the number
of pedestrians within it, and |A;| the size of the Voronoi
cell allocated to pedestrian i. The measurement with Voronoi
diagrams yields smoother curves for density over time and thus
is superior to other methods [25,37]. When the measurement
is not averaged over an area, other methods might be more
suitable (see Sec. V).

(an

B. Comparative measurements and adaptive calibration

The scenario in which we measure the density-speed
relation is a corridor of width 4 m and length 50 m. All
pedestrians walk in one direction. When they reach the target,
which is located at the end of the corridor, they are instantly
moved back to the beginning of the corridor at the same
position widthwise.

After a settling time of 100 s measurements are taken after
each time step within an area in the middle of the corridor that
is 10 m long and 4 m wide. The speed for each time step is then
averaged over all pedestrians within the field and the density
calculated according to Eq. (11).

To obtain densities for the full range of possible speeds, we
conduct various simulation runs with an increasing number
of pedestrians in the scenario until almost no movement
is possible. Figure 7 shows the density-speed relation as a
scatterplot in comparison to the theoretical curve given by
Weidmann [31]. The decrease of speed with increasing density
isreproduced. The speed measured in the simulation converges
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FIG. 8. (Color online) Density-speed relation with a torso
diameter of 0.35 m.

to zero faster than the theoretical curve. When we reduce the
diameter of pedestrians’ torsos from 0.4 to 0.35 m to allow
for higher densities (see Fig. 8), we get a good match at
very high and very low densities, but exceed the theoretical
speed systematically in between. Apparently real pedestrians
react more strongly to high crowd densities than the virtual
pedestrians of the model.

To remedy this, we introduce a local density measure for
pedestrians to incorporate adaptive calibration: Pedestrians
slow down when they walk into a dense crowd. For this
we count other pedestrians more than 0.1 m ahead from the
pedestrian’s center, but not further away than 1.5 m. The
number of pedestrians n,, in this proximity is then used to
calculate the local density. If the speed of a pedestrian at a
given local density exceeds the one given by the fundamental
diagram, the pedestrian is not allowed to move for one time
step. The result of the simulation for Weidmann’s diagram is
given in Fig. 9. Although the measurements do not match
the curve exactly, it displays a good approximation. The
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FIG. 9. (Color online) Density-speed relation with a torso
diameter of 0.35 m and adaptive calibration.
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calibration method is applicable to arbitrary fundamental
diagrams. Furthermore the heteroscedasticity of the variance,
that is, higher variance at low densities and low variance at
high densities, seems reasonable.

V. SIMULATION STUDY AT A BOTTLENECK

One of the most important objectives in crowd research is
the prediction of unpleasant, obstructive, or even dangerous
situations. Some kind of density measure is usually employed
for this purpose [21,34]. In Sec. IV we used Voronoi diagrams
to measure the density-speed relationship in a measurement
area. This method is very accurate and reasonable if the density
is averaged over an area. For local densities, on the other
hand, density measurements with Voronoi diagrams seem to
be shortsighted: Only direct neighbors are considered, who
contribute to the edges of the cell. More distant pedestrians, or
a wall behind a neighbor, result in the same local density value
as an open space around the neighbor. This does not reflect
how crowded an individual feels in the situation. Therefore
we use a Gaussian function to locally weight pedestrians with
positions x; at any fixed position z [34,38]:

1 1
f@m%=2nmem<—ﬂgmrﬂW) (12)

The parameter R controls the width of the Gaussian function;
the smaller it is, the more weight is assigned to closer pedes-
trians. We choose R = 0.7 to get a smooth but sufficiently
detailed resolution. The sum over all pedestrians

D))=,y f(xi,2) (13)

i=1

is a measure for the local pedestrian density. The parameter
S, normalizes D), to lie within the interval [0,1]. We choose
S, so that Eq. (13) attains the value 1 for a theoretical crowd
packed at maximum density in all directions to infinity and
0 for an empty space. We argue as follows: Close-packed
spheres in two dimensions correspond to a Voronoi diagram
with identical hexagonal cells. Hence, in the close-packed case,
each pedestrian in our model occupies a hexagonal area of size
A = 2«/§(gp /2)? where gp 1s the torso diameter. The sum
of Eq. (13) can then be interpreted as the Riemann sum of
Eq. (12). The Riemann integral of Eq. (12) is 1. Hence, if we

FIG. 10. Schematical depiction of the scenario following a
controlled experiment [39]. In the first scenario the lengths a =3
m,b=2m,c=4m,d =12 m are set, and in the second scenario
the lengths @ = 3.5 m, b =1 m are set. Pedestrians are placed in
the area surrounded with the dashed line. The target is placed on the
right, outside of the corridor.
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FIG. 11. (Color online) Comparative depiction of two scenarios with 180 virtual pedestrians leaving a room through a bottleneck. Left:
scenario with bottleneck width of 2 m displayed after 10, 20, 30, and 40 s (from top to bottom) after the beginning of the egress. Right:
scenario with bottleneck width of 1 m after 10, 20, 50, and 70 s. Each situation is depicted twice, in the left column with the positions of the
pedestrians and in the right column with the local degree of occupation. Dark areas (blue or read) represent the extremes, that is, very high or
low occupation. The dark (blue) areas in the middle of the room indicate very low occupation. The dark (red) areas at the corners indicate very
high occupation. Although values of up to 1 would be possible in theory, only values of up to 0.8 were observed, hence the legend is limited

by this value too.

let g, go to zero, we get
lim D,(z) x g2v/3/2 = S,,/ f,2)d®x =S, (14)
2y—0 R?

and thus §, = [2,\/5 /2 is suitable as the normalization factor.
In addition we want to consider obstacles as occupied area.
This leads away from the notion of pure pedestrian density,
but it also seems unreasonable to ignore the restricting effects
of walls. In this case we integrate the Gaussian function over
the occupied areas O;:

Do)=Y | flr.2)dx. (15)
i=170i

The resulting local measure is calculated as the sum D;(z) =
D,(z) + D,(z) € [0,1]. We want to stress that this is not
a measure for pedestrians per square meter, but a measure
of local occupation of space by pedestrians and obstacles.
Therefore the space close to walls will not be regarded as free
in the same way as unoccupied space in the middle of a room.
Instead the measure reflects how restricted a person would feel
if he or she was placed in such a position. Hence, in contrast to
other density measures, the space close to walls is considered
restricted to a certain level, even when there are no pedestrians.

We apply this measure for a simulation study that follows a
controlled experiment [39]. The setup is described in Fig. 10.
‘We simulate the scenario twice, once with a bottleneck of 2-m
width and then again with 1-m width.

As in the original experiment, 180 pedestrians are placed
in the room in each run. The evacuation times of 52 s
for the first scenario and 104 s for the second scenario
in the simulation match those reported for the controlled
experiment closely [39]. The results of the measure for local
occupation are given in Fig. 11. High occupation and thus
potentially dangerous areas are detected in the corners for
both scenarios. For the second scenario high occupation was
found additionally in front of the bottleneck and in the corridor.

Although pedestrians accumulate in front of the bottleneck, the
measurement for local occupation does not show particularly
high values in this area. This is due to the fact that walls
are considered more restraining than other pedestrians. The
density of pedestrians per square meter on the other hand is
fairly high, which can be observed in the figures with the
pedestrian positions (see Fig. 11).

VI. CONCLUSION

We described a new mathematical model for pedestrian
movement that takes place in continuous space and is dis-
cretized in a way that reflects natural movement. The model
is a solution to the previously unsolved problem of how
to achieve natural grid-free trajectories without introducing
social force type differential equations or complex steering
behaviors [40]. It remains computationally efficient and allows
for extensions to more complex human behavior, such as
social group behavior, and to agent-type mechanisms [41].
Optimization methods allow us to find the best next step with
respect to a floor field that describes the global strategy to skirt
obstacles on the way to a target. The model can be calibrated
to match fundamental diagrams, which is crucial, because
different density-speed relations hold for different scenarios.
A simulation study yields evacuation times matching those
reported for controlled experiments, which further supports the
model’s validity. Because of its simplicity and flexibility the
model could be used for many extensions and applications in
various fields, like social sciences, safety science, and artificial
intelligence.
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