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Network topology plays a crucial role in determining a network’s intrinsic dynamics and function, thus
understanding and modeling the topology of a complex network will lead to greater knowledge of its evolutionary
mechanisms and to a better understanding of its behaviors. In the past few years, topology identification of
complex networks has received increasing interest and wide attention. Many approaches have been developed
for this purpose, including synchronization-based identification, information-theoretic methods, and intelligent
optimization algorithms. However, inferring interaction patterns from observed dynamical time series is still
challenging, especially in the absence of knowledge of nodal dynamics and in the presence of system noise. The
purpose of this work is to present a simple and efficient approach to inferring the topologies of such complex
networks. The proposed approach is called “piecewise partial Granger causality.” It measures the cause-effect
connections of nonlinear time series influenced by hidden variables. One commonly used testing network, two
regular networks with a few additional links, and small-world networks are used to evaluate the performance
and illustrate the influence of network parameters on the proposed approach. Application to experimental data
further demonstrates the validity and robustness of our method.
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I. INTRODUCTION

Networks are all around us, and the study of complex
networks is pervasive in almost all scientific and technological
fields. The past decade has seen many exciting developments
and important achievements in the research of complex
networks, which have provided tremendous insight into the
topological properties of complex networks with interacting
dynamical systems. It is believed that the interaction topology
has important consequences on the robustness of the network
function and the responses to external perturbations, such as
random failures or targeted attacks. It is also well known
that network topology plays a crucial role in determining the
emergence of collective behaviors, such as synchronization, or
in governing the main features of relevant processes that take
place in complex networks, such as the spreading of epidemics,
information, and rumors [1]. Therefore, to understand a
complex network, particularly its evolutionary mechanisms
and collective behaviors, it is necessary to first gain knowledge
of the intrinsic network topology, which is usually unknown
or uncertain in many practical situations.

The importance of inferring the interaction pattern among
dynamical systems of a complex network, although very clear
and already noted, was realized by researchers fairly slowly,
partly because it involves the challenging inverse problem,
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especially with the lack of data and in the presence of noise.
Nevertheless, there has been a steady growth of approaches
regarding this topic in the past few years [2–13].

Methods have been proposed for topology identification of
networks consisting of interacting deterministic systems based
on synchronization [2–7], where some adaptive controllers are
designed so that an auxiliary response network can achieve
synchronization with the network under study (the drive
network) and topological parameters can thus be estimated.
However, in these methods, prior to successful topology
identification, the nodal dynamics in a network has to be known
and all the nodes have to be measurable and noise-free, which
is not very practical.

For simultaneously observed time series, there are also
some techniques such as measuring the cross correlation or
partial correlation to recover their interaction patterns. Re-
cently, a new method based on the noise-induced relationship
between dynamical correlation and network topology was
proposed to identify links among nodes [10]. However, these
correlation-based techniques are incapable of distinguishing
between direct and indirect interactions, so in many situations
they do not provide very satisfactory results. Information-
theoretic-based approaches have been widely employed for
detecting links from purely observed data, such as the
technique based on partial mutual information [8] and the
technique of using conditional mutual sorting information
[9]. Some straightforward methods based on the theory of
recurrences have also been proposed [11,12]. Very recently,
a permutation-based asymmetric association measure called
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inner composition alignment was presented to infer directed
networks from short time series [13], which is robust to noise
but only performs well on sparse networks.

The present study focuses on an extension and application
of a multivariate data-driven statistical technique known as
Granger causality to infer the directed connections among
multiple observed time series. The basic idea of Granger
causality can be traced back to Wiener [14], who proposed
a new way to measure the causal influence of one time series
on another by conceiving the concept that if the prediction
of one time series could be improved by incorporating the
information of a second one, then the second series is said to
have a causal influence on the first. Granger later formalized
this concept in the context of linear regression models [15].
In the past few years, Granger causality has been widely
employed in neuroscience and economics. Meanwhile, many
extensions have been made, such as conditional Granger
causality [16,17], blockwise Granger causality [18], and so
on. In real situations, most, if not all, obtained time series are
nonlinear. As Granger causality was originally formulated for
linear models, it might not be sufficient for detecting effective
connectivity for nonlinear time series. Thus, some extensions
have been made to generalize the linear Granger causality to
the nonlinear case [19–22].

However, the performance of all the above-mentioned
approaches depends on being able to measure all relevant
variables in a network, which is usually impractical in real-
world situations, especially for large-scale networks in which
it is impossible to observe or monitor all the nodes and there
might also be undetectable disturbance. In 2008, Guo et al.
introduced the so-called partial Granger causality to recover
the interactions among elements in a network in the presence
of exogenous inputs and latent variables [23]. They also
extended the linear partial Granger causality to the nonlinear
case using the radial basis function approach. In contrast to
this mathematically complex technique, piecewise Granger
causality, which was proposed by Wu et al. based on the idea
of piecewise approximation [24], is much simpler and more
straightforward for dealing with both linear and nonlinear time
series.

In this paper, the piecewise approximation technique is
employed in the partial Granger causality test to detect
interactions among nonlinear time series in the presence of
latent variables. The basic ideas of Granger causality, partial
Granger causality, and our proposed approach are introduced
in Sec. II. In Sec. III, the nonlinear Kuramoto model as
well as the FitzHugh-Nagumo (FHN) model is used as nodal
dynamics, and several types of network models are employed
to test the performance of the proposed method. Additionally,
the method is applied to gene expression data and gives
convincing results. A brief conclusion is drawn in Sec. IV.

II. METHODS

In this section, the basic methods of Granger causality
and partial Granger causality to evaluate causalities for
linear systems are reviewed. Our extension of Granger’s
idea to nonlinear time series based on the piecewise linear
approximation is then proposed.

Y Z

X

Y Z

X

FIG. 1. Left: the true topology; right: a false link from Y to X is
given.

A. Granger causality and partial Granger causality

The major approach to causality analysis is to examine
if the prediction of one time series could be improved by
incorporating information from the other, as proposed by
Granger [15]. Specifically, given two time series Xt and
Yt which are jointly stationary, consider the autoregressive
prediction of the current value of Xt based on its past
measurements, described by

Xt =
∞∑
i=1

a1iXt−i + ε1t , (1)

and the prediction using information of past measurements of
both processes Xt and Yt , given by

Xt =
∞∑
i=1

a2iXt−i +
∞∑
i=1

c2iYt−i + ε2t , (2)

where εit (i = 1,2) represents the prediction error. According
to the definition of Granger causality [15], if var(ε2t ) <

var(ε1t ), then Yt influences Xt . The causal influence is quan-
tified by FY→X = ln( var(ε1t )

var(ε2t )
). Obviously, FY→X = 0 indicates

that there is no causal connection from Yt to Xt , and FY→X > 0
suggests that there is. The causal connection from Xt to Yt can
be defined similarly.

For a network having numerous nodes, various possibilities
for causal connections among nodes arise. From the above
pairwise Granger causality analysis for more than two time
series, some false connections might be given due to the
influence of observable or hidden variables in the network.
For example, consider three variables X, Y , and Z, whose
connection pattern is shown in the left panel of Fig. 1. However,
the false link from Y to X is likely to be incorrectly inferred
by a pairwise Granger causality test due to the mediation of Z.
Another possible causal connection is shown in Fig. 2, where
X and Y are simultaneously driven by Z. If the driving signal
Z is powerful enough, then X, Y , and Z might evolve into
generalized synchronization and it is very likely that one will
get a false causal link between X and Y , such as the dashed
line from Y to X. In 1984, Geweke [17] introduced conditional
Granger causality, which has the ability to resolve whether the
interaction between two time series is direct or mediated by

X Y

Z

X Y

Z

FIG. 2. Left: the true topology; right: a false link from Y to X is
inferred.
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another recorded time series and whether the causal influence
is simply due to different time delays in their respective driving
input. Critically, conditional Granger causality is effective
only when all relevant variables in a network are observable.
This is practically impossible, since both environmental inputs
and unmeasured hidden variables can obscure accurate causal
connections. In 2008, Guo et al. introduced partial Granger
causality to detect causal connections, which is said to be
capable of eliminating the influence of exogenous inputs and
latent variables [23].

According to Guo et al. [23], partial Granger causality can
be explained in the following way. Given two processes Xt

and Zt , the joint autoregressive representation for Xt and Zt

can be written as

Xt =
∞∑
i=1

a2iXt−i +
∞∑
i=1

c2iZt−i + u1t ,

(3)

Zt =
∞∑
i=1

b1iXt−i +
∞∑
i=1

d1iZt−i + u2t .

The noise covariance matrix for the model can be represented
by [

var(u1t ) cov(u1t ,u2t )

cov(u1t ,u2t ) var(u2t )

]
, (4)

with var and cov representing variance and covariance,
respectively. Based on partial correlation in statistics, the value
of var(u1t ) − cov(u1t ,u2t )var(u2t )−1cov(u2t ,u1t ) measures the
accuracy of the autoregressive prediction of Xt based on its
previous values conditioned on Zt by eliminating the influence
of all other variables present in the network, such as common
exogenous input and hidden variables.

Extending the concept further, the vector autoregressive
representation for a system involving three time series Xt , Yt ,
and Zt can be written as follows:

Xt =
∞∑
i=1

a2iXt−i +
∞∑
i=1

b2iYt−i +
∞∑
i=1

c2iZt−i + u3t , (5)

Yt =
∞∑
i=1

d2iXt−i +
∞∑
i=1

e2iYt−i +
∞∑
i=1

f2iZt−i + u4t , (6)

Zt =
∞∑
i=1

g2iXt−i +
∞∑
i=1

h2iYt−i +
∞∑
i=1

k2iZt−i + u5t . (7)

The noise covariance matrix for the above model can be
represented by⎡

⎢⎣
var(u3t ) cov(u3t ,u4t ) cov(u3t ,u5t )

cov(u4t ,u3t ) var(u4t ) cov(u4t ,u5t )

cov(u5t ,u3t ) cov(u5t ,u4t ) var(u5t )

⎤
⎥⎦ . (8)

Similarly, the value of var(u3t ) − cov(u3t ,u5t )var(u5t )−1

cov(u5t ,u3t ) represents the accuracy of predicting the present
value of Xt based on the previous information of both Xt

and Yt conditioned on Zt by eliminating the effect of other
variables in the network. According to Guo et al. [23], the
partial Granger causality from Yt to Xt conditioned on Zt

by eliminating the effect of the common exogenous inputs

and hidden variables present in the network can be expressed
as

FY→X = ln

(
var(u1t ) − cov(u1t ,u2t )var(u2t )−1cov(u2t ,u1t )

var(u3t ) − cov(u3t ,u5t )var(u5t )−1cov(u5t ,u3t )

)
.

(9)

FY→X = 0 indicates that there is no direct casual influence
from Yt to Xt , and FY→X > 0 means that there is.

B. Piecewise partial Granger causality

In this paper, to infer the topology of a complex network
with stochastic perturbations from partially observed data, the
famous Kuramoto model consisting of N nonlinearly coupled
oscillators is mainly considered. In the presence of system
noise, the model is described by the following governing
equations:

θ̇i = ωi + c

N∑
j=1

aij sin(θj − θi) + ηi, i = 1,2, . . . ,N,

(10)

where θi and ωi are, respectively, the phase and the nat-
ural frequency of the ith oscillator, ηi is the independent
Gaussian white noise with zero mean and intensity δ that
represents the noisy background, and c represents the coupling
strength. The topological information of the network is
contained in the binary adjacency matrix A = (aij )N×N , where
aij = 1 if there is a directed link from the j th oscillator
to the ith one (otherwise aij = 0) for i �= j , and aii =
0, i,j = 1,2, . . . ,N .

As previously stated, time series obtained from real appli-
cations are mostly nonlinear. To deal with nonlinear time series
in a statistically simple and operationally easy way, the idea
of a piecewise linear approximation [24] is incorporated into
the partial Granger causality. In practical situations, collecting
numerous realizations of data will be time-consuming and
sometimes impossible. Thus, in the procedure to be presented,
for a given set of model parameters, only one realization of
time series contaminated with Gaussian white noise from the
Kuramoto model (10) is used. To have a confidence level
for every link in the network, the 3σ rule is adopted, which
states that for a normal distribution, nearly 99.73% of the data
values lie within three standard deviations of the arithmetic
mean μ; that is, (μ − 3σ,μ + 3σ ) is approximately a 99.73%
confidence interval. To infer the underlying network topology
from partially observed time series, the following procedure is
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FIG. 3. Left: The standard testing network; right: the standard
testing network with an immeasurable hidden node 6.
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FIG. 4. (Color online) True positive rate (left), true negative rate (middle), and accuracy (right) vs the strength of hidden variables for the
traditional case 6000 × 1 and the piecewise case 500 × 12, where c = 10 and δ = 0.4.

proposed to recover their causal connections eliminating the
influence of other variables.

Step (i). Partition each observed noisy time series of
appropriate length into K consecutive parts of identical length
N0. Then, for the ith partition (i = 1,2, . . . ,K) of two time
series Xt and Yt , add Gaussian white observation noise (noise
intensity 0.05) and fit the linear regression models (1) and (2),
and calculate FY→X. Perform the noise addition and time series
fitting for m runs. Then, calculate the 3σ confidence interval for
FY→X, whose lower bound is denoted as αi (i = 1,2, . . . ,K).
According to the 3σ rule, if αi (i = 1,2, . . . ,K) is greater
than zero, one infers a causal connection Y → X from the

ith partition of data. Calculate the piecewise partial Granger
causality index (PPGCI) defined as

PPGCI = 1

K

K∑
i=1

αi. (11)

If PPGCI > 0, the directed connection Y → X is accepted to
appear in the network. Otherwise, the link is supposed to be
absent.

Step (ii). Perform step (i) for all the pairwise time series, and
hence obtain an initial topological structure of the network.

FIG. 5. (Color online) PPGCI vs the strength ε of hidden variables for the 500 × 12 partition case, where c = 10 and δ = 0.4.
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FIG. 6. (Color online) True positive rate (left), true negative rate (middle), and accuracy (right) vs the coupling strength for the traditional
case 6000 × 1 and the piecewise case 500 × 12, where ε = 0.7 and δ = 0.4.

Note that it is very likely that there are incorrectly inferred
connections.

Step (iii). Check the initially obtained network structure. If
there is any subgraph as shown in the right panel of Figs. 1
or 2, then take Zt as the condition and apply the linear
regression models (3), (5), and (7) to the K respective parts
of related time series and similarly calculate the PPGCI as
described in step (i). Those false causal connections, which
are indirect or mediated by other observed variables Zt , are
thus eliminated. According to the definition of partial Granger
causality, this can also eliminate the mediation of latent
variables.

Step (iv). For the resulting network structure, consider
those existent links which are not previously considered in
step (iii), such as a link between some two processes Xt and
Yt . Take a third process other than Xt or Yt in the network, say
Zt , as the condition, and calculate the PPGCI as described in
step (i). If PPGCI � 0, then stop and set the considered link
to be absent; otherwise, take another process in the network
as the condition and calculate the PPGCI again. If the values
of the PPGCI conditioned on all the other processes are larger
than 0, then take the minimum of them as the causality index
for the considered link. Keep the resulting network structure,
and stop.

FIG. 7. (Color online) PPGCI vs the coupling strength c for the 500 × 12 partition case, where ε = 0.7 and δ = 0.4.
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FIG. 8. (Color online) Topology identification for the network composed of FHN oscillators. Top: PPGCI vs the strength ε of hidden
variables for the 500 × 12 partition case, where c = 10 and δ = 0.4; bottom: PPGCI vs the coupling strength c for the 500 × 12 partition case,
where ε = 0.7 and δ = 0.4.
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FIG. 9. Left: a directed ring network model with three additional
links; right: a directed star network model with five additional links.

Remark. Basically one can skip step (iii) and calculate
the PPGCI of a link conditioned on all the other considered
processes one by one, as described in step (iv). However, that
may be computationally expensive and requires a huge amount
of memory and time for computation. By finding some specific
conditional process, step (iii) can greatly reduce the testing
expense. It is also noted that if the initial network inferred
from step (ii) is densely connected, then all the existent links
might probably be considered in step (iii), which are thus
verified by eliminating the influence of both observable and
latent variables using the partial Granger causality. In this way,
step (iv) may be skipped.

In general, the partition length N0 is crucial for detecting
the topology of a network. As stated in Ref. [24], as long
as the data length in each partition is large enough for good
statistics, denser partitions always lead to better results, which
is in accordance with the basic idea of piecewise linear
approximation.

III. NUMERICAL SIMULATIONS

In simulation study, the Euler-Maruyama method is em-
ployed to generate time series from the above stochastic
differential equations (10) with an equal time step 0.01,
where ωi is assumed to be 1 for i = 1,2, . . . ,N . The time
series generated are of length 6000. The number of runs
used throughout the paper is m = 30. Besides the piecewise
partial Granger causality index as defined in Eq. (11), the true
positive rate (the fraction of correctly inferred links out of all
existent links), the true negative rate (the fraction of correctly

inferred nonexistent links out of all nonexistent links), and
the accuracy (the fraction of correctly inferred links out of all
links) are also computed as performance measures to evaluate
the identification ability of the proposed method.

A. A standard testing network

In this subsection, to compare the difference between the
partial Granger causality and the piecewise partial Granger
causality introduced here, an extensively used standard testing
network for Granger causality is considered, as shown in the
left panel of Fig. 3. This model is modified by adding a
common exogenous input to each node, as shown by node
6 in the right panel of Fig. 3. Here, node 6 is assumed to be
an immeasurable hidden variable. To analyze how the hidden
variable impacts the piecewise partial Granger causality, the
influence strength of node 6 on all the observable nodes is
supposed to be ε, which is termed the “strength of hidden
variables.” The greater the value of ε, the stronger the influence
of the hidden variable on the observable nodes. The adjacency
matrix of the underlying network can be modified as

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 ε

1 0 1 0 0 ε

0 1 0 0 0 ε

1 0 0 0 0 ε

1 0 0 0 0 ε

0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (12)

which is employed in Eq. (10) to generate the time series, but
only the data set of the first five time series is used to recover
the interaction patterns among them.

To compare the piecewise partial Granger causality with
the traditional one, we apply the approach to time series of
length 6000 with two cases: One is the traditional partial
Granger causality without partition (6000 × 1) and the other is
the piecewise case with partition 500 × 12. Figure 4 displays
the true positive rate, the true negative rate, and the accuracy
varying with the strength of hidden variables for the two cases,
where the network coupling strength c = 10 and the system
noise intensity δ = 0.4. From the left and the middle panels
of Fig. 4, it can be seen that for the traditional case 6000 × 1,
the true positive rate stays at 1 while the true negative rate

FIG. 10. (Color online) True positive rate and true negative rate vs the strength of hidden variables for the directed ring network (left) and
the directed star network (right), where c = 10, δ = 0.4.
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FIG. 11. (Color online) PPGCI vs the strength of hidden variables for the existent links in the directed ring network, where c = 10, δ = 0.4.

stays below 0.5 and keeps decreasing with increasing ε, which
means many nonexistent links are incorrectly predicted to be
existent in the network. For the piecewise case 500 × 12, the
true negative rate stabilizes at 1 while the true positive rate
stays at 1 when the strength ε of hidden variables is smaller
than 0.9, then it experiences a slight drop to 0.8 and decreases
further to 0.6 as ε increases, which means one or two existent
links are missed in the topology detection. The right panel
of Fig. 4 displays the identification accuracy, from which
it is observed that the accuracy decreases as the influence
of hidden variables gets stronger for both cases. That is to
say, the performance of partial Granger causality is actually
affected by the influence of latent variables. Nevertheless, the
piecewise partial Granger causality significantly outperforms
the traditional one by yielding a much higher accuracy, which
is maintained at above 0.9.

To take a detailed look at the identification performance
of the piecewise partial Granger causality test varying with
the influence of latent variables, Fig. 5 presents the piecewise
causality index for all the links, both existent and nonexistent.
It can be seen from the figure that when the strength ε is small,
all the links are correctly inferred. However, when ε reaches
0.9, the existent link 1 → 5 is missed; when ε surpasses 1.1,
another link 1 → 4 is further missed by the causality test.
From the declining trend of all the PPGCI curves, it can be
observed that more and more existent links will be missed with
the increasingly stronger influence of hidden variables. That is
to say, the piecewise partial Granger causality will no longer
succeed in recovering the interactions among simultaneously
obtained time series if the hidden variables get too powerful.

To see the influence of the network coupling strength c on
the identification, Fig. 6 shows the true positive rate, the true
negative rate, and the accuracy varying with respect to the
network coupling strength c for the traditional and piecewise
cases, where the strength of latent variables ε = 0.7 and
the system noise intensity δ = 0.4. For the traditional case
6000 × 1, the true positive rate basically stabilizes at 1 while
the true negative rate, which is mostly below 0.5, basically
increases with c. For the piecewise case 500 × 12, the true
negative rate stays at 1 while the true positive rate increases
rapidly from 0 at c = 1 to 1 with the coupling strength c

reaching 9. The right panel of Fig. 6 displays the accuracy
of identification, from which it can be seen that the accuracy
increases as the coupling strength gets stronger. The results

displayed for both the traditional and the proposed piecewise
cases show that strong coupling favors correct identification,
which is easy to understand. Moreover, it is obvious that the
piecewise partial Granger causality is still superior to the
traditional one for various values of coupling strength.

Figure 7 displays the piecewise partial Granger causality
index for all the links with respect to varying coupling
strength c. When c is as small as 1, all the existent links
are missed. As c increases, more and more existent links
are recovered. When c reaches 9, the original pattern of
connection is correctly inferred. Furthermore, the PPGCI for
existent links increases with c and that for nonexistent links
decreases. However, the rising rate of the PPGCI for existent
links slows down as c increases. This can be explained from
the theory of synchronization-based method [25–27], which
states that topology identification is likely to fail if some
nodes of a network get into generalized synchronization.
Analogously, with a strong coupling strength, a certain number
of nodes might get into approximate generalized synchro-
nization, which makes it more difficult to differentiate one
time series from another. Generally speaking, strong couplings
contribute to the synchronization, while proper system noise
helps desynchronize the network and the nodes can still be
distinguished from each other. In this sense, the presence of
minor noise facilitates topology inference.

FIG. 12. (Color online) PPGCI vs the strength of hidden variables
for the existent links in the directed star network, where c = 10,
δ = 0.4.
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FIG. 13. (Color online) True positive rate and true negative rate vs the coupling strength for the ring network (left) and the star network
(right), where ε = 1, δ = 0.4.

To show the validity of the proposed technique, we
further test it with a network of coupled neural systems. The
FitzHugh-Nagumo (FHN) model is considered [28,29], with
the stochastically perturbed network being described by

V̇i = Vi − 1

3
V 3

i − Wi + Iex + c

N∑
j=1

aij (Vj − Vi) + ηi,

(13)
Ẇi = 0.08(Vi + 0.7 − 0.8Wi),

where Vi is the membrane potential, Wi is the recovery
variable, and Iex is the external stimulus current, which is
supposed to be cos t

50 here. The standard testing network
shown in Fig. 3 is employed as the underlying topology and
node 6 is still assumed to be the hidden variable with strength
ε. The identification results varying with ε and the coupling
strength c are shown in the top and bottom panels of Fig. 8,
respectively. Similar observations to those for the Kuramoto
model can be obtained.

B. Two regular networks

To illustrate the ability of the proposed method, two regular
network models—a directed ring network and a directed star
network—are further considered, as shown in Fig. 9. Node
10 is assumed to be the hidden variable in both models, and
only the evolutionary time series of the other nine nodes are
collected for topology identification. To show the impact of
hidden variables on those nodes with different connection
patterns, a few additional links are added. Similarly, denote

by ε the influence strength of node 10 on its outgoing nodes.
That is, only those nonzero elements for existent links in the
10th column of the 10 × 10 adjacency matrix are modified
to ε.

Figure 10 presents the true positive rate and the true negative
rate with respect to ε for the directed ring network (left
panel) and the directed star network (right panel), where
the network coupling strength c = 10 and noise intensity
δ = 0.4. It is clearly observed that the underlying topologies
are correctly recovered when ε is relatively small for both
models. Moreover, the true negative rate is always maintained
at 1. Specifically, for the ring network, when ε arrives at 2.4,
the true positive rate drops to 0.89 and decreases further to
0.78 when ε gets to 3.8. For the star network, it can be seen
that the true positive rate dramatically drops from 1 to 0 when
ε increases gradually from 2 to 3. The different decline rates
of the true positive rate in the two networks should be due to
the fact that for the ring network, the hidden node only directly
influences nodes 1, 2, and 3, whereas for the star network, the
hidden node directly impacts all the observable nodes. It is thus
verified again that the partial Granger causality works well only
if the latent variables are not too influential on other concerned
nodes.

Figure 11 displays the PPGCI of the existent links for the
directed ring network with three additional links. The PPGCI
for the existent link 3 → 4 declines below 0 (the dashed line)
when ε surpasses 2.4, meaning that this link is currently missed
by the causality test. Another link 2 → 3 is further missed
when ε reaches 3.8. The two critical values of ε correspond to

FIG. 14. (Color online) PPGCI vs the coupling strength for the existent links in the directed ring network, where ε = 1, δ = 0.4.
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FIG. 15. (Color online) PPGCI vs the coupling strength for the
existent links in the directed star network, where ε = 1, δ = 0.4.

the two drops in the true positive rate curve for the ring network
in Fig. 10. Moreover, the PPGCI curves for 1 → 2, 2 → 3, and
3 → 4 are obviously decreasing with increasing ε, while the
others are basically leveled, which should be due to the fact
that nodes 1, 2, and 3 are directly influenced by the hidden
node 10. That is to say, the strength of hidden variables mainly
influences the interaction identification of those observed time
series which are directly impacted by the hidden nodes.

Figure 12 displays the PPGCI of all the existent links for
the directed star network containing five additional links.
Apparently, since all the nodes are immediately impacted
by the latent hub node, the PPGCI for all the existent links
gradually declines below 0 (the dashed line) with increasing
ε. When ε reaches 3, all the existent links are missed by the
causality prediction, corresponding to the zero value of the true
positive rate in the right panel of Fig. 10. In a word, for the star
network where the hub node is unobservable, the connection
pattern of the leaf nodes can be correctly recovered unless the
hidden node is too influential.

Figure 13 presents the true positive rate and the true negative
rate with respect to varying c for the directed ring network
(left panel) and the directed star network (right panel) with
additional links, where the strength of hidden variables ε = 1
and the noise intensity δ = 0.4. From both panels, it is clearly
seen that the topologies are correctly identified when the
network coupling strength reaches 4.

Figures 14 and 15 display the PPGCI of the existent links
for the directed ring network and the star network, respectively.
For both networks, all the existent links are missed when c =
1, which is due to the fact that weak coupling makes the
underlying topologies obscured. When c is increasing, the
PPGCI for all existent links rises too. As c reaches 4, all
the links are correctly recovered.

C. Small-world networks

The commonly used testing model and two regular net-
works with a couple of additional links demonstrate the effec-
tiveness of the proposed piecewise partial Granger causality
and its applicability range with respect to the strength of
hidden variables and the network coupling strength. In this
subsection, the proposed method is tested on small-world
networks, which can well model many real-world systems,
such as social influence networks, road maps, food chains,
gene networks, and so on.

The Newman-Watts (NW) algorithm is employed here
to construct small-world networks [30,31]. First, consider a
network with 50 nodes, with each node connecting to its
nearest neighbor, that is, an undirected ring network. Then,
directed “shortcuts” are added with probability p to the ring
network between randomly chosen pairs of nodes (except those
already connected pairs). Obviously, the larger the probability
p of adding links, the denser the network. The generated NW
network is adopted in the Kuramoto model (10) to generate
time series. Then the first five time series are adopted to infer
the connections among them, assuming that the other 90%
nodes are latent or unconcerned. The true positive rate and the
true negative rate are calculated. Note that the directed links
are added to the ring network randomly, thus the resulting ad-
jacency matrixes can be various. To be more representative, the
above procedure is repeated 30 times. Then the average values
of the true positive rate and the true negative rate are recorded.

The left panel of Fig. 16 displays the true positive rate and
the true negative rate varying along with different probabilities
of adding links, where the network coupling strength c = 20
and the system noise intensity δ = 4. It can be seen from the
panel that the true negative rate experiences a sharp drop when
p varies from 0 to 0.01 and then remains in a very slight
decline, while the true positive rate keeps decreasing when p

FIG. 16. (Color online) Left: true positive rate and true negative rate vs the probability of adding edges, where c = 20 and δ = 4; right:
true positive rate and true negative rate vs the network size, where c = 20, δ = 4, and p = 0.01.
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FIG. 17. (Color online) Left: PPGCI for the 20 causal connections with different levels of observation noise; right: the inferred network
topology of the five genes.

increases gradually from 0 to 0.2 with a step size 0.01. That
is to say, more existent links are missed for denser networks.
This can be explained by the fact that with a larger p, more
links are connected to the concerned nodes, which means that
there are more hidden variables.

In the right panel of Fig. 16, the influence of the network
size on the proposed identification method is displayed.
Specifically, the size of the generated NW small-world network
increases from 100 to 1000 with a step size 100, where c = 20,
δ = 4, and the probability of adding links p = 0.01. Similarly,
five time series are adopted to infer the connections among
them, assuming that all the others are latent or unconcerned. It
can be seen from the panel that both the true positive rate and
the true negative rate decline slightly with the increase of the
network size. This can also be explained by the fact that with
a larger network size, more hidden variables are connected to
the concerned five nodes. In a word, both panels in Fig. 16
illustrate that the partial Granger causality works well when
the influence of hidden nodes is not so strong.

D. Application to experimental data

As a practical application, our method is tested using yeast
cell cycle gene expression data downloaded from the Yeast
Cell Cycle project at Stanford University (http://genome-
www.stanford.edu/cellcycle/data/rawdata/). These studies
profiled expression changes in 6178 genes at about 80 time
points under four different conditions. Many genes have
missing data points. In Ref. [32], Wang et al. proposed a novel
method to combine multiple time-course microarray datasets
from different conditions for inferring gene regulatory net-
works. Therein, they applied their method to 140 differentially
expressed genes and generated consistent subnetworks with 64
links, 431 links, etc. depending on the scalar parameter used
to control the sparsity or consistency of the subnetwork. The
64-link inferred network was presented in their paper. In our
test, we selected five genes (YPL158C, HHF2, PRY1, DIP5,
and TSL1) for illustration. Clearly, due to unrecorded inputs
and the fact that we only used five time series, the genes
are influenced both by substantial exogenous inputs and by a
large set of latent variables. Since many genes have missing
data points, we discarded those time points with missing data

and chose 60 data points for each gene. The time series were
partitioned into two consecutive parts of identical length. In
the left panel of Fig. 17, the red squares represent the PPGCI
for the 20 possible causal connections for the five genes. Here,
nodes 1, 2, 3, 4, and 5 represent YPL158C, HHF2, PRY1,
DIP5, and TSL1, respectively. The inferred topology of the
five genes is shown in the right panel, which is the same as
that inferred in Ref. [32] except for an additional link from
gene DIP5 to gene PRY1. This is reasonable, since the 64-link
network therein was inferred using a certain scalar parameter
to control the sparsity, while the underlying network can have
more links. To see the robustness of our method, two different
levels of observation noise are added to the gene expression
data, and similar calculations are performed. The causality
indexes are displayed in the left panel, with black circles and
blue stars representing that for δ = 0.1 and 0.2, respectively.
One can see that the method is robust to these disruptions.

IV. CONCLUSIONS

In this paper, a simple and feasible approach called
“piecewise partial Granger causality” has been proposed that
is designed to recover the interactions among simultaneously
obtained nonlinear noisy time series from complex dynamical
networks with hidden nodes. Comparison with the previous
partial Granger causality has been done using a standard testing
network to show the superiority of the proposed approach.
The validity of the approach has been demonstrated further
on two regular networks containing a few additional links,
both with one hidden node. The latent variables’ strength and
the network coupling strength have been studied as two key
factors influencing the effectiveness of this piecewise partial
Granger causality. Additionally, NW small-world network
models have been tested to further verify the ability of the
method and to investigate the impact of hidden nodes. Finally,
an application to experimental data further demonstrates the
validity and robustness of the method. It has been illustrated
that piecewise partial Granger causality is effective in detecting
the connections among observed noisy time series in the
presence of hidden variables on the conditions that the hidden
variables do not have much of an influence on the observable
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ones, and the coupling strength among the observable variables
is strong enough.
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