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Stochastic Turing patterns on a network
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The process of stochastic Turing instability on a scale-free network is discussed for a specific case study:
the stochastic Brusselator model. The system is shown to spontaneously differentiate into activator-rich and
activator-poor nodes outside the region of parameters classically deputed to the deterministic Turing instability.
This phenomenon, as revealed by direct stochastic simulations, is explained analytically and eventually traced
back to the finite-size corrections stemming from the inherent graininess of the scrutinized medium.
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I. INTRODUCTION

Pattern formation is a rich and fascinating field of
investigation that extends over distinct realms of applications,
ideally embracing chemistry, biology, and physics. Complex
and extremely beautiful patterns can in fact spontaneously
emerge in spatially extended reaction–diffusion systems, as
follows a linear instability mechanism, first described by
Alan Turing in a seminal paper [1] published in 1952. Turing
patterns are indeed widespread in nature: Examples include
schemes of autocatalytic reactions with inhibition [2–4], the
process of biological morphogenesis [5–9], and the dynamics
of ecosystems [10–13]. The Turing instability paradigm classi-
cally relies on mean-field deterministic scenarios. As opposed
to the usual continuum picture, the intimate discreteness of
any individual-based stochastic models results in finite-size
corrections to the approximated mean-field dynamics. Under
specific conditions, microscopic disturbances are enhanced by
a resonance mechanism and yield organized spatiotemporal
patterns [14–17]. More specifically, the measured
concentration that reflects the distribution of the interacting
entities (e.g., chemical species and biomolecules) can display
spatially patched profiles, collective phenomena which testify
on a surprising degree of macroscopic order, as mediated by
the stochastic component of the dynamics. Stochastic Turing
patterns [16], or quasi-Turing patterns [15], are found to
occur in individual-based systems that cannot undergo Turing
instability according to the deterministic reaction-diffusion
picture. Interestingly, the region of parameters for which
stochastic patterns are developed is usually larger than for
conventional Turing patterns, a general observation that has
been made quantitative for a selection of prototypical case
studies.

Recently, Nakao and Mikhailov [18] studied the Turing
patterns formation on large random networks, an important
direction of investigation presumably relevant in e.g. the early
stage of the morphogenesis process, since morphogens are
known to diffuse on the network structure of inter–cellular
connections. Othmer and Scriven [19] investigated the Turing
instability in a network-organized system and developed the
needed mathematical machineries. Their studies, however,

were limited to regular lattice or small networks. By extending
the analysis to a complex heterogeneous network Nakao
and Mikhailov [18] opened up the perspective for novel
applications of the Turing idea to the broad field of theoretical
biology [20]. Applications can be foreseen in other disciplines
also where network science proves crucial. One example
is social studies, in which nodes and links are associated
with humans and their mutual interactions, respectively. Also
interesting is the case of epidemics spreading, which is influ-
enced by the topological structure of the underlying mobility
networks.

Starting from this setting, we propose here a generalization
of the work in Ref. [18], beyond the deterministic scenario,
by explicitly including the role of demographic, finite-size
fluctuations. In doing so, and with reference to the specific
case of a scale-free network, we will demonstrate in this paper
that stochastic Turing patterns set in outside the region of
parameters corresponding to spatial order, as predicted within
the classical theory based on deterministic reaction-diffusion
schemes. This constitutes in turn the main result of our
work. The analysis, which combines numerical and analytical
tools, can be adapted in principle to other complex network
structures, beyond the scale-free topology selected here for
demonstrative purposes.

More concretely, we shall consider a stochastic version
of the celebrated Brusselator model [2], which will be
placed on top of a scale-free network of � nodes. The
proposed microscopic formulation will make it possible to
eventually reframe the mechanism of multispecies diffusion
under crowded conditions, as discussed in Ref. [21], in a
context relevant for network science. This is a side result of
our analysis, which could prove interesting, however, for those
applications that aim at tracking the physical transport, or flow
of information, on densely populated networks.

II. THE STOCHASTIC MODEL ON
A SCALE-FREE NETWORK

In the stochastic version of the Brusselator model, the
individual entities Xi and Yi are assigned to the generic
node i and therein react according to the following chemical
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reactions [16]:

A + Ei
a−→ A + Xi,

Xi + B
b−→ Yi + B, (1)

2Xi + Yi
c−→ 3Xi,

Xi
d−→ Ei.

The symbol Ei stands for an empty case and formally amounts
to imposing a finite carrying capacity in each node of the
network. In other words, we assume that each node can host
a maximum number N of molecules (or agents), including
the vacancies.1 Let us denote by ni and mi the total number
of elements belonging to species X and Y , respectively, in
node i. Hence the corresponding number of vacancies totals in
N − ni − mi . The parameters a, b, c, and d in Eqs. (1) are the
reaction rates, while the species A and B are enzymatic acti-
vators whose concentrations are supposed to remain constant
during the dynamics and insensitive to the specific node. In
practice, A and B display a homogeneous distribution on the
network. In addition to the above activator-inhibitor rules, we
assume that the molecules can migrate between neighboring
nodes as dictated by the following reactions:

Xi + Ej

μ−→ Ei + Xj,
(2)

Yi + Ej
δ−→ Ei + Yj ,

where μ and δ are the diffusion coefficients characteristic of the
two species and the subscript j denotes the generic node con-
nected to i via the network structure. Similar equations govern
the diffusion from node j towards node i. The migration from
node i towards node j , and vice versa, can occur only if space
allows. When no vacancies are available at the destination site,
the diffusion is effectively, and self-consistently, impeded.2 To
complete the notation we introduce the �-dimensional vectors
n = (n1, . . . ,ni, . . . ,n�) and m = (m1, . . . ,mi, . . . ,m�) that
unequivocally identify the state of the system. Under the
Markov hypothesis, the probability P (n,m,t) of seeing the
system at time t in state (n,m) obeys the master equation

∂

∂t
P (n,m,t)

=
�∑

i=1

((
ε−
ni

− 1
)
T (ni + 1,mi |ni,mi)

+ (
ε+
ni

− 1
)
T (ni − 1,mi |ni,mi)

1By imposing a finite carrying capacity on each node we obtain a
self-consistent formulation that holds under both diluted and crowded
conditions. As we shall comment later, it also enables us to introduce
an invariant quantity of the dynamics, the number of elements hosted
in each node, which will prove central in the forthcoming analytical
calculation. For a discussion of the role played by the finite carrying
capacity we refer to Refs. [14,21–23].

2Under diluted conditions, the mutual interference that results
from the competition for the microscopic spatial resources becomes
negligible. The vacancies can hence be omitted in the above chemical
equations. One obtains a different model, less general from our per-
spective, which can be inspected, however, with analogous techniques
(see Ref. [23]), yielding to qualitatively similar conclusions.

+ (
ε−
ni
ε+
mi

− 1
)
T (ni + 1,mi − 1|ni,mi)

+ (
ε+
ni
ε−
mi

− 1
)
T (ni − 1,mi + 1|ni,mi)

+
�∑

j=1

Wi,j

[(
ε+
ni
ε−
nj

− 1
)
T (ni − 1,nj + 1|ni,nj )

+ (
ε+
nj

ε−
ni

− 1
)
T (nj − 1,ni + 1|ni,nj )

+ (
ε+
mi

ε−
mj

− 1
)
T (mi − 1,mj + 1|mi,mj )

+ (
ε+
mj

ε−
mi

− 1
)
T (mj − 1,mi + 1|mi,mj

)])

×P (n,m,t), (3)

where use has been made of the step
operators ε±

ni
f (. . . ,ni, . . . ,m) = f (. . . ,ni ± 1, . . . ,m) and

ε±
mi

f (n, . . . ,mi, . . .) = f (n, . . . ,mi ± 1, . . .), with f (·,·)
being any generic function of the state variables. The � × �

integers Wij represent the entries of the symmetric adjacency
matrix W, which characterizes the topology of the network;
Wij is equal to 1 if nodes i and j are connected and 0
otherwise. The transition rates T (n′,m′|n,m) link the initial
state (n,m) to another state (n′,m′), compatible with the
former, and are given by3

T (ni + 1,mi |ni,mi) = a

�

N − ni − mi

N
,

T (ni − 1,mi |ni,mi) = d

�

ni

N
,

T (ni + 1,mi − 1|ni,mi) = c

�

n2
i mi

N3
,

T (ni − 1,mi + 1|ni,mi) = b

�

ni

N
,

T (ni − 1,nj + 1|ni,nj ) = μ

�

ni

N

N − nj − mj

N

(
1

ki

+ 1

kj

)
,

T (mi − 1,mj + 1|mi,mj ) = δ

�

mi

N

N − nj − mj

N

(
1

ki

+ 1

kj

)
,

where ki = ∑�
j=1 Wij is the degree of the ith node. The

factor 1/ki + 1/kj takes into account the order of selection
of species in chemical reactions (2). To explain the origin of
such term let us consider the first of Eqs. (2). Imagine that
Xi is selected at first. Then the reaction can involve any of
the vacancies Ej , with node j connected to node i, which
could eventually represent a possible target for the migrating
molecule. As all targets are equivalent, the transition rates need
to be properly normalized. This is achieved by dividing the
probability of the encounter for the connectivity ki of node i.
Similar considerations apply to the alternative scenario, when
the empty case Ej on node j is picked up at first. In this case,
one needs to introduce the normalizing scaling factor 1/kj .

The master equation (3) is exact although difficult to handle.
To progress in the analysis it is customary to resort to approxi-
mated perturbation methods. In the weak noise approximation,

3Notice that in the first and fourth transition rates, the constant
(node-independent) concentrations relative to the enzymatic species
A and B have been formally absorbed in the chemical rates a and b.
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one can put forth the van Kampen ansatz [24,25], which,
in this context, amounts to imposing ni/N = φi + ξ1i/

√
N

and mi = ψi + ξ2i/
√

N , where φi and ψi are the mean-field
concentrations associated with the interacting species X and
Y , respectively, and ξ1i and ξ2i are stochastic fluctuations
that originate from finite-size corrections, normalized by the
scaling factor 1/

√
N , as dictated by the central limit theorem

[24]. For moderately large system sizes N , the 1/
√

N factor
is small and paves the way to a straightforward perturbative
calculation, generally referred to in the literature as the van
Kampen system size expansion. At the leading order of
the perturbative analysis, the mean-field equations for the
deterministic variables are recovered and for the specific
problem investigated here read

d

dτ
φi = f (φi,ψi)

+ 2μ

⎡
⎣ �∑

j=1


ijφj + φi

�∑
j=1


ijψj − ψi

�∑
j=1


ijφj

⎤
⎦,

d

dτ
ψi = g(φi,ψi)

+ 2δ

⎡
⎣ �∑

j=1


ijψj + ψi

�∑
j=1


ijφj − φi

�∑
j=1


ijψj

⎤
⎦,

(4)

where, generalizing the heuristic derivation of Ref. [18], we
have introduced the discrete Laplacian 
ij = W̃ij − k̃iδij with
k̃i = ∑�

j=1 W̃ij and W̃ij = (1/ki + 1/kj )Wij . The reaction
terms are, respectively, f = −(b + d)φi + cφ2

i ψi + a(1 −
φi − ψi) and g = bφi − cφ2

i ψi and τ is the rescaled time
t/N�. Cross diffusion terms appear in the deterministic
equations obtained because of the finite carrying capacity,
imposed at the level of the single node [21]. By relaxing
such an assumption [23], conventional diffusion operators
are recovered instead. Similarly, the finite carrying capacity
assumption reflects in the reaction contribution a(1 − φi −
ψi), which replaces the usual constant term a in the standard
Brusselator equations [16]. Although interesting per se, this
modification does not play any substantial role in the forthcom-
ing development: Equivalent conclusions can be drawn when
working in the diluted setting, i.e., away from jamming or
crowding conditions that inspire the physically sound request
for a limited capacity to be explicitly accommodated on each
individual node.

III. DETERMINISTIC TURING INSTABILITY

To look for mean-field Turing instability, one needs to
introduce a small perturbation to the homogeneous equi-
librium point (φ∗,ψ∗) = {[a +

√
a2 − 4ab(a + d)/c]/2/(a +

d),b/c/φ∗} of the deterministic system (4) and carry out
a linear stability analysis. In formulas, (φi,ψi) = (φ∗ +
δφi,ψ

∗ + δψi). Following Ref. [18], and to exploit the
linearity of the resulting equations for the perturbation

amounts,4 we find it convenient to expand δφi and δφi as

δφi =
�∑

α=1

cαeλατ v
(α)
i , δψi =

�∑
α=1

cαβαeλατ v
(α)
i , (5)

where v(α) = (v(α)
1 , . . . ,v

(α)
� ) stand for the eigenvectors of the

Laplacian operator corresponding to the eigenvalue �α .5

By inserting Eqs. (5) into the linearized differential equation
for the perturbations δφi and δψi , one obtains the usual
characteristic equation for λα , which can be cast here in the
form

det

(
fφ + μ(1 − ψ∗)�α − λα fψ + μφ∗�α

gφ + δψ∗�α gψ + δ(1 − φ∗)�α − λα

)
= 0, (6)

where fq = ∂f/∂q and gq = ∂g/∂q for q = φ,ψ .
The Turing instability occurs and the perturbation thus

gets amplified if λα(�α) is positive for some value of �α .
In this respect, and as already remarked in Ref. [18], �α plays
the role of −k2 for continuous media, where k stands for
the wave number of the plane wave mode. In Fig. 1(b) the
dispersion relation is plotted for two distinct choices of the
parameters (see the legend). Symbols refer to the discrete linear
growth rates λα , as functions of the corresponding Laplacian
eigenvalues �α . The solid line represents the homologous dis-
persion relations, as obtained working within the continuous
representation (�α → −k2). The top curve [Fig. 1(b), circles]
signals the presence of an instability. A significant fraction of
the discrete rates λα is in fact positive. Conversely, the other
profile (diamonds) is obtained for a choice of the chemical
parameters that yields linear stability. By tuning the parameters
and evaluating the corresponding dispersion relation, one
can eventually single out in a reference parameter space the
region deputed to the instability. This is done in Fig. 1(a)
working in the (b,c) plane: The region of Turing instability, as
predicted by the deterministic analysis, is filled with a uniform
color (yellow). The (blue) diamond falls outside the region
of Turing order and points to the parameters employed in
depicting the stable dispersion curve in Fig. 1(b). Similarly,
the (magenta) circle refers to the unstable profile. In this
latter case, performing a direct integration of the mean-field
equations (4), one observes the spontaneous differentiation
in activator-rich and activator-poor groups, as discussed in
Ref. [18]. A stochastic simulation can also be carried out
using an ad hoc implementation of the Gillespie Monte Carlo
scheme [27]. In Ref. [28] the two dynamics, deterministic vs
stochastic, are compared. Finite-size fluctuations materialize

4It is straightforward to show that the perturbations obey δφ̇i =
fφδφi + fψδψi + μ[(1 − ψ∗)

∑
j=1 
ij δφj + φ∗ ∑

j=1 
ij δψj ] and
δψ̇i = gφδφi + gψδψi + δ[(1 − φ∗)

∑
j=1 
ij δψj + ψ∗ ∑

j=1 
ij

δφj ] under the linear approximation.
5The Laplacian operator 
ij is defined by the real and sym-

metric matrix 
ij = W̃ij − k̃iδij , where ki is the degree of node
i. Eigenvectors v(α) and eigenvalues �α are calculated by solving
the eigenvalue problem

∑�

j=1 
ijvi(α) = �αv
(α)
i , with α = 1, . . . ,�.

The computed eigenvalues are real and nonpositive. The eigenvectors
are orthonormalized so as to match the condition

∑
i v

(α)
i v

(β)
i = δα,β .
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FIG. 1. (Color online) (a) The shaded (yellow) region delineates
the Turing instability domain in the (b,c) plane for the Brusselator
model with a = d = 1, μ = 1, and δ = 15. The (magenta) point
belongs to the Turing instability region and corresponds to b = 76 and
c = 950. The (blue) diamond falls outside the region of Turing order
and is positioned at (76,1060). (b) Dispersion relation (6) plotted as
a function of both the discrete eigenvalues of the network Laplacian
(symbols) and their real analogs −k2 (solid line). Circles (magenta)
refer to (b,c) = (76,950), while diamonds (blue) refer to (b,c) =
(76,1060). In the analysis we assumed a scale-free network made of
� = 200 nodes and mean degree 〈k〉 = 20. The network has been
generated according to the Barabási-Albert algorithm [26].

in a modest perturbation (proportional to 1/
√

N ) of the
idealized mean-field dynamics.

IV. ANALYSIS OF FLUCTUATIONS: STOCHASTIC
TURING PATTERNS

Substantially different is the scenario that is eventually
recovered when comparing the simulations outside the region
deputed to Turing instability. Setting the parameters to the
values (b = 76 and c = 1060) that correspond to the (blue)
diamond of Fig. 1(a), the deterministic simulations always
converge to the homogeneous fixed point, the concentrations
of the species therefore being identical on each node of the
network. At variance, a fragmentation into distinct groups
is clearly observed in the stochastic simulations. The late
time evolution of the stochastic system, as compared to the
corresponding (trivial) deterministic solution, is displayed in
Fig. 2. The effect of the stochastically driven polarization can
be further realized when inspecting the movies in Ref. [28],
which enables one to appreciate the full time evolution of
the discrete dynamics. As for the case of continuous media,
the endogenous stochastic noise is amplified and drives the
formation of spatially extended self-organized patterns outside
the region of classical Turing order.6 Following Ref. [16], we

6The number of nodes in the fragmented state that respectively
display high and low concentrations is approximately constant in
time. This observation follows a dynamical balance: The nodes
are continuously, although rarely, switching from high to low
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0.1

0.2
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FIG. 2. (Color online) Simulations of the stochastic chemical
model (1) and (2) outside the region of Turing order, a = d = 1,
b = 76, c = 1060, μ = 1, and δ = 15. Here N = 1000. The late
time concentrations per node ni/N (mi/N ) are plotted in the top
(bottom) panel as a function of the node index i. Nodes are sorted
according to their degree, from large to small connectivities ki . The
(orange) diamonds are obtained from one realization of the stochastic
Gillespie algorithm [27]. The network is generated as described in
the caption of Fig. 1. The stochastic dynamics yields the emergence
of two distinct activator-rich and activator-poor groups, while the
deterministic dynamics is attracted towards the stable (and trivial)
homogeneous fixed point [dashed (blue) horizontal line].

call these self-organized asymptotically stable configurations
stochastic Turing patterns on a network.

To gain analytic insight into the above mechanism, one can
return to the van Kampen perturbative analysis and consider
the next to leading approximation. One obtains a system of
Langevin equations [14,16] for the fluctuations ξsi (s = 1,2):

dξsi

dτ
=

∑
r,j

Msr,ij ξrj + ηsi(τ ), (7)

where ηsi is a Gaussian noise with zero mean and the correlator
given by 〈ηsi(τ )ηrj (τ ′)〉 = Bsr,ij δττ ′ . The explicit form of the
matrices M and B is given in Ref. [28]. Define then the
following transformation:

ξ̃α =
∑
i,τ

ξie
−jωτ v

(α)
i , (8)

with j denoting here the imaginary unit. The above operation
is inspired by the Fourier transform: Instead of expanding
on the basis of plane waves, it is natural here to project the
fluctuations along the �-independent directions represented by
the eigenvectors v(α) of the discrete network Laplacian. One
can hence define a power spectrum of fluctuations of species
s = 1,2, Ps(ω,�α) = 〈|ξ̃s |2〉, in complete analogy to what is
customarily done in conventional Fourier analysis. In practical

concentrations, the transitions being more frequent when the system
size N gets reduced.
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FIG. 3. (Color online) Power spectrum of fluctuations for species
X as a function of �α , ω = 0 (symbols). The solid line is the
power spectrum calculated for a continuum medium, i.e., when �α is
replaced by −k2, where k denotes the wave number of the plane-wave
mode. The curve refers to a = d = 1, b = 76, c = 1060, μ = 1, and
δ = 15, a choice of parameters that corresponds to operating outside
the region of Turing instability [diamond in Fig. 1(a)]. The network
is constructed as specified in the caption of Fig. 1.

terms, the generalized power spectrum Ps(ω,�α) quantifies
the portion of the signal power that is associated with a given
time ω or spatial frequency �α range. Some details of the
calculations are given in Ref. [28].

In Fig. 3 the analytical power spectrum of species X is
plotted in the plane ω = 0, as a function of �α , for a parameter
selection that corresponds to the diamond in Fig. 1, i.e., outside
the region of deterministic Turing instability. Symbols are
obtained by sampling the power spectrum over the discrete
Laplacian eigenvalues �α . The solid line stands for the power
spectrum calculated in the continuous limit when the discrete
�α is replaced with its real counterpart −k2 (see Ref. [28] for
a discussion related to this point). A clear peak is displayed,7

7Similar conclusions hold for the power spectrum of species Y .

a finding that explains in turn the outcome of the stochastic-
based simulations reported in Fig. 2, formally proving
that stochastic Turing patterns do exist on a network
topology.

V. CONCLUSIONS

In conclusion, we have considered in this paper the stochas-
tic dynamics of the Brusselator model on a scale-free network.
The model, representative of a broad class of systems that dis-
play Turing order in the mean-field limit, has been investigated
both analytically and numerically. In particular, we provide
evidence of the intrinsic ability of the system to develop
spatially heterogeneous configurations, outside the region
of parameters classically deputed to Turing (deterministic)
order. These self-organized patterns, reminiscent of the Turing
instability, result from the spontaneous amplification of the
demographic noise, stemming from the intimate discreteness
of the scrutinized medium. Our analysis therefore extends
the concept of stochastic Turing order to the vast domain
of network science, a discipline of paramount importance
and cross-disciplinary interests. Further investigations can
be planned working along these lines (and so explore the
surprising degree of macroscopic order that can eventually
originate from the noisy microscopic dynamics) for stochastic
based systems defined on a network topology. As an example,
stochastic traveling waves can be imagined to occur as a
natural extension of Ref. [23]. Incidentally, we also emphasize
that the finite carrying capacity mechanism imposed here
at the node level could be useful in modeling those phe-
nomena where jamming on a network topology is expected
to occur.
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