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The dynamics of coupled intermittent maps is used to model the correlated structure of genomic sequences.
The use of intermittent maps, as opposed to other simple chaotic maps, is particularly suited for the production of
long-range correlation features which are observed in the genomic sequences of higher eucaryotes. A weighted
network approach to symbolic sequences is introduced, and it is shown that coupled intermittent polynomial
maps produce degree and link size distributions with power-law exponents similar to the ones observed in real
genomes. The proposed network approach to symbolic sequences is generic and can be applied to any symbol
sequence (artificial or natural).
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I. INTRODUCTION

Some 20 years ago, in 1992, the presence of long-range
correlations in genomic sequences was first reported in three
seminal papers [1–3]. Since then many attempts have been
made made to record, classify, and model these genomic
correlations and to connect them with the functionality and
evolution of the current-day genome [1–9]. Despite these many
attempts a conclusive explanation of the presence and the role
of long-range correlations in the genome is still missing.

In an earlier publication [10], one of the current authors
(A.P.) and P. Katsaloulis have searched for a hierarchical
process which could produce long-range correlations similar
to the ones observed in genomic sequences. To this end, they
introduced a two-dimensional density correlation matrix M
which is based on the frequency of appearance of blocks or
strings of size s. They calculated the multifractal properties of
DNA from this matrix and from its multiple superpositions
to create strings of longer lengths. In fact, their approach
corresponds to a description of all strings of multiple lengths
2s,4s, . . ., assuming that the correlations are negligible for
length scales l > s. This method produces correlations up to
finite scales, which are comparable with the ones observed
in the genome at the same length scales [10]. Nevertheless,
long-range correlations are known to persist over many scales
in DNA and are not limited to a finite length scale [11,12]. In a
further quest for dynamical mechanisms producing long-range
correlations over extended scales the current study uses the
dynamics of intermittent maps to produce symbol sequences
with characteristics similar to DNA.

Intermittent maps are well known to produce a variety of
interesting features such as metastable behavior and anoma-
lous transport, often characterized by long-term correlations
and power laws [13–19]. That is why they are particularly
suited for the modeling of the dynamics of DNA strands with
long-range features, such as the genome of higher eucaryotes.
In particular, the polynomial map [20] is particularly suited
for the DNA modeling due to its simplicity, versatility, and
the large parameter ranges which give rise to long-range
characteristics. This map will be used in the modeling of
genomic data by first transforming the times series generated
by the map into a symbol sequence and then comparing its
statistics with that of whole eucaryotic chromosomes.

For the comparison between the dynamics produced by the
intermittent polynomial map and that of genomic sequences a
novel network approach will first be established. For this, the
time series produced by the polynomial maps will be trans-
formed into symbol sequences, and then associated networks
will be constructed. The properties of these networks (degree
distribution, link size distribution, clustering coefficients) will
be computed both for the polynomial map and for the genomic
sequences, and the statistics will be compared. It will turn out
that the use of single polynomial maps is not enough to produce
the exact power-law exponents observed in the network
description of the genome. The solution to this problem is
given by weakly coupling the polynomial maps on a lattice.
The weak coupling modifies the power-law exponents of the
zero-coupling limit and produces power-law tails comparable
to the ones observed for the genome data.

This work has the following structure: In the next section
the dynamics of the intermittent polynomial map is briefly
recapitulated and the corresponding symbol sequence is con-
structed. The construction of a dynamical weighted network
method for the description of correlations in symbol sequences
is presented in the same section. In Sec. III the network method
is applied to both human chromosomes and symbol sequence
of the intermittent polynomial map. Comparative results are
presented and discussed. In Sec. IV coupled polynomial maps
are discussed. It is shown that small couplings give exponents
very close to the ones observed for genomic sequences. In our
concluding remarks of Sec. V the general use of the network
method is summarized.

II. INTERMITTENT MAPS AND
ASSOCIATED NETWORKS

In this section we first recall the dynamics of the polynomial
map and describe the transformation to symbol sequence for
later comparison with genomic sequences. It is important to
note here that uniformly distributed symbol frequencies will
not be assumed in the current study. The symbol frequency
produced by the map will depend on the chosen partition
of the phase space and will be dictated by comparison with
real genomic sequences where the symbol frequencies have
different average values for each symbol.
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FIG. 1. The polynomial map with parameter value α = 0.5.

A. The polynomial map

The polynomial map is defined by the following iteration
scheme [19,21]:

xn+1 =
{

xn

(
1 + 2αxα

n

)
, if xn � 0.5

2xn, if xn > 0.5
n = 1,2 . . . , (1)

where n is a discrete time index and xn ∈ [0,1] is taken mod-
ulo 1 for all n and α > 0. For 0 < α < 1 the map is ergodic.
Figure 1 shows the graph of xn+1 vs. xn of the polynomial map
for a parameter α = 0.5 located in the center of the ergodic
regime. Note that near xn ∼ 0 the slope is close to 1, and hence
intermittent behavior is produced. In a symbolic dynamics
approach, the laminar phase of intermittent behavior corre-
sponds to repetitions of the same symbol for quite a long time,
which is then interrupted by chaotic outbursts [22]. The symbol
repetitions generate long-term correlations. A similar feature
is also observed in genomic sequences. For DNA very often
particular substrings of symbols are repeated again and again,
causing a dynamics that is significantly different from random
behavior and exhibiting long-term correlations. For this reason
it is obvious that intermittent maps, as opposed to simple,
fully developed chaotic maps, are good candidates to model
sequences of symbols with similar statistics as in genomes.

B. Symbol sequences associated with maps

The symbolic dynamics technique for the analysis of maps
has a long tradition (see, e.g., Ref. [22] for an introduction).
The resulting sequences carry the correlations inherited by the
map and provide the means of understanding the dynamical
behavior in a coarse-grained way.

To comply with the structure of genomic se-
quences we use a translation based on m = 4 sym-
bols. The phase space is partitioned into four segments
[0,M1), [M1,M2), [M2,M3), [M3,1], where Mi, i = 1,2,3 are
real numbers, chosen in such a way that the frequency of
appearance of the four nucleotides in a particular chromosome
is reproduced by the map. Using this phase space partition
the time series produced by Eq. (1) is transformed into
a sequence L = l1,l2,l3, . . ., with symbols taken from a
four-letter alphabet representing the four nucleotides: li ∈

[A (adenine),G (guanine),C (cytosine),T (thymine)]:

li =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A, if 0 � xi < M1

G, if M1 � xi < M2

C, if M2 � xi < M3

T , if M3 � xi < 1

i = 1,2 . . . . (2)

As a particular example we consider human chromo-
some 20, where the individual nucleotide frequencies are
pA = 0.282856,pC = 0.215134,pG = 0.215896, and pT =
0.286114. To calculate the Mi values, we first determine the
invariant density of the polynomial map; i.e., we iterate the
map and calculate the local density of points, or probability
p(x) that a specific value will occur between x and x + dx.
For this chromosome the Mi i = 1, . . . ,4 are determined as∫ M1

0
p(x) dx = pA = 0.282856,

∫ M2

M1

p(x) dx = pG = 0.215896, (3)

∫ M3

M2

p(x) dx = pC = 0.215134.

By using the transformation Eq. (2) of map Eq. (1) with Mj

values given by Eq. (3) an arbitrarily long symbol sequence
li ,i = 1, . . . ,N is produced, whose correlations are dictated by
the polynomial map and whose symbol frequencies correspond
to the ones of chromosome 20.

C. Network approach to symbolic sequences

In this section a general relation between networks and
symbol sequences is established. This construction is generic
and holds for any symbol sequence whether it is a natural
or experimental symbol sequence (e.g., natural languages,
DNA) or an artificial sequence. In the second category random
sequences are included, as well as sequences obtained via
certain rules and algorithms and sequences obtained, e.g., by
map iteration processes, as described in the previous section.

Consider a generic symbolic sequence

L = l1, l2, . . . , li , . . . , lN (4)

of length N , where the symbols li take values from a finite
alphabet of size m. For our approach the sequence L is covered
with (divided into) segments (blocks, strings) of size s � N .
The maximum number of all possible strings of size s with
symbols taken from an alphabet with m symbols is

Smax = ms. (5)

To fully cover the sequence, N/s segments are needed.
As a concrete example consider covering the binary (m = 2)
sequence L = {001010001101011011001} by strings of size
s = 3. The following substrings occur: S1 = {001}, S2 =
{010}, S3 = {101}, S4 = {011} with string S1 occurring three
times and string S4 occurring twice.

In uncorrelated, random sequences of infinite size all strings
Si, i = 1, . . . ,Smax of length s occur with the same probability

pi = 1/Smax, i = 1, . . . ,Smax, (6)
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while for correlated and natural sequences Eq. (6) usually does
not hold. In natural and correlated sequences the total number
of observed strings is denoted by V and is always V � Smax.

Within the ensembles of possible Si consider furthermore
the probability bij of string i = [I1,I2, . . . ,Is] to be followed
by string j = [J1,J2, . . . ,Js] (both having the same length
s). The elements bij are identified actually as conditional
probabilities: Having located the string i in the sequence L,
the element bij represents the conditional probability that it is
followed by the string j . b is a square matrix of size V × V .
The matrix b can be related to the joint probability of finding
the combined string i ⊗ j = [I1,I2, . . . ,Is,J1,J2, . . . ,Js] of
length 2s as follows:

bij = pi⊗j

pi

= p[I1,I2,...,Is ,J1,J2,...,Js ]

p[I1,...,Is ]
. (7)

Based on the conditional probability bij of string i to be
followed by string j on a very long sequence L, an associated,
abstract network can be constructed whose nodes are the
strings Si, i = 1, . . . ,V of length s. Thus the number of
nodes, or network capacity V , is at most Smax. An edge is
drawn between two nodes i and j if the corresponding strings
i = [I1,I2, . . . ,Is] and j = [J1,J2, . . . ,Js] are found in direct
succession anywhere in the sequence L. The edge between i

and j nodes is weighted with the frequency of finding strings
i and j in succession, and thus the conditional probability
matrix element bij gives the weight of the edge between nodes
i and j . In the network notation the matrix bij is identified
as the connectivity or adjacency matrix. Note that in general
bij �= bji for genomic or natural symbolic sequences. Thus
the adjacency matrix created by genomic sequences indicates
that the corresponding network belongs to the class of directed
networks (graphs).

In the abstract networks generated by symbolic sequences
as proposed above, loops (sometimes also called “self-loops”
or “buckles”) are often present, since it is quite common that a
certain string will be followed by an identical string. Loops do
not occur in social networks, for example, where an individual
does not interact with himself. On the other hand, in food
distribution networks between cities self-loops on nodes are
allowed, since food maybe consumed (or distributed) in the
city it was produced. Loops are also observed in genomic
networks, brain neuron networks, the cardiovascular system,
etc. [23–26]. In terms of the elements of the connectivity
matrix, the presence of loops means bii �= 0. In graph theory,
graphs which contain loops are often called multigraphs.

Having defined the nodes and links in the network corre-
sponding to a symbol sequence we proceed in identifying the
various network parameters. The degree ki of a node i, which
corresponds to the symbolic string i = [I1,I2, . . . ,Is], is usu-
ally defined as the number of links originating from the node i

towards any other node in the system. For weighted networks,
as in the case of symbol sequences, each link is weighted with
the appropriate weighting factor, and the degree ki expresses
the cumulative weighted linking of the particular node i to all
other network nodes. In the case of symbol sequences, (where
the links are identified as the conditional probabilities bij ), the

outflowing degree ki of string i is calculated as

ki =
V∑

j=1

bij =
∑V

j=1 pi⊗j

pi

= 1. (8)

Thus, when we use the conditional probability bij , all nodes
carry the same outflowing degree (normalized to 1), since
each string is always followed by another string within the V

possible strings. However, since we are dealing with directed
networks, we also have to take into account the inflowing
degrees of freedom. The probability to observe a certain string
i is then given by the balance between inflow and outflow.

In the case of symbol sequences we identify the degree ki of
a node i as the frequency of appearance of the corresponding
string i, to be consistent with the distributed weights carried by
the nodes. This definition makes sense: For dynamical systems
with a Markov partition the invariant probabilities of string
sequences are determined by the balance between inflowing
and outflowing iterates (a direct consequence of the fixed-
point property of the Perron-Frobenius operator). Hence the
net balance of flow along the links fixes the invariant density
and hence also the probabilities of symbol sequences in a
coarse-grained description.

The distribution of nodes which carry degree k is denoted
by P (k). This means we now look at the set of all observed
frequencies of symbol sequences, and consider the probability
distribution of these frequencies. For example, if all symbol
sequence probabilities are the same, as, for example, for
uncorrelated random sequences of infinite length, then P (k)
corresponds to a sharply peaked delta distribution. The
quantity P (k) is called the degree distribution. It characterizes
the network globally and classifies it to be a scale-free network
if P (k) has power-law tails:

P (k) ∼ k−γ . (9)

γ is the power-law exponent expressing the scale-free nature
of the network, and it is typically in the range 2 < γ < 3,
although in some cases γ may lie outside this interval.

Apart from the degree distribution, one of the most
important variables in the theory of complex networks is
the local clustering coefficient cn around the node n, which
describes the local structure of the network around that specific
node. The local clustering coefficient is defined as

cn =
∑

i,j bnibij bjn∑
i �=j bnibjn

. (10)

In Eq. (10) the numerator is related to the total weighted
number of closed triangles originating from node n, while the
denominator gives the maximum number of possible triangles
originating on the same node [27,28]. Sometimes it is possible
to find the functional form of the clustering coefficient c(k)
of nodes having degree k. This is an important property of
the network and indicates an underlying hierarchical structure
[29]. For hierarchical networks a power-law form is achieved:

c(k) ∼ k−b, (11)

where the exponent b takes a positive value for hierarchical
networks, while it is constant for random uncorrelated net-
works and for scale-free networks. In many natural networks
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b∼1 [29]. In general it is difficult to find such a relation. It is
important here to make the distinction between c(k), which is
the functional form of the clustering coefficient as a function of
the degree k, and ci which is the clustering coefficient of node i.

The global clustering coefficient c(V ), defined as the
average of the local clustering ones, characterizes globally
the connectivity in the network and in general depends on the
size V of the network:

c(V ) = 〈ci〉 = 1

V

V∑
i=1

ci . (12)

For many real systems c(V ) is independent of V . In partic-
ular, the global clustering coefficient in random uncorrelated
networks decreases as [30]

c(V ) ∼ V −1. (13)

In the case of scale-free, highly clustered and complex
networks Eq. (13) changes to

c(V ) ∼ V −ν . (14)

The distribution of clustering coefficients P (c) takes a
power-law form in scale-free networks:

P (c) ∼ c−β. (15)

For random, uncorrelated networks, it was shown by Watts
and Strogatz that the local clustering coefficients have an
exponential type of distribution [29,30].

In view of the presence of self-loops in genomic sequences,
their contributions in the node degrees and the clustering
coefficients need to be commented on. In the numerator of
Eq. (10) the presence of the term bkkbkkbkk might seem strange
in social networks, but in the representation of symbolic
sequence it represents the phenomenon of repeats, i.e., the
repetition of the same string a number of times in the sequence.

If the node j represents the string j ≡ [J1,J2, . . . Js], where Ji

are symbols, then the term bjj bjj bjj denotes the presence of
string j ⊗ j ⊗ j ⊗ j in the sequence. Repetitions are very
frequent in genomic sequences, in particular for primates.
In the human genome one sequence repeat alone (the ALU
sequence) comprises approximately 11.5% of the human
genome, while the total repeat content reaches 35% of the
human DNA.

III. NETWORK PROPERTIES OF DNA SEQUENCES AND
OF INTERMITTENT MAPS

A. DNA sequences

In this section we first apply the network approach to
genomic sequences, following the ideas described in the
previous section. As working examples we use chromosomes
10, 14, and 20 from the human genome.

In natural sequences such as in DNA most often bij �=
bji . In genomic sequences the two strands of the helix have
complementary structure. Let us call the two strands C1 and
C2. This means that if a nucleotide A is found in a certain
position in C1 a nucleotide T will be found in the sequence C2
in the same position. Similarly, T is the compliment of A, C is
the compliment of G and G is the compliment of C. Consider,
e.g., the string S1 = [AGGT ] followed by S ′

1 = [CGT T ],
both found in strand C1. Then in strand C2, the following
strings will be found: S2 = [T CCA] and S ′

2 = [GCAA]. Thus
if we denote by ˜ the complimentary strings and strands, we
have the following relation for the weighting matrices:

bij (s) = b̃ĩj̃ (s). (16)

It is then sufficient to compute the network characteristics of
one of the two strands and to mirror its properties to the other
strand according to Eq. (16).

In Fig. 2(a) the degree distribution of the symbolic network
characterizing the chromosome 20 genomic sequence of Homo
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FIG. 2. (Color online) Distribution functions related to the network derived from the human chromosome 20. (a) The degree distribution
P (k) of the network of strings with various sizes s. The dashed line corresponds to a power-law decay with exponent γ ∼ −3. (b) The
distribution P (b) of link weights bij between nodes. The dashed line corresponds to an exact power law with exponent γ1 = −3. The yellow
bullets correspond to a random and uncorrelated sequence with s = 5. Strings of various sizes s are plotted with different colors and arrows as
indicated in the figure.
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sapiens is presented. Strings of different sizes were considered,
up to s = 9. In the x axis the degree k characterizing the total
link strength carried by a node is plotted, normalized with the
total number of (weighted) links. This normalization is needed
because the total number of links is a decreasing function of
the length L of the symbol sequence. The y axis shows the
distribution of nodes of degree k. For comparison, the dashed
line represents a pure power-law distribution with exponent
γ = −3.

In Fig. 2(b) the distribution of individual link sizes (weights
bij ) is plotted independently of the node to which they belong.
String sizes s = 1–6 are shown, taken also for the human
chromosome 20. Longer string sizes are not possible to
investigate due to computational limitations, since the size
of the matrix b grows exponentially with s. The observed
form of the P (b) distribution is very similar to that of P (k)
in Fig. 2(a). This is not unexpected since the values in the
latter figure represent cumulative link weights originating from
one node. Again the dashed line corresponds to power-law
behavior with exponent γ1 = −3. The two exponents may not
be exactly identical, due partly to stochasticity and partly to
the fact that the degree is a sum over a finite number of link
sizes (over a node). If the number of links on a node were
infinite, then the two distributions would posses exactly the
same exponent γ ≡ γ1. For comparison, the P (b) distribution
calculated from a random and uncorrelated symbol sequence
of the same size as chromosome 20 is plotted with yellow
bullets, as indicated in the figure. The segmentation was done
with s = 5. In contrast to the genomic data, the random symbol
sequence shows a hump around the mean value 5 × 10−7

and then drops abruptly (steplike), as is expected for finite,
uncorrelated random sequences.

Note that for the case of symbol sequences the degree of
a node coincides with the frequency of appearance of the
particular string of length s. For s = 1 (one-letter words),
there are only four configurations, and all of them have
similar frequency. That results in a narrow range distribution
with little structure. For s = 2 (two-letter words) a first
appearance of two maxima is observed, which correspond
to the presence of multiple T and A in the sequence. The
minimum values correspond to the infrequent presence of the
complex GC in the system, which is known to be related
to the presence of functional units called promoters. For
2 < s < 6 the presence of a large number of strings (nodes in
the network) smoothes the two well-pronounced maxima into
a two-humped distribution. Again, the two maxima correspond
to the presence of multiple A and T strings, while the minimum
corresponds again to the complexes of GC and CG followed
by one of the other four nucleotides. For s > 5 a power-law
degree distribution establishes gradually, which indicates the
scale-free character of this symbolic network.

For comparison, the degree distributions as computed for
human chromosomes 10, 14, and 20 are plotted together in
Fig. 3. The degree distributions of the three chromosomes
are qualitatively similar, which may point to a universal type
of scaling. In the same figure the degree distribution of a
random sequence of the same size as chromosome 20 is plotted.
The random distribution is single-humped and is symmetric
around its mean value, as expected for random uncorrelated
sequences. Clearly, for infinitely long random sequences one
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FIG. 3. (Color online) The degree distributions for three different
human chromosomes. The degree distribution of a random symbol
sequence of the same size is also shown (humped distribution).

expects convergence to a δ function, whereas for genomic
sequences the distribution is much broader.

To further explore the network connectivity we compute
the size distribution of clustering coefficients throughout the
network. Due to computer memory limitations only strings
of size s � 6 can be computed. To suppress fluctuations, the
cumulative size distribution Pcum(C) is calculated as

Pcum(C) =
∫ ∞

C

P (c) dc. (17)

For power-law distributions of the form (15), the cumulative
size distribution also follows a similar power law, as

Pcum(C) ∼
∫ ∞

C

c−β dc ∼ C−β+1. (18)

In Fig. 4 the cumulative clustering coefficient distribution
is plotted as a function of the coefficient size C. Data from
chromosomes 20 and 14 are plotted together with data taken
from an artificial random symbol sequence whose symbol
frequencies are the same as in chromosome 20. In a double
logarithmic scale the genomic cumulative distributions exhibit
an almost linear regime for large sizes, indicating the presence
of a power law. This behavior becomes more prominent as
the string size increases. In comparison, the data from the
large-length random sequence have an abrupt, almost steplike
decay, indicating a very sharply peaked Gaussian (δ-like)
distribution, whose cumulative distribution function is very
close to a steplike function.

B. Polynomial map

Methods to construct networks from maps or a given time
series have been previously addressed in Refs. [31–34], using
as a particular examples the tent map, the cusp map, or the
logistic map. In Ref. [31] the phase space of the maps is
segmented into a number of cells, and each cell corresponds to
a node of the network. The connectivity matrix is then defined
by the frequency of transitions between the different cells or
nodes of the network.
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FIG. 4. (Color online) The cumulative distribution of clustering
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chromosomes 14 (red, dotted line) and 20 (blue, dotted-dashed line),
and for a random sequence (black, solid line) of equal size with
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The current approach is inspired by Ref. [31], but the
transition from the map to the network is achieved using
symbolic sequences generated by the map. In other words,
the map dynamics is first mirrored on a symbol sequence as
explained in Sec. II B, and then the network is constructed from
the symbol sequence as discussed in Sec. II C. The choice of
the polynomial map, mentioned briefly in Sec. II A, is based
on its intermittent behavior and its capacity to give rise to time
series (and corresponding symbol sequences) with long-range
features, as opposed to the dynamics of the logistic map and
other non-intermittent maps giving rise to nearly uncorrelated
behavior.

In Fig. 5(a) the cumulative degree distribution for the
polynomial map is shown for various values of string sizes
s and parameter value α = 0.5. The sequence size was chosen
as L = 4.3 × 107, of comparable size as chromosome 20. In
our plots we have chosen the cumulative degree distribution
rather than the probability density function to somewhat
smoothen out fluctuations. The frequency of appearance of
each nucleotide is chosen as in Eq. (3) and corresponds to those
of human chromosome 20. For this particular parameter value,
all string sizes point towards the same exponent γ (a = 0.5) ∼
3. Note that the number of allowed string configurations V

generated by the polynomial map is far less than the number of
strings observed in human genomic sequences. As an example
we note that VDNA(s = 9) = 244 925 < 49 = 262 144, while
Vpoly(s = 9) = 1790.

In Fig. 5(b) the cumulative degree distribution for the
polynomial map is shown for various values of the parameter
value α and string sizes s = 9. It is obvious that the exponent
γ is a decreasing function of the parameter α. By appropriate
choice of the value of α we can achieve the same power-law
exponent as the one observed in the human chromosome.
On the other hand, the number of configurations generated
by the polynomial map (∼1700) is far less than observed
in genomic sequences (∼250 000 in chromosome 20). This
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FIG. 5. (Color online) Network symbol representation of the
polynomial map. (a) Cumulative degree distribution for parameter
value α = 0.5 and various string sizes (see different curve numbers).
The dashed line corresponds to an exact power law with exponent
γ = −3. (b) Cumulative degree distribution for string size s = 9 and
various parameter values, as indicated by the arrows.

difference is nontrivial, it covers two orders of magnitude. To
achieve the diversity of the string configurations together with
the degree distribution scaling observed in genomic sequences,
a diffusive coupling is introduced in the next section between a
large number of polynomial maps (considered as “units”). This
will create a large variety of string configurations together with
similar exponents as for genomic networks.

IV. NETWORK PROPERTIES OF COUPLED
POLYNOMIAL MAPS

Coupled map lattices (CMLs) have been extensively used
for the modelling of many physical systems which involve
interactions between many spatially separated constituents.
Much emphasis of research activity has been put on spa-
tiotemporal chaos and synchronization phenomena arising in
CMLs [35–41].

For the coupling of polynomial maps, in the present study,
a simple, one-dimensional chain arrangement with periodic
boundary conditions is assumed. The periodic boundary
conditions are chosen simply for convenience, and they do not
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affect, qualitatively or quantitatively, the results in the limit of
very long chains, as considered here.

Our linear chain arrangement consists of L = 108 polyno-
mial maps coupled to their nearest neighbors with a coupling

constant r . This large value of L is high enough (a) to
assimilate long DNA chains and (b) to ensure statistical
independence of finite size effects. The CML dynamics
is:

xi
n+1 =

{
(1 − r)xi

n

[
1 + 2α

(
xi

n

)α] + 1
2 r

{
xi+1

n

[
1 + 2α

(
xi+1

n

)α] + xi−1
n

[
1 + 2α

(
xi−1

n

)α]}
if xn � 0.5

(1 − r)2xn + 1
2 r

(
2xi+1

n + 2xi−1
n

)
if xn > 0.5

. (19)

The values xi
n are taken modulo 1 for all n, as in Eq. (1). The

index i = 1,2 . . . runs over all local maps, while n = 1,2, . . .

is a temporal index. Random initial conditions are chosen
for each map. The parameter value is chosen as α = 0.5, and
the number of iterations in our simulation is T = 5000. The
chosen number of iterations is sufficiently high to pass the
transient dynamics and to achieve the steady state, since from
T ∼ 2000 iteration steps onwards the coupled maps enter
their dynamical equilibrium regime. At T = 5000 the state
of each map is recorded, and a transformation to a symbol
sequence is performed using Eq. (3), with the same one-point
symbol sequences as for the chromosome data. At the final
stage the symbol sequence is divided into strings of size
s, and the corresponding network connectivity matrix b is
constructed according to the method described in Sec. II C.

In Figs. 6–8 the cumulative degree distribution Pcum(k), the
link size distribution P (b), and the cumulative distribution of
clustering coefficients Pcum(c) are plotted for various values
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FIG. 6. (Color online) Coupled polynomial maps on a linear
chain. The cumulative degree distribution Pcum(k) of the network is
plotted for various values of the coupling constant r . For comparison
the corresponding data for chromosome 20 are plotted with the
black solid line. Parameter values are α = 0.5, T = 5000, L =
4.3 × 107, s = 9. The symbol frequencies were chosen as in Eq. (3).
Various values of the coupling constant r are used, as indicated in the
legend.

of the coupling constant r . For comparison, the corresponding
data for chromosome 20 are also plotted in each figure.

For the calculation of the degree distribution window
size s = 9 is used. In Fig. 6 the cumulative distribution
is plotted. Comparison of the different curves reveals that
the coupled polynomial maps with parameter α = 0.5 and
coupling constant of the order of r ∼ 0.35 assimilate relatively
well the sequence structure of chromosome 20.

For the calculation of the link size distribution strings of size
s = 6 were employed. This is because transition matrices of
size 4s × 4s need to be considered which are very demanding
in computer memory. The results for s = 6 are plotted in
Fig. 7 both for human chromosome 20 (black solid line) and
for coupled polynomial maps with parameter α = 0.5 and
various values of the coupling constant r . Again the best fit
is observed for r ∼ 0.35 despite the fact of using a different
(smaller) string size s for the calculations. This shows that the
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FIG. 7. (Color online) Coupled polynomial maps on a linear
chain: The link size distributions P (b) of link weights bij between
all the nodes is plotted for various values of the coupling r . The
values of r increase from r = 0 for the most left (red) curve,
successively, to r = 0.5 for the most right (purple) curve. The
data of chromosome 20 are represented by the black solid line.
Parameter values are α = 0.5, T = 5000, L = 4.3 × 107, s = 6.
The symbol frequencies were chosen as in Eq. (3). The solid straight
line represents an exact power law with exponent −3.
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FIG. 8. (Color online) The cumulative distribution of clustering
coefficients Pcum(c) is plotted for various values of the coupling r , as
indicated by the arrows. For comparison the data of chromosome
20 are plotted as a black dashed line. All parameters (including
nucleotide frequencies) are chosen as in Fig. 7.

similarities between the statistics of chromosomes and coupled
polynomial maps are robust to variations in the size of window
used in the creation of the network, provided that s is not too
small (s > 5). The observed power-law exponent is again of
the order −3, as represented by the straight line in the double
logarithmic scale in Fig. 7.

Finally, the distributions of clustering coefficients are
presented in Fig. 8. Again, the genomic data (chromosome 20)
are plotted together with sequences resulting from coupled
polynomial maps with α = 0.5 and various coupling rates
r . The results are consistent with the previous findings.
While for small values of r the distribution of clustering
coefficients drops abruptly as in random sequences, as r

grows the distribution develops a long tail which approaches
the tails of DNA sequences around the coupling values
r ∼ 0.35–0.40.

We notice that uncoupled polynomial maps can not well
represent the complexity of DNA sequences, although they are
known to produce intermittency with long-range correlations.
On the other hand, a medium size coupling between polyno-
mial maps is able to create the appropriate correlations and to
resemble the structure of DNA in many levels of complexity.
From the last three figures one can see that a coupling constant
of the order of r = 0.35 is enough to adjust the power-law
exponents to values close to the ones observed in genomic
sequences. The need for a coupling between neighboring
units to properly assimilate DNA sequences demonstrates the
presence of local interactions between the adjacent nucleotide
strings which create the correlated, mosaic structure of the
genome.

The value of the parameter α was chosen here as α = 0.5
to be located in the center of the map’s ergodic regime.
Ergodicity of the local map is important to a priori allow
for the entire state space to be explored. Small variations
to the values of α with corresponding adjustment of the

values of the coupling constant r lead to similar network
exponents.

Similar conclusions are obtained from the network analysis
of other chromosomes. Just slight variations in the values of the
exponents and the necessary coupling constants are noted due
to the difference in the symbol frequencies in the chromosomes
and due to stochastic effects.

From our analysis we also see that quite generally coupled
polynomial maps give rise to complex small-world networks,
via the corresponding symbol sequences and transition matrix,
while the network exponents can be adjusted by varying the
coupling constant r .

V. CONCLUSIONS

Our main motivation in this study was to construct a
coupled higher-dimensional dynamical system that has the
same stochastic properties and higher-order correlations as
DNA sequences when a symbolic dynamics approach is used.
In a sense, evolution (that leads to the DNA statistics) can
also be regarded as a highly nonlinear dynamical process
that asymptotically leads to the observed correlated structure.
While it is clear that evolution is a much more complex process,
from a statistical point of view it leads to correlations and
complex behavior similar to that of the coupled map lattices
studied in this work.

We used the dynamics of coupled polynomial maps to
model the correlated structure of genomic sequences via
a network approach. The weighted network approach to
symbolic sequence was first introduced and applied to genomic
and random, uncorrelated sequences and then compared with
the corresponding statistics of coupled intermittent maps. For
the modeling the use of intermittent maps appears to be
necessary in order to retrieve the scaling properties observed
in the primary structure of eucaryotic DNA. It was first
shown that although the dynamics of single intermittent maps
produce long-range correlated symbolic sequences, with a
variety of power-law exponents depending on the choice
of the parameters, they do not produce the diversity of
genomic strings observed in DNA sequences. To overcome this
limitation coupled map lattices were considered, with diffusive
coupling between neighboring units on a one-dimensional
lattice. It was shown that a medium size coupling between
neighboring polynomial maps is sufficient to produce (a)
power-law exponents comparable with the ones obtained
from genomic data and (b) a statistical distribution of string
frequencies similar to real DNA sequences. Our results are
consistent with the known existence of complicated patterns
of correlations between adjacent segments in DNA.

The reported results concern the primary structure of
human chromosomes. The network method can be applied
to any genomic sequence provided it is long enough to assure
reasonable statistics. It would be of great interest to study
further classes of organisms with this method and explore
the range of values of the network exponents for different
organisms. Additionally, the proposed network approach to
symbol sequences may be used to construct quite generally
networks from any symbol sequence (natural, experimental,
or artificial) and to test for scaling characteristics.
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