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Spectral solution of delayed random walks
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We develop a spectral method for computing the probability density function for delayed random walks; for
such problems, the method is exact to machine precision and faster than existing approaches. In conjunction with
a step function approximation and the weak Euler-Maruyama discretization, the spectral method can be applied
to nonlinear stochastic delay differential equations (SDDE). In essence, this means approximating the SDDE
by a delayed random walk, which is then solved using the spectral method. We carry out tests for a particular
nonlinear SDDE that show that this method captures the solution without the need for Monte Carlo sampling.
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Introduction. Noise and time delays are key features of
models of human balance [1,2], circadian oscillators [3], the
dynamics of gene regulation [4], cortical interneuron migration
[5], and resting brain dynamics [6]. Despite the success of
spectral methods in other stochastic contexts [7], delayed
stochastic systems are typically not treated using spectral
methods [8].

In this Rapid Communication, we present a spectral numer-
ical method to calculate the probability density function (pdf)
for the delayed random walk that is obtained by applying the
weak Euler-Maruyama discretization to a class of stochastic
delay differential equations (SDDE). We refer to the method
as a spectral method because it involves solving the problem
in Fourier space and then using the inverse FFT (fast Fourier
transform) to compute the solution in physical space. This
method is fast, exact (to machine precision), and generalizable
to other, more complicated systems.

Consider the SDDE

dYt = φ(Yt − Yt−�dt )dt + γ (Yt − Yt−�dt )dWt (1)

with initial conditions Y (t) = θ (t) for t ∈ [0,�dt]. Here � is
the integer delay (lag), Wt is the standard Wiener process, and
φ and γ are measurable functions subject to the condition that,
when γ ≡ 0, the resulting deterministic equation has a stable
fixed point.

To obtain the pdf of a stochastic differential equation (with
no delay) at time t > 0, a natural approach is to solve the
associated Fokker-Planck equation. For an SDDE, however,
the delayed Fokker-Planck equation is circular [8] and cannot
be solved using standard numerical methods [8]. For this
reason, past studies have applied asymptotic and perturbative
methods to extract useful information from delayed Fokker-
Planck equations [9]. Such methods break down when the
noise term is multiplied by a function of the delayed solution
or when the delay is large.

The technique employed in this paper is fundamentally
different from the Fokker-Planck approach. We use a standard
stochastic numerical method to discretize Eq. (1) in time and
space. This discretization, together with piecewise constant
approximation of the functions φ and γ , yields a delayed
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random walk approximation Eq. (4) of the original SDDE,
the pdf of which is then computed using a fast and accurate
spectral method.

An important reason for taking this approach is that delayed
random walks can often be solved exactly [10]. Prior delayed
random walk approximations to SDDE [10,11] feature a
V-shaped potential such that the walker’s probabilities of right
and left movements are spatially dependent. The equivalence
between the Fokker-Planck equations for this delayed random
walk and the original SDDE has been demonstrated [10],
generalizing the ideas of Ehrenfest and Kac.

Instead of using a spatially dependent potential, the delayed
random walk approximation Eq. (4) allows for nonuniformity
of both the sizes K±

r and probabilities {qr,1 − qr} of the
increments; through r , these quantities also have a piecewise
constant dependence on space. This (piecewise) spatial homo-
geneity allows us to rewrite the system as a recursion that can
be solved using spatial Fourier transforms. We view Eq. (6) as
a discrete equation for the approximate time evolution of the
pdf of Eq. (1). Note that Eq. (6) differs both in derivation and
solution from Fokker-Planck equations for SDDE [9].

Delayed random walk. We discretize SDDE Eq. (1) using
the weak Euler-Maruyama scheme [12] to obtain

Yn+1 = Yn + φ(Yn − Yn−�)�t + γ (Yn − Yn−�)
√

�tZ, (2)

where Z is a Bernoulli random variable that takes values
{−1,1} with equal probabilities. The initial conditions given
after Eq. (1) yield initial conditions for Eq. (2): Yj = θ (jdt)
for j = 0,1, . . . ,�. Let IA denote the indicator function for the
set A. We use

φ(x) ≈
R∑

r=1

μrI[cr ,cr+1)(x), γ (x) ≈
R∑

r=1

σrI[cr ,cr+1)(x),

piecewise constant approximations with constants μr and σr ,
and we substitute back into Eq. (2) to obtain

Yn+1 = Yn + μr�t + σr

√
�tZ, cr � Yn − Yn−� < cr+1.

(3)

We rewrite Eq. (3) as the delayed random walk

Yn+1 = Yn + Kn, Kn = Kr
n, if cr � Yn − Yn−� < cr+1,

(4)
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where Kr
n is a Bernoulli random variable that takes values

{K+
r ,K−

r } with probabilities {qr,1 − qr}, respectively. We
choose {K+

r ,K−
r ,qr} such that the moments of Kr

n match
those of μr�t + σr

√
�tZ.1 The delayed random walk Eq. (4)

has not been considered in the literature, to the best of
our knowledge. This random walk is more general than
exactly solvable delayed and/or persistent random walks in
the literature [13,14].

Spectral method. Let � = {K+
r ,K−

r }Rr=1 and let αj be the
outcome of the random variable Kn−j+1. Applying Bayes’
theorem recursively to Eq. (4), we get

P (Yn+1 = s ∩ Kn = α1 ∩ · · · ∩ Kn−�+1 = α�)

=
∑

α�+1∈�

P (Yn = s − α1 ∩ Kn−1 = α2 ∩ · · · ∩ Kn−� = α�+1)

×P (Kn = α1|Kn−1 = α2 ∩ · · · ∩ Kn−� = α�+1). (5)

Denote the left-hand side as T n+1
s (α�

1) and the conditional
probability as p(α�+1

1 ). Then

T n+1
s

(
α�

1

) =
∑

α�+1∈�

T n
s−α1

(
α�+1

2

)
p
(
α�+1

1

)
. (6)

Taking the Fourier transform in s yields the linear system

T̂ n+1
k

(
α�

1

) =
∑

α�+1∈�

T̂ n
k

(
α�+1

2

)
p
(
α�+1

1

)
e−i2πkα1

︸ ︷︷ ︸
M

(7)

in k space, where T̂ n+1
k (α�

1) denotes the Fourier transform of
the probability of reaching s by taking a sequence of steps
α�, . . . ,α1 in the previous � steps. In Eq. (7), we use M to
denote the (2R)� × (2R)� matrix that gives the probability of
transitioning from a sequence of states (α�+1, . . . ,α2) to the
sequence (α�, . . . ,α1). Sparsity of M follows easily: since each
Bernoulli random variable has only two outcomes, there are
exactly two nonzero entries in every column of M for a total of
2 × (2R)� nonzero entries. From Eq. (7) we have v̂n+1 = Mv̂n,
which implies v̂n = Mn−2�v̂2�, where v̂n is a (2R)� × 1 vector
with each component representing T̂ n

k (α�, . . . ,α1). Let f (n,s)
denote the pdf of the delayed random walk Eq. (4) at time
step n, and let f̂ (n,k) denote its Fourier transform with k as
the variable that is Fourier conjugate to s. Then, based on the
above, we have derived the solution in Fourier space:

f̂ (n,k) = 1T Mn−2�v̂2�. (8)

To compute the initial condition v̂2�, we require two steps.
First, we use the initial condition Y0, . . . ,Y� in the modified
tree method (described below) to compute the exact pdf
of Y2�, the solution of Eq. (4) at time n = 2�. Next, we
set v̂2� equal to the Fourier transform in space of the
pdf of Y2�. In this way, the spectral method handles any
initial conditions {Yj }0�j�� consisting of discrete random
variables. This includes, for example, any set of constant initial
conditions for Eq. (4), and therefore any piecewise constant
initial function θ (t) for Eq. (1).

What remains is to recover f (n,s) from f̂ (n,k). Since the
walk is discrete in space, f (n,s) is a linear combination of

1For the purposes of approximating the weak EM scheme of the
SDDE, we set Kr

n = μr�t + σr

√
�tZ.

Dirac δ functions,

f (n,s) =
∑

m∈N
fmδ(s − sm), (9)

where sm takes specific values in s space depending on
the parameters in the set � and N = {−N/2,−N/2 +
1, . . . ,N/2 − 1}. The presence of the Dirac δ’s is a reason
to avoid naı̈ve Fourier inversion of f̂ (n,k). However, note that
f is determined completely by the set {(fm,sm)}m∈N —it is this
set we will solve for.

With f represented by Eq. (9), its Fourier transform is
f̂ (n,k) = ∑

m∈N fme−i2πksm . We sample f̂ (n,k) at discrete
values of k given by kj = j�k for all j ∈ N :

f̂ (n,kj ) =
∑

m∈N
fme−i2πj�ksm . (10)

Let δ̂ denote the Kronecker delta, and assume that �k�s =
1/N . Then the inverse FFT (IFFT) of Eq. (10) is

f (n,sr ) = 1

N

∑

j∈N

∑

m∈N
fme−i2πj�ksmei2πj�ksr

= 1

N

∑

m∈N
fm

∑

j∈N
ei2πj�k(r−m)�s

= 1

N

∑

m∈N
fmNδ̂(r − m) = fr .

The spectral method can now be summarized. In the first
step, we compute Eq. (8), the exact solution in Fourier space,
but sampled only at discrete values of k given by kj = j�k

for all j ∈ N . In the second step, we compute the IFFT of
this sampled Fourier transform at all sm such that m ∈ N . As
shown, this yields the exact weight fm corresponding to the
spatial location sm, meaning that we can indeed recover the
set {(fm,sm)}m∈N that determines Eq. (9) exactly. We denote
the solution produced by the spectral method as fIFFT(n,s).
The only source of error between fIFFT(n,s) and the exact
pdf f (n,s) is due to the inaccuracy in the IFFT algorithm
itself [15].

Note that the first step requires computing the matrix-vector
product n times to obtain the Fourier transform at N different
points in k space, while the second step consists entirely
of the IFFT. The total complexity of the spectral method is
thus N (2R)�n + N log N ∼ O(n2), lower than the tree-based
method described below.

Choosing �s and �k. Since the parameters in � are not
necessarily equal, we have a pdf over s space with nonuniform
spacing. We first convert this nonuniform grid into a uniform
grid in order to use the IFFT. Let {K±

r }Rr=1 be rationals such that
L is the least common multiple (LCM) of their denominators.
Since the random walker changes its position by an element of
{K±

r }Rr=1 at every step, the minimum nonzero distance between
two sites that the random walker can occupy is given by �s =
1/L. The maximum and minimum s values that can be reached
by the random walker at any step n are, respectively, Smax =
n max{K±

r }Rr=1 and Smin = n min{K±
r }Rr=1. This also implies

that we have to calculate the pdf at N = (Smax − Smin)/�s ∼
O(nL) number of grid points. Since L is a constant given the
parameters, we get N ∼ O(n), where n is the number of steps
taken by the random walker. Finally, using �k�s = 1/N , we
get �k = 1/(N�s) = L/N . Note that the parameters in the
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FIG. 1. (Color online) Snapshots at different values of time n

show machine precision agreement between the densities computed
using the spectral method (each plotted with a different marker) and an
enumerative exact method (each plotted using the same gray scale and
color as the corresponding marker). Computed densities are for the
random walk Eq. (4) with delay � = 5 and two types of Bernoulli steps
Kn: outcomes {2,−2} with probabilities {0.7,0.3} when Yn � Yn−5,
and outcomes {1,−1} with probabilities {0.9,0.1} when Yn < Yn−5.
Initial conditions were Yn = 0 for n � �.

set � can be approximated such that L is small. This leads to
incurring a relatively small error in calculating the pdf, while
increasing the efficiency of the algorithm.

Modified tree method. For the delayed random walk Eq. (4),
we have also developed an enumerative method for computing
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FIG. 2. (Color online) For different delays �, densities computed
at time n = 60 using the spectral method (plotted using solid
markers) agree to machine precision with densities computed using
an enumerative exact method (plotted using lines of the same
gray scales and colors as markers). Computed densities are for
five different versions of the random walk Eq. (4), each with a
different delay � ∈ {1,2,3,4,5}. The Bernoulli steps Kn are as follows:
outcomes {1,−1} with probabilities {0.3,0.7} when Yn � Yn−�, and
outcomes {2,−2} with probabilities {0.9,0.1} when Yn < Yn−�. Initial
conditions were Yn = 0 for n � �.

40 50 60 70 80

1

2

3

4

number of steps (solid squares)

|| 
ε 

||
∞

16

1 2 3 4 5

delay (solid circles)

10

FIG. 3. Infinity norm errors ‖fIFFT(n,s) − f (n,s)‖∞ between the
spectral and exact pdfs are at the level of machine precision, both as
a function of time n and delay �. Each solid square, one per value of
time step n, corresponds to the ‖·‖∞ error between the solid markers
(spectral) and lines (exact) in Fig. 1. Each solid circle, one per value
of delay �, corresponds to the ‖·‖∞ error between the solid markers
(spectral) and lines (exact) in Fig. 2. All parameters are as in Figs. 1
and 2, respectively.

the exact pdf. This modified tree method involves growing a
tree of all allowed paths and probabilities of the random walker.
In previous work [14], the authors explained how to do this
when � = 1. For � > 1, we modify the old procedure, leverag-
ing the rationality of the increments of Eq. (4). Given the pdf
at any step m consisting of O(m) distinct states, computing the
pdf at step m + 1 using the tree method requires three steps:
(i) calculating all possible states at step m + 1, (ii) tracking
the history and the region in which each of these states lie,
and (iii) checking for recombinations to obtain the pdf at step
m + 1. Step (i) requires 2m operations, while Step (ii) requires
(2R)� operations per state. Step (iii) requires finding unique
states with the same history and summing the probabilities in
each of these unique states. The overall complexity is then∑n

m=1(2m)(2R)� + m2(2R)� ∼ O(n3). In this work, we use
this method for two purposes: to compute v̂2� for Eq. (8) and to
compute exact reference solutions against which we compare
the spectral method.

Results. For both Figs. 1 and 2, we plot in solid lines
(respectively, solid markers in the same gray scales and colors)
the pdf calculated by growing the tree (respectively, the
spectral method). In these figures, different gray scales and
colors and different markers are used for different values of n

and �, respectively. The solid markers lie exactly on the solid
curves, demonstrating the accuracy of the spectral method.
In Fig. 3, we plot ‖fIFFT(n,s) − f (n,s)‖∞ both for different
numbers of steps n (in solid squares) and different delays
� (in solid circles). All plots confirm the spectral method’s
accuracy up to machine precision. To obtain the pdf at n = 80
in Fig. 1, the modified tree method takes 1390.8 s and the
spectral method takes 0.67 s. To obtain the pdf for � = 1 in
Fig. 2, the tree method from [14] takes 0.09 s, the modified tree
method takes 0.29 s, and the spectral method takes 0.09 s. All
simulations were done using MATLAB on an eight-core Intel
i7 CPU. All codes used to produce the results in the paper
are available for download.2 In all the experiments reported in

2http://faculty.ucmerced.edu/hbhat/codes/ssdrw.tar.gz Refer to the
README file for details.
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FIG. 4. For the nonlinear SDDE Eq. (11), the accuracy of the cdf
computed via the spectral method increases as we increase the
number of piecewise constant branches R used to approximate the
tanh function. In the top panel, we plot in solid gray a fine-scale
reference cdf obtained through Monte Carlo (MC) simulation with
�t = 0.04 and 108 sample paths. In dot-dashed gray and solid black,
we plot the cdfs obtained using the spectral method with R = 3 and
R = 5 approximations, respectively. In the bottom panel, we plot the
pointwise errors between the spectral method cdfs and the MC cdf.
The maximum error decreases from 0.0727 to 0.0337 as we go from
R = 3 to R = 5. All plots are at time t = 2 for zero initial conditions.

Figs. 1 and 2, the spectral method is the fastest. Note that all of
these results use the initial conditions Yj ≡ 0 for 0 � j � �.

Next, we apply the spectral method to the SDDE

dYt = tanh(Yt − Yt−3dt )dt + dWt, (11)

subject to deterministic initial conditions θ (t) = 0 for t � 3dt .
Approximating tanh(x) by

∑R
r=1 μrI[cr ,cr+1)(x) and applying

the weak Euler-Maruyama discretization, we get Eq. (3) with
σr = 1 for all r , � = 3 and Yn = 0 for n � �. The error in
the cumulative distribution function (cdf) calculated using
the spectral method depends on the parameters R,cr ,μr used
to approximate the tanh function; for the results shown in
Fig. 4, these parameters’ exact values are given in our MATLAB

code.
Setting �t = 0.04 and �s = 0.01 for both the R = 3

and R = 5 approximations, we compare their accuracies in
Fig. 4. In the top panel, we first plot in solid gray the
empirical cdf obtained at T = 2 (�t = 0.04) by simulating
M = 108 sample paths of the Euler-Maruyama discretization
of Eq. (11)—this Monte Carlo (MC) run was performed purely
to give a reference solution against which we compare the
spectral method’s solutions. In the same panel, we plot cdfs
from spectral method simulations in dot-dashed gray (R = 3
approximation) and solid black (R = 5 approximation). In
the bottom panel of Fig. 4, we plot the error between the
MC cdf and the spectral method’s cdfs in dot-dashed gray
(R = 3) and solid black (R = 5). The maxima of the errors
for the R = 3 and R = 5 approximations are, respectively,
0.0727 and 0.0337. The times taken to obtain the cdfs through
the MC method and the spectral method with R = 3 and
R = 5 are 288.28 s, 0.56 s, and 19.13 s, respectively. If
we assume that the MC run is sufficiently fine-scale as to
be close to the exact solution, these results suggest that the
approximate solution will converge to the exact solution of
the SDDE, as we increase R. We leave for future work a
detailed discussion of convergence and optimal step function
approximation.

In this Rapid Communication, we have developed a spectral
method to obtain the pdf of a delayed random walk that is both
fast and accurate. As demonstrated, this method also shows
promise to solve nonlinear SDDE. In future work, we plan
to extend the spectral method to solve second-order and/or
oscillatory SDDE [16].
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