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Tracers in a turbulent flow separate according to the celebrated t3/2 Richardson-Obukhov law, which is usually
explained by a scale-dependent effective diffusivity. Here, supported by state-of-the-art numerics, we revisit
this argument. The Lagrangian correlation time of velocity differences increases too quickly for validating this
approach, but acceleration differences decorrelate on dissipative time scales. Phenomenological arguments are
used to relate the behavior of separations to that of a “local energy dissipation,” defined as the average ratio
between the cube of the longitudinal velocity difference and the distance between the two tracers. This quantity
is shown to stabilize on short time scales and this results in an asymptotic diffusion ∝t1/2 of velocity differences.
The time of convergence to this regime is shown to be that of deviations from Batchelor’s initial ballistic regime,
given by a scale-dependent energy dissipation time rather than the usual turnover time. It is finally demonstrated
that the fluid flow intermittency should not affect this long-time behavior of the relative motion.
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Turbulence has the feature of strongly enhancing the
dispersion and mixing of the species it transports. It is known
since the work of Richardson [1] that tracer particles separate
in an explosive manner, ∝t3/2. While little doubt remains about
its validity in three-dimensional homogeneous isotropic turbu-
lence, observations of this law in numerics and experiments
are difficult, as they require a huge scale separation between
the dissipative lengths, the initial separation of tracers, the
observation range, and the integral scale of the flow [2,3].
Much effort has been devoted to test the universality of this
law, which was actually retrieved in various turbulent settings,
such as the two-dimensional inverse cascade [4], buoyancy-
driven flows [5], and magnetohydrodynamics [6]. At the
same time, breakthroughs on transport by time-uncorrelated
scale-invariant flows have strengthened the original idea of
Richardson that this law originates from the diffusion of tracer
separation in a scale-dependent environment [7]. As a result,
the physical mechanisms leading to the Richardson-Obukhov
t3/2 law are still rather poorly understood and many questions
remain open on the nature of subleading terms, the rate of
convergence, and on the effects of the intermittent nature of
turbulent velocity fluctuations [8,9].

Turbulent relative dispersion consists in understanding the
evolution of the separation δx(t) = X1(t) − X2(t) between
two tracers. Richardson’s argument can be reinterpreted
by assuming that the velocity difference δu(t) = u(X1,t) −
u(X2,t) has a short correlation time. This means that the
central-limit theorem applies and that, for sufficiently large
time scales,

dδx
dt

= δu � √
τL U(δx)ξ (t), (1)

where ξ is the standard three-dimensional white noise, UTU =
〈δu ⊗ δu〉 the Eulerian velocity difference correlation tensor,
and τL the Lagrangian correlation time of velocity differences
between pair separated by δx = |δx|. As stressed by Obukhov
[10], when assuming Kolmogorov 1941 scaling, τL ∼ δx2/3,
U ∼ δx1/3, and the Fokker-Planck equation associated to (1)
exactly corresponds to that derived by Richardson for the
probability density p(δx,t). It predicts in particular that the

squared distance 〈|δx(t)|2〉r0 averaged over all pairs that are
initially at a distance |δx(0)| = r0 has a long-time behavior
∝t3 that is independent of r0. This loss of memory on
the initial separation can only occur on time scales longer
than the correlation time τL(r0) ∼ r

2/3
0 of the initial velocity

difference. For times t 	 τL(r0), one cannot make use of the
approximation (1) as the velocity difference almost keeps
its initial value. This corresponds to the ballistic regime
〈|δx(t) − δx(0)|2〉r0 � t2S2(r0), where S2(r) = 〈|δu|2〉 is the
Eulerian second-order structure function over a separation r ,
introduced by Batchelor [11]. The diffusive approach (1) can,
however, be modified to account for the ballistic regime [12].
Nevertheless a short-time correlation of velocity differences
can be hardly justified from first principles and seems to
contradict turbulence phenomenology. Indeed, as stressed in
Ref. [7], if δx grows as t3/2, the Lagrangian correlation time
τL is of the order of δx2/3 ∼ t , so that the velocity difference
correlation time is always of the order of the observation
time. Relative dispersion strongly depends on flow time
correlations as evidenced in Ref. [13]. Despite such apparent
contradictions, the Richardson diffusive approach is relevant
to describe some intermediate regime valid for large enough
times and typical separations. Several measurements show that
the separations distribute with a probability that is fairly close
to that obtained from an eddy-diffusivity approach [9,14,15].

To clarify when and where Richardson’s approach might
be valid, it is important to understand the time scale of
convergence to the explosive t3 law. Recently, much work
has been devoted to this issue: It was, for instance, proposed
to make use of fractional diffusion with memory [16], to
introduce random delay times of convergence to Richardson
scaling [17], or to estimate the influence of extreme events
in particle separation [18]. All these approaches consider as
granted that the final behavior of separations is diffusive. As we
will see here, many aspects of the convergence to Richardson’s
law for pair dispersion can be clarified in terms of a diffusive
behavior of the velocity differences.

To address such issues, we make use of direct numerical
simulations. For this, the Navier-Stokes equation with a
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TABLE I. Parameters of the numerical simulations in arbitrary units where the box size is 2π . N is the number of grid points, Rλ

the Taylor-based Reynolds number, ν the kinematic viscosity, ε the averaged energy dissipation rate, urms the root-mean-square velocity,
η = (ν3/ε)1/4 the Kolmogorov dissipative scale, τη = (ν/ε)1/2 the associated turnover time, L = u3

rms/ε the integral scale, and T = L/urms the
associated large-scale turnover time.

N Rλ ν ε urms η τη L T

20483 460 2.5 × 10−5 3.6 × 10−3 0.19 1.4 × 10−3 0.083 1.85 9.9
40963 730 1.0 × 10−5 3.8 × 10−3 0.19 7.2 × 10−4 0.05 1.85 9.6

large-scale forcing is integrated in a periodic domain using a
massively parallel spectral solver at two different resolutions.
Table I summarizes the parameters of the simulations (see
Ref. [19] for more details). In each case, the flow is seeded
with 107 Lagrangian tracers. Their positions, velocities, and
accelerations are then stored with enough frequency to study
relative motion.

We first report results on the behavior of the separation δx(t)
as a function of time. Following Ref. [14], a Taylor expansion
at short times leads to

〈|δx(t) − δx(0)|2〉r0 = t2S2(r0) + t3 〈δu · δa〉 + O(t4), (2)

where S2(r) = 〈|δu|2〉 is the second-order structure function,
〈·〉 denote Eulerian averages, and δa(t) = a(X1,t) − a(X2,t)
is the difference of the fluid acceleration sampled by the
two tracers (using the notation a = ∂t u + u · ∇u). As long
as the term ∝t2 is dominant, the tracers separate ballistically.
Expansion (2) clearly fails for t ≈ t0 = S2(r0)/|〈δu · δa〉|. It
is known [7,20] that for separations in the inertial range,
〈δu · δa〉 = −2ε, which is nothing but a Lagrangian version
of the 4/5 law. This implies that the ballistic regime ends at
times of the order of

t0 = S2(r0)/(2ε). (3)

This time scale can be interpreted as the time required to
dissipate the kinetic energy contained at the scale r0. We
thus expect it to be equal to the correlation time of the initial
velocity difference. t0 differs from the turnover time τ (r0) =
r0/[S2(r0)]1/2 defined as the ratio between the separation r0 and
the typical turbulent velocity at that scale. When Kolmogorov
1941 scaling is assumed, these two time scales have the
same dependency on r0. However, usual estimates of the
Kolmogorov constant lead to t0/τ (r0) ≈ 20. Also, note that
intermittency corrections to the scaling behavior of S2 should
in principle decrease this ratio. We indeed have t0 ∝ r

ζ2
0 and

τ (r0) ∝ r
1−ζ2/2
0 , where ζ2 denotes the scaling exponent of

the second-order structure function; this is evidenced in the
inset of Fig. 1. The main body of this figure represents the
mean-squared displacement rescaled by t2

0 S2(r0) as a function
of t/t0, for various values of the initial separation r0. In such
units and when r0 is far in the inertial range, all measurements
collapse onto a single curve. The subleading term ∝t3 in (2) is
relevant for times t � 0.01t0. Note that we have checked that
the same data using the turnover time τ (r0) instead of t0 does
not display such a collapse.

The data collapse extends to times larger than t0 when
the mean-squared separation tends to Richardson t3 regime.
This unexpected fact implies that t0 is not only the time
scale of departure from the ballistic regime, but also that of

convergence to Richardson’s law. More precisely, numerical
data suggest that for t � t0

〈|δx(t) − δx(0)|2〉r0 = gεt3 [1 + Ct0/t] + h.o.t. (4)

C does not strongly depend on the Reynolds number. Sys-
tematic measurements as a function of the initial separation
show that C is negative when r0 is of the order of the
Kolmogorov scale η. The convergence to Richardson law is
then from below and is thus contaminated by tracer pairs
which spend long times close together before sampling the
inertial range; this is consistent with the findings of Ref. [18].
When r0 is far enough in the inertial range, C ≈ 1.6 becomes
independent of the initial separation and the convergence
to Richardson law is from above. One finds that C = 0 for
r0 ≈ 4η; the only subleading terms in (4) are then of higher
order, so that the mean-squared separation converges faster to
the Richardson regime. Such an initial separation could be an
“optimal choice” to observe the t3 behavior in experimental
settings.

To understand why the time scale of convergence to
Richardson law is of the order of t0, let us examine the time
scales entering the relative dispersion process. As already
stated, the velocity difference δu between the two tracers
stays correlated over a time that increases too fast with the
separation, making it difficult to justify the diffusive approach
(1). However, it is known that turbulent acceleration, which is
a small-scale quantity, is correlated over times that are of the
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FIG. 1. (Color online) Time evolution of the mean-square sepa-
ration for Rλ = 730 and various initial separations. The dashed line
represents the behavior (2). The solid line is a fit to the Richardson
regime (4) with g = 0.52 and C = 1.6. Inset: t0 as a function of
r0 in dissipative-scale units. The solid line is an Eulerian average,
the circles are Lagrangian measurements, and the dashed line is the
turnover time τ (r0).

045302-2



RAPID COMMUNICATIONS

TIME SCALES OF TURBULENT RELATIVE DISPERSION PHYSICAL REVIEW E 86, 045302(R) (2012)

10−1 100 101 102
−0.2

0

0.2

0.4

0.6

0.8

1

t/τη

δ
a

i(
t)

δ
a

i(
0)

r
0
/

δ
a
(0

)|2
r
0

r0 = 8η
r0 = 12η
r0 = 16η
r0 = 24η
r0 = 32η
r0 = 48η

−6 −4 −2 0 2 4 6
0

1

2

3

4

[δu ]3/( 0)

δ
a
|2
|δ

u
r

/
[ν

−1
/2

3/
2
]

FIG. 2. (Color online) Lagrangian time autocorrelation of the
acceleration difference δa for various r0 and Rλ = 730. Inset: For the
same separations r0, variance of the acceleration difference amplitude
conditioned on the longitudinal velocity difference δu‖ as a function
of the local dissipation rate [δu‖]3/r0.

order of τη, the Kolmogorov turnover time [21]. Its amplitude is
rather correlated on times of the order of the forcing correlation
time, but this does not alter the argument below.

Figure 2 represents the Lagrangian autocorrelation of the
difference of acceleration δa between two tracers. We clearly
see that the components of this quantity decorrelate on times
of the order of τη. This suggests applying the central-limit
theorem, so that for separations in the inertial range and on time
scales much longer than the τη, the difference of acceleration
between two tracers can be approximated by a delta-correlated-
in-time random process. We thus have

dδx
dt

= δu, with
dδu
dt

= δa �
√

τ loc
η A(δx,δu)ξ (t), (5)

where A is defined as AT A = 〈δa ⊗ δa|δx,δu〉, ξ and the
product is here understood in the Stratonovich sense. The
idea of assuming uncorrelated accelerations is common to
many stochastic models for turbulent dispersion (see, e.g.,
Refs. [2,22]). However, the aim here is not to derive a new
model and contrast it to other approaches but to make use
of (5) for phenomenological purposes. The local Kolmogorov
time τ loc

η and the acceleration amplitude A = |A| are expected
to only depend on the viscosity ν and on the local energy dis-
sipation rate εloc, as τ loc

η ∼ ν1/2ε
−1/2
loc and A ∼ ν−1/4ε

3/4
loc . The

multiplicative term in (5) then behaves as [τ loc
η ]1/2A ∼ ε

1/2
loc .

Interestingly, this quantity is independent of ν and is thus
expected to have a finite limit when Rλ → ∞. Phenomenology
suggests that for typical values of the velocity difference δu,
the local dissipation rate can be written as εloc ∼ [δu‖]3/δx,
where δu‖ = δx · δu/δx is the longitudinal velocity difference
between the tracers. When δu‖ = 0, the local dissipation rate
does not vanish but can be estimated through an averaged
contribution of larger eddies, leading to εloc � ε, the averaged
energy dissipation rate. These estimations have been tested
against numerical simulations: The inset of Fig. 2 shows
the variance of the acceleration differences conditioned on
the longitudinal velocity difference for various separations.
Up to statistical errors, data are in good agreement with
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FIG. 3. (Color online) Time evolution of the averaged squared
modulus of the velocity difference for Rλ = 730 and different r0

(same symbols as in Fig. 1). The short-time prediction (7) is shown
as a dashed line. The diffusive behavior 〈|δu|2〉r0 � S2(r0) + 2.3εt

is represented as a dashed-dotted line. Inset: Time evolution of
〈[δu‖]3/δx〉r0 ; the dashed line corresponds to the value 6ε.

the phenomenological prediction shown as a dashed line.
Finally such dimensional considerations suggest approaching
the large-time evolution of tracer separation as

dδx

dt
= δu‖,

dδu‖

dt
∼

[
ε + α

[δu‖]3

δx

]1/2

ξ (t), (6)

where α is a positive parameter. Again here the stochastic inte-
gration involves the Stratonovich convention. When rewriting
it in the Itō sense, the additional drift that appears introduces
a “correlation time” equal to the instantaneous turnover time
δx/δu‖. Preliminary studies of (6) showed that its solutions
follow a ballistic regime at short times and behave according
to Richardson law, i.e., 〈δx2〉 ∼ t3 at large times. Also, the
local dissipation [δu‖]3/δx tends to a constant, so that at large
times the velocity difference obeys an equation of the form
dδu‖/dt ∝ ξ (t) and thus diffuses. So far, we have only used
(6) for phenomenological purposes. Extending this approach
to derive a functional stochastic model for relative dispersion
requires generalizing it to higher dimensions to account for
incompressibility.

To address the relevance of such an approach to real flows,
we turn back to the analysis of simulation data. Figure 3
shows the time evolution of 〈|δu(t)|2〉r0 for various values of
r0. At small times this quantity slightly decreases because
the subleading term is negative. We indeed have δu(t) �
δu(0) + tδa(0), so that the ballistic regime reads

〈|δu(t)|2〉r0 = S2(r0)(1 − 2 t/t0) + h.o.t. (7)

Again, the subleading terms are relevant for times t � 0.01t0.
Figure 3 also shows that at large times the mean-squared
velocity difference loses dependence on r0 and grows ∝εt .
In addition, as seen from the inset of Fig. 3, the averaged local
dissipation rate 〈[δu‖]3/δx〉r0 along particle pairs approaches
a positive constant �6ε (independently of Rλ) on times of the
order of τη. This confirms the relevance of the mechanisms
described above in terms of a stochastic equation for the
velocity differences.

Numerical results indicate that the time t0 controls the
convergence to a diffusive regime for initial separations r0
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far enough in the inertial range. This can be explained by the
following argument. As 〈[δu‖]3/δx〉r0 becomes constant on a
short time scale (of the order of τη), one expects that

〈|δu(t)|2〉r0 � S2(r0) + Dεt for t � τη, (8)

where D is a positive constant (for both Reynolds numbers,
we observe D ≈ 2.1). By balancing the diffusive term with the
initial mean-squared velocity difference 〈|δu(0)|2〉r0 = S2(r0),
we find again that the former is dominant for times t much
larger than t0. The diffusive behavior of velocity differences
is thus reached at times of the order of t0 and this explains in
turn why this time scale is that of convergence to Richardson’s
regime.

We have thus obtained evidence that the Richardson
explosive regime 〈|δx|2〉 ∝ t3 for the separation between
two tracers originates from a diffusive behavior of their
velocity difference rather than from dimensional arguments
or, equivalently, a scale-dependent eddy diffusivity for their
distance. This leads on to reinterpret the t3 law as that of the
integral of Brownian motion. Such an argument is supported
by two observations. First, the acceleration difference has
a short correlation time (of the order of the Kolmogorov
dissipative time scale) and can be approximated as a white
noise. Second, the amplitude of this noise solely depends on the
local dissipation rate 〈[δu‖]3/δx〉r0 , which becomes constant
also on short time scales. These considerations allow us to
show that the time t0 of convergence to Richardson’s law is
equal to that of deviations from Batchelor’s ballistic regime.
This time, which reads t0 = S2(r0)/(2ε), is the time required
to dissipate the kinetic energy contained at a scale equal to the
initial separation between tracers.

The interpretation of Richardson’s law as the diffusion
of velocity differences strongly questions possible effects of
fluid-flow intermittency on the separation of trajectories. In-
deed, considerations on velocity scaling, which are primordial
in approaches based on eddy diffusivity, are absent from the
arguments leading to a diffusive behavior of δu. We find
that, for this reason, the separation δx follows an almost
self-similar evolution in time, independently of the order of the
statistics. Indeed, as seen in Fig. 4, the fourth- and sixth-order
moments of the displacement are, up to statistical errors,
proportional to the square and the cube of the second-order
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FIG. 4. (Color online) Fourth- and sixth-order moments of the
displacement |δx(t) − δx(0)| for Rλ = 730. Following ideas from
Ref. [23], they are represented as a function of the second-order
moment. The two gray dashed lines show scale-invariant behaviors
of the form 〈|δx(t) − δx(0)|p〉 ∝ 〈|δx(t) − δx(0)|2〉p/2.

moment. Any intermittent correction might only be visible in
much higher-order moments or in statistics related to slowly
separating pairs. We nevertheless predict that intermittency
will affect the time of convergence to such a regime. More
frequent violent events (of tracer pairs approaching or fleeing
away in an anomalously strong manner) will result in longer
times for being absorbed by the average. Such arguments do
not rule out the possibility of having intermittency corrections
when interested in other observables than moments of the
separation, as it is, for instance, the case for exit times [8].
Such issues will certainly gain much from a systematic study
of multidimensional stochastic models that are using the
approach described here.
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