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Finite-time statistics of scalar diffusion in Lagrangian coherent structures
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We study the variability of passive scalar diffusion via the statistics of stochastic particle dispersion in a
chaotic flow. We find that at intermediate times when the statistics of individual trajectories start to exhibit
scaling-law behaviors, scalar variance over the entire domain exhibits multimodal structure. We demarcate the
domain based on Lagrangian coherent structures and find that the conditional statistics exhibit strong unimodal
behavior, indicating coherence of effective diffusion among each Lagrangian partition of the flow.
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Advances in nonlinear dynamical systems methods in
the past decade have enabled the objective extractions of
coherent structures from chaotic flow data that has general
time dependencies. These coherent structures, obtained from
measures associated with the Lagrangian trajectories of fluid
parcels, retain kinematic properties under arbitrary translation
and rotation of the coordinate system and are thus frame
independent and robust [1,2].

Highly popularized due to its efficiency, the finite-time
Lyapunov exponents (FTLE) is one of the most used mathe-
matical tools to study the variability of Lagrangian mixing [3]
and to identify Lagrangian coherent structures (LCS) [1].
Roughly speaking, the FTLE field provides the different
rates at which nearby trajectories separate over finite time.
Topological properties of the FTLE are used to study the details
of LCS [4].

While theoretical developments based on FTLE help
identify barriers of Lagrangian mixing in deterministic flow
fields, little has been studied in their relations with stochastic
processes and diffusion. Experiments and observations suggest
that transient-time diffusion follow LCS [5]. An ad hoc
effective diffusivity was constructed based on FTLE [6]. A
few recent studies explored the effects of random noise on
FTLE [7,8]. In considering the LCS subject to realistic random
noises in a flow model, it is found that well and poorly mixed
zones appear [8], bounded by the most distinguished mixing
barriers (Lagrangian skeletons) in deterministic studies [4].

Recent experiments [9] and theories [10] on scalar intermit-
tency indicate that the existence of coherent structures leads
to non-Gaussian statistics and anomalous diffusion. Because
of the observed alignment of concentration gradients with the
LCS skeletons [5], it is promising to associate passive scalar
statistics with the Lagrangian topology, and pin down the effect
that LCS has on diffusion.

The goal of this work is to analyze stochastic processes
associated with a nonlinear, chaotic flow where coherent
structures are prevalent, and obtain finite-time statistics crucial
to understandings of intermittency. By partitioning the domain
into different regions using FTLE, we pinpoint the role of flow
topology on the statistics. We are aware of one prior study
on conditional statistics in chaotic flows, which does not in-
volve stochasticity, and used the frame dependent Lagrangian
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Okubo-Weiss parameter [11,12]. Addition of random noise
and use of FTLE make the present work realistic and objective.

To make our discussion concrete, we adopt the following
phenomenology. Coherent structures that have long-time
correlations are present and slowly evolving. There is sufficient
scale separation between the coherent structures and sub-
grid-scale uncertainties, and we impose a Gaussian white
noise on the advection of scalars. For easy identification and
partitioning of coherent structures, we consider the kinematic
model of Bickley jet [13].

Model and parameter. The Bickley jet model arises from
studies on the stability of a zonal shear flow where the
zonal velocity u ∝ sech2y. The eigensolution of the governing
equation admits two neutral waves where by superposition
with the mean shear flow can generate overlap regions that
exhibit chaotic trajectories. As a result, vortices, jets, and
mixing zones coexist in this model. Parametric dependence
of the deterministic dynamics on Bickley jet has been studied
before [14,15].

The stream function of the Bickley jet is given by

ψ = tanh y + sech2y

2∑
i=1

εi cos ki(x − ci t), (1)

where εi, ki , and ci are the amplitude, wave number, and phase
speed of the waves. Parameters are chosen to be dynamically
consistent with governing equations [16]:
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hence the dynamics is given in a three-parameter family
(β,ε1,2). It has been found that for different choices of the
parameters, the phase portrait may exhibit transition between
homoclinic connections and heteroclinic connections, as well
as transition between a persistent zonal jet and the breaking of
this central barrier [14]. To retain clearly identifiable topolog-
ical features, we choose the parameters as ε1 = 0.1, ε2 = 0.3,
and β = 0.6144: the integrable jet coexists with chaotic zones.

It is computationally unmanageable to study the topological
dependence of scalar statistics on LCS from direct numerical
simulations (DNS) of the Fokker-Planck equations, while
maintaining a high resolution for initial conditions. As such,
we resort to the computation of a random displacement model
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(RDM) based on stochastic differential equations [17]. To be
precise, we generate a large ensemble of realizations governed
by the equations

ẋ ≡ u = −ψy +
√

2κẆ1, ẏ ≡ v = ψx +
√

2κẆ2, (3)

where ψ is given in Eq. (1), κ (=0.001 in our baseline case)
is a diffusivity that controls the magnitude of the uncorrelated
random walks Ẇ . The RDM uses RK4 for the deterministic
and explicit Euler for the stochastic terms.

We use a DNS solver [18] to resolve the evolution of
the Fokker-Planck equations over time, up to when the
various moments of scalar statistics start to exhibit scaling-
law behavior. Nine of such runs are performed, with initial
conditions evenly distributed across all regions, to determine
the time of integration necessary for robust statistics. With
the parameters chosen, the numerically determined time of
integration t = 1000. In the baseline case, this corresponds to
a time scale at which diffusion will take a concentrated scalar
to spread over a unit area.

The RDM equation (3) is solved for the nine initial
conditions to determine the number of realizations needed in
any of the regions. 50 000 realizations per initial condition are
chosen such that the probability density function generated by
DNS and RDM match well for all cases. A sampling grid of
144×64 in the x and y directions is chosen to fit on a 14-node,
224-CPU cluster.

Finally, to speed up the computations, the integration time
step for RDM is chosen as �t = 0.01. This time stepping is
insufficient for accurate deterministic trajectories because of
the large integration time and sensitive dependence on initial
conditions, but is sufficient as far as convergence in probability
density is concerned. However, much smaller tolerance and
time steps are chosen for deterministic trajectories to obtain
the FTLE field.

After generating all realizations, various moments of
scalar dispersion are computed based on the ensemble of

displacements that originate in the same initial condition or
the same LCS to study the topological dependence.

Analyses. Defining the finite-time deformation tensor of
the flow as ∂x(x0,t0; t0 + t)/∂x0, the largest eigenvalue
λ(x0,t0; t0 + t) can be obtained from singular value decom-
position. The FTLE is then σ = ln(λ)/t for spatially and
temporally dependent λ.

We compare the flow topology and variability of scalar
variances in Fig. 1. Figure 1(a) shows the deterministic
forward-time FTLE field after integration time t = 1000 at
a resolution of 576 × 256. By parameter selection we preserve
the central barrier region, seen as the wavy structure with
relatively low FTLE values around y = 0. On both sides of
this region, we find the boundaries of the jet, which take
smooth transition of FTLE values, up to highlighting FTLE
ridges which separate the jet boundaries from the chaotic
zones. Inside the chaotic zones, the FTLE values appear to
be very random. This indeed is due to the fine structures of
the heteroclinic tangles [14], which are not resolved at this
resolution. Outside of the chaotic zones, we find the structures
separating them from a shear-dominant exterior flow.

Figures 1(c) and 1(d) show the variances of scalar
displacement in the x and y directions, respectively. The
variances are computed based on the initial conditions given.
For a set of realizations released at x0, varx(x0,t0; t) =∑50 000

r=1 [xr (x0,t0; t) − xr (x0,t0; t)]2. The overline denotes av-
erage based on initial conditions, and the bold font xr denotes
the computation of variance separately for x and y. As seen,
the contour map indicating variability of variances correspond
very well with the deterministic flow topology, except for
low-value patches inside the chaotic zone, indicating low
dispersion. In this zone, although deterministic trajectories
are chaotic, the ensemble of stochastic trajectories behave
quite regular after sufficient time. At the core of the chaotic
zone, the cluster of nearby ensembles separates much less
than trajectories on the edge of the chaotic zone. This low

FIG. 1. (Color online) Comparison among LCS and variances, all dependent on the initial conditions and at t = 1000. (a) Forward-time
FTLE based on deterministic trajectories. (b) Forward-time FTLE based on stochastic mean trajectories. (c) Variance of x displacements.
(d) Variance of y displacements.
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FIG. 2. (Color online) Conditional statistics of variances and FTLE in different partitions of the flow. (a) Outer barriers that are hyperbolic.
(b) Inner barriers that transition from hyperbolic to parabolic structures. (c) Chaotic zone between the hyperbolic barriers. (d) Parabolic central
jet region. (e) Partitioning of domain superimposed on FTLE.

separation is also seen in Fig. 1(b) on FTLE based on the
mean trajectories.

A common feature of these contour maps is the almost
uniform value of variances in each of the partition of LCS
(except for the chaotic zone). This behavior indicates that
the diffusion process is coherent within each individual
coherent structure. Motivated by this observation, we show
conditional statistics of the variances in Fig. 2. We partition
the domain using the deterministic FTLE since we hope to
relate diffusion processes to a priori knowledge of coherent
structures without having to compute the stochastic differential
equations. Partitioning of the domain is based on locating the
contours corresponding to the largest slopes in the FTLE field
and eliminating spurious results in the chaotic zone via visual
inspection. Figure 2(e) shows the deterministic FTLE along
with the partitions. The white points denote the partition of jet
in the center and the chaotic zones on the two sides. The black
points denote the two inner barriers separating the jet and the
chaotic zones, and the two outer barriers separating the chaotic
zones and the exterior.

The probability density function (pdf) of variances of
displacements are given in the top panels of Figs. 2(a)–2(d),
with Fig. 2(a) the two outer barriers that exhibit hyperbolic
behavior, 2(b) the two inner barriers that mark transition
between hyperbolic and parabolic regions, 2(c) the chaotic
zones between the hyperbolic regions, and 2(d) the central
jet. Because of the difference in the number of sampling
points, the histogram in different regions encloses different
areas under the curves. In these panels, the black solid (gray
dashed line, blue online) curves associate with the black (gray,
blue online) axes, corresponding to the variances in x (y). As
expected, in all except for the chaotic zone, variances exhibit
unimodal behavior with relatively narrow width, indicating

high probability in a small range of diffusivity. The residence
time of trajectories in the center of the chaotic zone is longer
than those close to the hyperbolic barriers; a continuous
transition of initial conditions from the center towards the
edge of this zone gives rise to the relatively flat and wide pdf
in variances as seen in Fig. 2(c).

In order to measure the effective diffusion in each of the
LCS, we study conditional statistics across all realizations that
start in the same zone and their temporal evolution. The pdf of
relative displacement from the mean is considered. For each
initial condition x0 in the same LCS, we compute the pdf of
δxr = xr (x0,t0; t) − xr (x0,t0; t), where the overline denotes
average at time t of all realizations originating from x0. As
such, δxr has a zero mean.

As time progresses, it is found that the pdf approaches
a self-similar profile. The histograms for δxr are shown in
Fig. 3 for the different partitions, with proper rescaling. The
hyperbolic zone in Fig. 3(a) corresponds to the combination
of the two boundary regions [Figs. 2(a) and 2(b)]. The chaotic
[Fig. 3(b)] and parabolic [Fig. 3(c)] zones cover the same
regions as Figs. 2(c) and 2(d). The histogram over the entire
domain is shown in Fig. 3(d). Again, the black (gray, blue
online) curves and axes associate with the x (y) statistics.
They are shifted horizontally for more clarity. The lonely
solid curves in each panel correspond to t = 100 and those
that fall onto the self-similar profile are t = 700 (dashed
line), 800 (dotted line), 900 (dashed-dotted line), and 1000
(solid line). These four curves are almost indistinguishable in
Fig. 3, with only small variabilities due to a slow relaxation to
a Gaussian.

The δy statistics appear to be symmetric and relatively
simple. At t = 100, all regions appear to be non-Gaussian
with a flatter peak and slightly fatter tail. The self-similar
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FIG. 3. (Color online) Conditional statistics on scalar dispersion in different partitions of the flow.

profile already approaches Gaussian. It takes the form of
P (δy,t) = t−γ /2f (ξ ),ξ = δy/tγ/2, where f is a scaling func-
tion, ξ a scaled coordinate, and γ the exponential decay
rate. It is noted that γ = 1 indicates normal diffusion, γ < 1
indicates subdiffusion, and γ > 1 indicates superdiffusion.
The exponent γ is found to take values of 0.75, 0.82, 0.62,
and 0.66 for Figs. 3(a)–3(d), respectively. In all cases, the y

dispersion is subdiffusive. The central barrier region has the
least decay rate, consistent with the fact that barriers inhibit
cross-jet transport.

For δx statistics, the rate of decay in the central peak
and the rate of expansion in the two tails are somewhat
different. The self-similar profile takes the form of P (δx,t) =
t−α/2g(η), η = δx/tβ±/2. Here, g is a scaling function, α is
the exponential decay rate, β± correspond to the expansion of
tails in positive and negative branches of δx. The differential
expansion rate is due to the bias in zonal transport: scalars
caught in the jet displace at different speed as those in the
chaotic and outer shear zones. Relatively, the parabolic jet
moves in the positive x direction, the chaotic and shear zones
move in the negative x direction, leading to different growth
rates in the positive and negative tails. For scalars initially
in hyperbolic and chaotic zones, a significant amount of
realizations diffuse into the outer shear zone, leading to the
peaks in pdf at negative values of η in Figs. 3(a) and 3(b). In
the parabolic zone, not as many realizations get trapped in the
center of the chaotic zone because of the jet boundaries serving
as transport barriers, hence no similar peak can be found. In
any region, the zonal pdfs are strongly non-Gaussian. The

expansion rates β+ in the positive branch are 1.75, 1.75, 1.8,
1.8; the expansion rates β− in the negative branch are 1.9,
1.6, 1.45, 1.6 and the decay rates α are 1.75, 2, 1.4, 2 for
Figs. 3(a)–3(d), respectively. Henceforth, the zonal transport
is superdiffusive with the respective decay rates.

We also study the dependence of statistics based on variable
diffusivity κ . Because of the linearity in the diffusion problem,
such dependence varies almost linearly, when κ reduces in
half the topological features of the variances at t = 1000 is
similar to those of the original κ at t = 500. However, the
actual value of variances varies differently among different
partitions. In particular, variances in the central barrier vary as
κ−2 because of the ballistic style trajectories. In order to reveal
such dependence, we show in Fig. 4 three values of κ , from
left to right, each reduced in half, κ = 0.001,0.0005,0.00025,
and three values of t , from left to right, each increased twice,
t = 100,200,400. As seen, the geometry of these structures
is very similar, except that the scalar variance grows with
different exponents in respective partitions. As such, one can
study the κ dependencies based on Lagrangian partitions of
the coherent structures and the respective growth rates within
each partition. Not shown in Fig. 4, at very large κ , variance
structures do not associate with FTLE topology because of the
strong homogenization across all zones.

Conclusions. Finite-time statistics of scalar diffusion asso-
ciate well with FTLE. A simple partition of the domain based
on FTLE values already reveals the almost uniform capability
of individual LCS in diffusing a scalar. This suggests the
use of LCS in studying anomalous diffusion because of their

FIG. 4. (Color online) Dependence of zonal variance on diffusivity and time.
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objectivity in structure classification. Our results confirm the
importance of studying coherent structures in zones in addition
to focusing on finding the location of the barriers. Applying
the recent results of geodesic LCS theory [19] or using the
probabilistic approach based on transfer operators [20] to
improve the objectivity in domain partitions may bring further
insights on the statistics we obtain here. Such studies will be
reported elsewhere.
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