
RAPID COMMUNICATIONS

PHYSICAL REVIEW E 86, 045103(R) (2012)

Predicted formation of localized superlattices in spatially distributed reaction-diffusion solutions
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We study numerically the formation of localized superlattices in spatially distributed systems. We predict
that in wide regions of the parameter space, stable localized, either bright or dark, superlattices may form in
reaction-diffusion systems. Localized superlattices are patterns which consist of a piece of superlattice. Each
single ring is surrounded by spots. The number of rings and their spatial distribution are determined by the initial
conditions. The peak concentration remains unaltered for fixed values of the parameters.
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Localized structures belong to the class of dissipative
structures found far from equilibrium [1]. The concept of
dissipative structures was introduced, for the first time, in the
context of reaction diffusion systems [2] and experimentally
observed later [3]. Localized structures consist of stationary
bright or dark spots which can be either independent or
randomly distributed in space. They occur in various fields of
nonlinear science, such as chemistry [4–6], plant ecology [7],
and optics [8,9]. However, in all cases, despite the different
physical origin, localized structures appear when the modula-
tional or Turing instability is subcritical. This behavior is now
well understood (see recent overviews on this issue [10,11]).
Besides periodic and localized structures, many macroscopic
nonequilibrium systems exhibit biperiodic superlattices or
quasicrystal patterns. These structures are ordered in space
and they occur through resonant interaction between unstable
modes in spatially distributed systems [12,13]. Extended su-
perlattices and quasicrystals have been theoretically predicted,
and experimentally observed, in various spatially distributed
systems such as two-frequency Faraday experiments [14],
hydrodynamics [15], nonlinear optics [16], gas discharge
systems [17], and reaction diffusion systems [18]. We address
here the theoretical prediction of localized superlattices.

In this paper, we consider a simple reaction diffusion type
of model: the FitzHugh-Nagumo system. As we shall see,
this simple model may explain some relevant experimental
observations. We show numerically that this model supports
stable localized superlattices. They consist of a piece of super-
lattice state embedded in a homogeneous steady state (HSS).
Their spatial distribution involves one or more stable rings
surrounded by spots. The number of peaks and/or dips and
their spatial distribution is determined by the initial conditions.
The necessary conditions for obtaining the spatial localization
are quite general. They are found in the subcritical domain
involving two states: a HSS and an extended superlattice
structure, which are both linearly stable.

The phenomenon of localized superlattices is robust and
could be found in a wide area of science. Nature abounds with
examples where the dynamics involves resonant interactions
between unstable modes. The interaction between successive
bifurcations having different wavelengths are common in
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many other fields of nonlinear science, such as laser physics
and hydrodynamics. Our analysis could then be applied to
other models, e.g., in optics [19], in other reaction diffusion
systems [20]. In optics, localized structures, often called
cavity solitons, attract growing interest due to their potential
applications to the all-optical control of light, optical storage,
and information processing [8,9].

Our treatment is based on the well-known FitzHugh-
Nagumo system which was originally derived to describe nerve
conduction and to capture the basic properties of excitable
membranes [21], i.e.,

∂tu = f (u,v) + Du∇2u, ∂tv = g(u,v) + Dv∇2v, (1)

where f (u,v) = u − u3 + βuv − v and g(u,v) = ε(γ u −
v − a) with ε = Tu/Tv the ratio of characteristic chemical
relaxation times of the activator u and inhibitor v. Here t

is time and the Laplace operator ∇2 = ∂xx + ∂yy acts in the
r = (x,y) plane. The parameters a, γ , and β control the
relative position and the number of nullcline intersections.
The diffusion coefficients are Du and Dv .

The homogeneous steady states us and vs are solutions
of a = (−1 + γ + aβ − γβus + u2

s )us and vs = γ us − a. In
what follows, we consider a regime where the HSSs are stable
with respect to the steady bifurcation and focus on the regime
of pattern-forming instabilities, namely, when the differential
diffusion process d = Dv/Du > 1.

Small amplitude deviations from the homogeneous steady
states us and vs are expressed in terms of Fourier modes
exp (ωkt + ik · r), where k stands for the wave vector.
The dispersion relation obeyed by the eigenvalues ωk

reads ω2
k − [1 − ε − 3u2

s + βvs − (1 + d)k2]ωk + � = 0,
with � = −ε(1 − γ + βγus + βvs − 3u2

s ) − [d(1 − 3u2
s +

βvs) − ε]k2 + dk4 = 0 with k = |k|. Turing instabilities
correspond to the occurrence of the zero real root (ωk = 0).
Taking into account vs = γ us − a, we solve the dispersion
relation with ωk = 0 for k2. The solutions of this equation are
plotted as a function of us in Fig. 1.

As a function of k2, the eigenvalues curves ωk pass through
a maximum, i.e., ∂kωk = 0 at

k2
T ± =

(
1 − aβ + βγuT ± − 3u2

T ±
)
d − ε

2d
, (2)

which corresponds to the fastest growing modes. The thresh-
old uT ± associated with these instabilities are the solution
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FIG. 1. Stability boundaries associated with two Turing instabil-
ities for d = 150, β = 0.7, ε = 2.5, and γ = 0.9. The wave number
k associated with the growing Fourier modes are shown in terms of
the homogeneous steady states us .

of [d(1 − βa + γβuT ± − 3u2
T ±) − ε]2 = 4dε(γ − 1 + βa −

2βγuT ± + 3u2
T ±). The system undergoes two Turing type

of instabilities located at uT + and uT −. The intrinsic wave-
lengths at both bifurcation points �T − = 2π/kT − and �T + =
2π/kT + are determined solely by the dynamical parameters
and not by the boundary conditions or external constraints.

From Fig. 1, we see that as the homogeneous steady states us

increase, the succession stability-instability-stability occurs.
First, all modes are damped when us < uT −. Second, there
appears a critical wave number kT − at us = uT −, so that modes
of wave number kT − < k < kT + are amplified when uT − <

us < uT +. In this range, the HSSs are unstable, i.e., ωk > 0
and there exists a band of unstable Fourier modes that triggers
the spontaneous evolution of us and vs towards a stationary
spatially periodic or quasiperiodic distribution which occupies
the whole space available in (x,y) space. Third, there appears
another critical wave number kT + at us = uT + such that all
modes are again damped when us > uT +. Indeed, in the first
and the third cases, the eigenvalue ωk < 0, which ensures that
fluctuations of finite wave number are damped and the HSS
becomes then stable.

We first examine the formation of extended superlattice
patterns corresponding to a superposition of the two unstable
wavelengths �T − and �T +. Due to the isotropy in (x,y)
space, these unstable modes have, a priori, no preferred
direction. Although an indefinite number of modes may be
generated with an arbitrary direction, a superlattice pattern is
selected and emerges due to the nonlinear interactions. It has
been shown that in the Fourier space, superlattice structures
correspond to two resonant triplets: an equilateral triangle
of length |qi| = kT − and three isosceles triangles of lengths
|Qj| = kT + and |qi| = kT −. These wave vectors should satisfy
the following resonance conditions [12]: q1 + q2 + q3 = 0,
q1 + Q1 + Q2 = 0, q2 + Q3 + Q4 = 0, and q3 + Q5 + Q6 =
0 with |qi| = kT − and |Qj| = kT +. The angle φ between Qj
and qj is φ = arccos [kT −/(2kT +)].

A direct numerical simulation of the model in Eqs. (1) on
a square-shaped domain with periodic boundary conditions
shows the occurrence of two types of extended superlattice
patterns which can be either dark or bright. The results of
this analysis are summarized in the bifurcation diagram of
Fig. 2 where we plot the amplitude of the stationary solutions
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FIG. 2. Bifurcation diagram associated with extended superlat-
tice patterns. The full and broken lines correspond, respectively, to
stable and unstable homogeneous steady states. The white (black)
circles indicate the maximum (minimum) of bright (dark) extended
superlattice patterns. Parameters are the same as in Fig. 1.

associated with both types of superlattice patterns versus
the control parameter a. The spatial dynamics is very rich
and complex. Besides the usual periodic structures such as
hexagons, stripes, and rhombics, we focus on the formation
of superlattice patterns. The initial condition used to generate
these structures is

(u,v) = (us,vs) + lq
3∑

i=1

mi + lQ
6∑

j=1

Mi + c.c., (3)

where mi = m̄i exp(iqj · r) and Mi = M̄i exp(iQj · r) with m̄i

and M̄i the amplitude associated with the mode kT − and kT +,
respectively. lq and lQ are the eigenvectors of the linear oper-
ator at both bifurcation points. The c.c. denotes the complex
conjugate. When increasing the control parameter a, the lower
HSS is destabilized at the Turing instability us = uT −, and
a branch of bright superlattice pattern emerges as shown in
the Fig. 2. By increasing further the control parameter, the
upper branch of the HSS is stabilized at the second bifurcation
(located at us = uT +). From that bifurcation point, a branch
of dark extended superlattice pattern emerges (see Fig. 2). As
discussed above, these two types of phase-locked structures
become stable due to the nonlinear interaction between two
modes having different wave number and satisfying two
resonant triplets. The two types of superlattice patterns have a
wide overlapping domain of stability as shown in Fig. 2, and
may coexist in the range of values of a corresponding to the
intersections of their stability domains.

In what follows, we focus our analysis on the formation of
localized superlattices. Generally speaking, localized patterns
consist of stationary bright or dark spots appearing on a
HSS. Their existence requires a multistable regime, i.e., a
coexistence of a HSS and a periodic structure such as hexagons
and stripes [7–9,23]. However, when the system exhibits
coexistence between stable HSS and extended superlattice
patterns, stable localized superlattices may be generated. This
is exactly what occurs in the domains L1 and L2 illustrated in
Fig. 2. In these regimes, there exists a so-called pinning range
of parameter values for which a stable localized superlattice,
connecting the uniform and a branch of superlattice patterns,
can be found. The pinning range associated with bright and
dark localized superlattices P1 and P2, respectively, are shown
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ba

FIG. 3. (a) Bright and (b) dark localized superlattices correspond-
ing to the activator u obtained for a = −0.25 and for a = 0.2,
respectively. Parameters are d = 150, β = 0.7, ε = 2.5, and γ = 0.9.
Maxima are plain white and the grid is 512 × 512.

in Fig. 2. Examples of localized superlattices are shown in
Fig. 3. To seed localized superlattices, we use an initial
condition that consists of a slug of extended superlattice
solution [Eq. (3)] embedded in a HSS with mi = 0.6 and
Mi = 0.4 for Fig. 3(a) and mi = −0.6 and Mi = −0.4 for
Fig. 3(b). Such a perturbation evolves towards stable localized
superlattices. They are spatially localized in the sense that
they are made by elements of extended superlattice patterns
embedded in a uniform background. This localized superlattice
possesses a well-defined size and it is stable with respect to
parameter variations. Similar to extended superlattice patterns,
localized superlattices can be either bright or dark as shown in
Fig. 3. The simplest solution consists either of a bright or a dark
ring surrounded by eight bright or dark spots (see Fig. 3). By
removing the surrounding spots, the ring will be destabilized
according to the well-known curvature instability [22]. Hence,
the existence of stable spots ensures the stabilization of a ring.

Independent localized spots or rings can be formed at
arbitrary positions in space. Their stability is independent
of the spatial position. If, however, they are sufficiently
close one to another, these structures start to interact due
to the overlapping of their decaying oscillating tails. These
spot-spot or spot-ring interactions will initiate a slow motion
of localized rings or spots until when they reach a stable
equilibrium position. The stabilization mechanism of rings
is then attributed to the presence of spots that, through their
interaction, allows the stabilization of localized superlattices.
The remarkable feature of these solutions is that, depending
on the initial conditions, we can generate an arbitrary number
of stable localized rings and spots. Through the interaction,
localized rings and spots gather themselves into a spatial
configuration referred to as clusters. Stable clusters involving
three-rings surrounded by spots, are shown in Fig. 4. These
stationary localized states are aperiodic and consist of one
or more regions in one state (homogeneous steady state)
surrounded by a region in a qualitatively different state
(extended superlattices). Neither of them grows in spite of
available free (x,y) space.

Localized structures offer short spatial range correlations
in comparison to long-range correlations characteristic of
extended patterns (periodic or biperiodic). Localized struc-
tures are often associated with storage of information in
nonequilibrium systems [23]. However, extended patterns
that can be either periodic or biperiodic, such as patterns,
provide information only about wavelengths, and they are not

FIG. 4. Localized superlattices formed by three rings and spots
corresponding to the activator u. Parameters are the same as in
Fig. 3(a). Maxima are plain white and the grid is 800 × 800.

suitable for storage or manipulation of information. This is
due to the strong mutual correlation between spots and/or
rings. By adding or removing a single spot or a single ring,
the entire structure will be affected. Localized patterns are
therefore more interesting for practical applications. Localized
spots can be used as pixels for information storage and they
may represent a two-state variable (i.e., “bits”). In our case,
localized superlattices contain two types of localized objects:
rings and spots, which differ in shape. This particular localized
structure may represent a three-state variable. This increases
the capacity of storage by a factor of log2(3) ≈ 1.58.

Storage of information is an important issue in optical
systems [8,9]. In particular, the semiconductor microcavity
system has received special attention owing to its associated
mature technology. The modeling of this system shows the
occurrence of two subcritical Turing type of instabilities with
different wavelengths [19] and its exhibits a variety of stable
periodic and localized structures [9]. Dynamically speaking,
apart from the phase of the electric field, this system and
the FitzHugh-Nagumo model are similar. In particular, the
marginal stability curve of the semiconductor microcavity (cf.
to Fig. 5 of the paper by L. Spinelli et al. [19]) is similar
to the one described in this paper (see Fig. 1). By varying the
detuning parameter of this system we can easily satisfy the two
resonant triplets describe above. Because this system satisfies
the general conditions under which localized superlattices can
be obtained, semiconductor microcavities are thus liable to
produce some of the structures described in this paper.

We would like to point out that the nonvariational effect
considered in this work is not an essential prerequisite for the
stabilization of localized structures. Indeed, their stability in
variational systems like the Swift-Hohenberg model indicates
a functional monotonically decreasing in time. In this case,
however, the formation of superlattices requires an interplay
between two different unstable wavelengths generated by
two coupled Swift-Hohenberg equations [13]. In this work
the dynamics is governed by a free energy [13]. Hence, the
existence of stable localized superlattices does not require
nonvariational dynamics.

In conclusion, the numerical analysis of the FitzHugh-
Nagumo equations allows us to identify stable localized
superlattice patterns. These structures may be either bright or
dark and involve isolated or self-organized spots and rings.
This phenomenon occurs in the regime where the system
exhibits a bistable behavior between a HSS and a branch of
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an extended superlattice pattern. The mechanism lying at the
basis of localized superlattices is the existence of two Turing
instabilities having different wave numbers. This condition
is rather general, and localized superlattice patterns could
appear in a wide variety of systems far from equilibrium. In
this respect, the stationary localized ring surrounded by spots
has been observed experimentally in the Belousov-Zhabotinski
reaction dispersed in a water-in-oil microemulsion [5], which
is very similar to Fig. 3. This localized structure is attributed
to the subcritical Turing instability and the formation of the
ring may be induced by dust particles in the microemulsion.
Here, we show that the origin of these localized structures

is rather intrinsic. This means that the wavelengths, which
determine the size of rings and spots, depend solely on the
dynamical parameters and not on the boundary conditions or
external forces or other external constrains. The formation
of localized superlattices is rather induced by the subcritical
extended superlattice branch of solutions.
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