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In their Comment on Phys. Rev E 81, 041137 (2010), a paper that focused on the necessary conditions for
the stability of dissipative fluids and plasmas, the authors claim that the basic equations of the paper are in
contradiction with the laws of thermodynamics of irreversible processes [Sonnino, Tlidi, and Evslin, preceding
paper, Phys. Rev. E 86, 043101 (2012)]. Here, we show that one of the basic equations of the Comment is just a
particular case of the results of the criticized paper. As for two further tenets of the Comment, counterexamples
are found in the literature and are discussed here.
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I. THE PROBLEM

Reference [1] contains a discussion of ten well-known
necessary criteria of stability for steady states far from
thermodynamical equilibrium in both plasma physics and
fluid dynamics. The assumption of “local thermodynamic
equilibrium” is the basic assumption in Ref. [1].

In Ref. [2], the authors claim that the basic equations of the
paper are in contradiction with the laws of thermodynamics of
irreversible processes [Sonnino, Tlidi, and Evslin (preceding
paper)].

The analysis of Ref. [2] relies on three tenets, namely, their
relationships (2), (5), and (6).

Here, we show that:
(i) Relationship (2) is not relevant to the search of neces-

sary conditions of stability (Sec. II).
(ii) Relationship (5) is just a particular case of one of the

results of Ref. [1] (Sec. III).
(iii) Relationship (6) is in contradiction with the laws of

mechanics (Sec. IV).

II. RELATIONSHIP (2)

Relationship (2) of Ref. [2] reads∫
�

dV (∇ · q)
∂

∂t

(
1

T

)
� 0, (2.1)

where q is the heat flux and dV is the volume differential in an
arbitrary region � such that boundary conditions are time in-
dependent on the boundary of �. The authors of Ref. [2] claim
that (2.1) is in contradiction with the inequality (2.6) in Ref. [1],∫

�

dV δ (∇ · q)
∂

∂t

(
δ

1

T

)
� 0. (2.2)

Relationship (2.1) follows from the familiar equation,

ρcp

∂T

∂t
+ ∇ · q = 0, (2.3)

which describes heat transport in an incompressible system at
rest with mass density ρ and specific heat at constant pressure
per unit mass cp—see Eq. (50.4) of Ref. [3]. Equation (2.3)
holds provided that no net heat source exists inside the system.
Generally speaking, if we denote with Q the net amount of
heat generated during the relaxation process per unit time and

volume, then we replace (2.3) with Eq. (50.7) of Ref. [3],

ρcp

∂T

∂t
+ ∇ · q = Q, (2.4)

and violation of (2.1) is allowed.
Now, Ref. [1] is basically a search of necessary criteria for

stability. As far as we look for necessary criteria, we are free to
select the test perturbation, which we require our system to be
stable against. If the relaxed state is stable, then it is stable also
against the selected test perturbation. Relationship (2.2) is just
a prescription on such a test perturbation. The choice of (2.2)
agrees with physical intuition. In fact, we expect that a state
where an increase in T induces a decrease in energy losses is
a bad candidate for stability as any decrease in energy losses
is likely to induce further increase in T . Analogous arguments
hold for cooling processes.

Generally speaking, there is no reason to postulate Q ≡ 0,
i.e., that relaxation involves no net amount of heat. (Indeed,
it is reasonable to allow Q �= 0 in systems involving Joule
heating, viscous heating, and combustion.) Correspondingly,
(2.1) puts no constraint on the search in Ref. [1].

III. RELATIONSHIP (5)

At the beginning of Sec. II of Ref. [2], the authors introduce
Gibbs’ relationship,

T δs = δu + pδ

(
1

ρ

)
−

∑
q

μqδNq, (3.1)

where T , s, u, p, ρ, μq , and Nq indicate the temperature,
the total entropy per unit mass, the internal energy per unit
mass, the total pressure, the total mass density, the chemical
potential, and the mass fraction of the qth species, respectively.
The symbol δa denotes the “Glansdoff-Prigogine increment”
of the generic quantity a. The Glansdoff-Prigogine increment
is defined in Note No. 11. It “expresses the variation in a given
physical quantity with respect to time or to a particular spatial
direction” (italics are ours). The relevance of the Glansdoff-
Prigogine increment to the arguments of Ref. [2] seems to
be related to the claim of Note 11 of Ref. [2]: “The correct
expressions involving the total derivatives dt , are by no means
obtained simply by replacing, in the Glansdorff-Prigogine
expressions for δ2A , the increments δ with dt .”

Now, Gibbs’ relationship is a formulation of the first
principle of thermodynamics as it can be found in any standard
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textbook where δa is the familiar small increment of a—see,
e.g., Eq. (24.5) of Ref. [4]. Gibbs’ relationship is derived with
the help of no Glansdoff-Prigogine increment.

Moreover, “replacing [. . .] the increments [. . .] with dt”
is precisely what is routinely performed, e.g., in standard
treatment of fluid dynamics—see, e.g., Eq. (2.5) of Ref. [3]
for Euler’s equation. Indeed, a tenet of fluid mechanics is
the assumption that small mass elements are locally and
instantaneously at local thermodynamical equilibrium (LTE)
so that Gibbs’ relationship holds for perturbations of the small
mass element, which depend on both space and time. Should
we be obliged to compute the differential, e.g., of enthalpy
per unit mass “with respect to time or to a particular spatial
direction,” basic statements, such as “in adiabatic motion, the
entropy of any particle of fluids remains constant as that
particles moves”—see, e.g., Sec. 2 of Ref. [3]—would be
meaningless.

Physically, as far as we are dealing with the thermody-
namics of a small mass element, the obvious choice is to
consider the frame of reference, which moves with the small
mass element itself. Accordingly, d/dt , not ∂/∂t , is the time
derivative to be used.

Finally, direct inspection shows that relationship (5) of
Ref. [2] is just what Eq. (A.10) of Ref. [1] reduces to whenever
da/dt − ∂a/∂t = v · ∇a = 0 in Eq. (2.1) of Ref. [1], i.e.,
either everything stands still, or everything remains uniform at
all times.

IV. RELATIONSHIP (6)

The treatment of Ref. [1] holds regardless of δv. In contrast,
relationship (6) of Ref. [2] reads

∂δ2z

∂t
� 0, δ2z � 0, δ2z ≡ −T (δv)2 + δ2s. (4.1)

The quantity − T (δv)2 is �0 in all cases; v is the velocity of
the center of mass of the small mass element in the observer’s
frame of reference. According to the laws of mechanics,
internal forces leave such motion unaffected.

The quantity δ2s is defined in Eq. (7) of Ref. [2];
it depends explicitly on neither v nor δv. The value of
δ2s is affected by phenomena occurring inside the small
mass element—such as, e.g., chemical reactions, diffusion
of different chemical species, etc. Such phenomena de-
pend on interparticle interactions, which are internal to the
small mass element—for example, van der Waals poten-
tials rule collisions among molecules inside the small mass
element.

Remarkably, as far as the sign of δ2z and ∂δ2z/∂t remain
unchanged, (4.1) allows suitable perturbations δv of v to
reverse the sign of δ2s. To put it in other words, (4.1) describes
stability in a small mass element of a physical system by
linking the center-of-mass motion of the small mass element
and the internal forces inside it. The laws of mechanics allow
the existence of no such link.

We refer to Chap. 4 of Ref. [5] for further discussion.
Reference [1] invokes (4.1) nowhere.

Finally, it does not take (4.1) to obtain the Le Châtelier
principle. Rather, the Le Châtelier principle follows directly
from the second principle of thermodynamics—see, e.g.,
Eqs. (22.5) and (22.7) of Ref. [4]. Its application to a small
mass element follows from LTE. The Le Châtelier principle
provides, therefore, no confirmation to (4.1).
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