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Cracking phase diagram for the dynamics of an enzyme
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We measure the ensemble averaged deformation of an enzyme for an oscillating applied force. From the low
frequency divergence of the mechanical susceptibility for the hinge motion of guanylate kinase we obtain a
nonequilibrium phase diagram in the frequency-force plane. A phase line separates linear elasticity dynamics
from softer (viscoelastic) dynamics. The hinge motion corresponds to crossing this phase line (not to a soft linear
elastic mode). The phase line is dramatically shifted in the closed state compared to the open state of the enzyme.
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I. INTRODUCTION

Virtually all enzymes couple catalysis to conformational
motion. Evident in motor proteins, mechanochemical coupling
is also the basis for substrate specificity [1,2] and activity
regulation [3–5] in these molecular machines. Conformational
changes coupled to catalysis are often large, with amplitudes
of ∼1 nm compared to an overall size of the enzyme of ∼5 nm.
The folded protein being a solid, these huge strains pose
an interesting question about the nature of conformational
dynamics and the associated material properties of the system.
Surely this motion is not within the linear elasticity regime,
and a specific nonlinear mechanism for these transitions, called
“cracking,” was proposed some years ago [6,7]. Cracking
connects initial and final states through a local melting and
refolding event. Translated into stress-strain relations, this
should give rise to an interesting dynamics. Here we measure
directly the stress-strain relations for the hinge motion of
the enzyme guanylate kinase (GK), a molecule quite similar
to the enzyme considered in [6,7]. Specifically, we report
comparative nanorheology [8] measurements on the open (no
substrate) and closed (with the substrate GMP) forms of the
enzyme and find that while the linear elasticity regime is almost
the same, the nonlinear behavior, or what we have called the
viscoelastic regime [9,10] is dramatically different in the two
cases. A phase diagram in the frequency-force plane maps out
regions of linear elastic vs softer (viscoelastic) dynamics. The
existence of this phase line may be a universal feature of the
dynamics of enzymes.

II. RESULTS

The experimental system (Fig. 1) is described in detail in
[8–10]. Briefly, the enzyme under study (GK from Mycobac-
terium tuberculosis, a ∼4 nm size, ∼200 amino acid globular
protein which catalyzes the transfer of a phosphate group from
ATP to GMP) tethers 20 nm size gold nanoparticles (GNPs) to
an optically transparent (∼30 nm thick) gold layer evaporated
on a glass slide. The protein is attached to the gold surfaces
through cysteines introduced by mutagenesis on the two lobes
of the structure. The “hinge motion” [11] which transforms
the structure from the open to the closed form (Fig. 2) upon
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binding the substrate GMP—a classic example of induced
fit [1]—roughly corresponds to moving the two cysteines by
1 nm towards each other. At each enzymatic cycle the molecule
presumably performs this motion, though the pathway cannot
be deterministic.

In the experiments, we drive the GNPs (which are nega-
tively charged due to surface bound charged polymers) with
an oscillating electric field generated by applying an ac voltage
(∼500 mV rms, in the frequency range 10 Hz–10 kHz)
between the gold layer and a similar upper electrode which
forms the top of the ∼200 μm thick sample cell. This chamber
is filled with a threefold diluted saline-sodium citrate buffer
solution (SSC/3), giving an ionic strength of ∼50 mM and
a corresponding Debye length of ∼1 nm. The amplitude of
oscillation of the GNPs is measured by evanescent wave
scattering [12] in a phase locked loop. This oscillation is
collective, whereas the thermal motion of each individual
GNP is independent; by averaging over many GNPs (there
are ∼108 GNPs in the field of view of the lens which
collects the scattered light) it is possible to measure oscillation
amplitudes of a fraction of 1 Å, whereas the amplitude of
thermal motion of an individual GNP is several nanometers
[10]. This extraordinary resolution allowed us to measure the
mechanical response function of the protein as it transits from
the linear elasticity regime (at low forcing and high frequency)
to a regime (at high forcing and low frequency) which we called
viscoelastic [9,10]. In these experiments, the force on the GNPs
is not calibrated, however we know that it is proportional to the
applied voltage in the range of the experiments from control
experiments using single-strand DNA molecules as tethers;
these controls are published in [9]. Similarly, we know that
the force on the GNPs is independent of frequency, from
experiments at low force, where we expect elastic behavior
and observe indeed a flat response vs frequency [8,9]. At fixed
amplitude F0 of the forcing, the amplitude of the response
|z| vs frequency ν is constant at high frequency (the response
of a spring) and diverges at low frequency (the response of a
viscous fluid) [9]. At fixed frequency ν, |z| vs F0 is piecewise
linear, the protein softening beyond a yield strain which defines
the extent of the linear elasticity regime [10].

Here we start by presenting more detailed measurements of
the low frequency divergence of the response function, shown
in Fig. 3(a). The graph shows the amplitude of oscillation
(in Å) vs driving frequency ν obtained for the same sample and
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FIG. 1. (Color online) The experimental system. (a) The sample
chamber with ac electric field and synchronous evanescent wave
scattering optical measurement of deformation. (b) The geometry
of the enzyme GK tethering a GNP to the gold coated slide. The
attachment points (residues mutated to cysteines at positions 171 and
75) are shown on the structure. The enzyme and the GNP are drawn
approximately to scale.

different amplitudes of the driving voltage. The high frequency
response is flat, the plateau value being proportional to the
driving force F0 within experimental uncertainty. This is the
behavior of a spring. Measurements of this plateau in a wider
frequency range are reported in [8,9]. For ν → 0 the response
diverges as 1/ν, as shown by the solid lines. This is the behavior
of a viscous fluid. The functional form we use to fit the data
of Fig. 3(a) reflects this behavior and is discussed below. It
defines a corner frequency ω1 below which the system “flows.”
This corner frequency shifts to higher values for increasing

FIG. 2. (Color online) The open to closed conformational change
(hinge motion) of (yeast) GK. Shown are the crystallographic
structures of the enzyme with and without GMP bound (PDB
structures 1EX7, 1EX6).

FIG. 3. (Color online) (a) Ensemble averaged amplitude of the
deformation |z| vs frequency ν for different driving voltages, showing
the low frequency divergence of the susceptibility. The lines are fits
to the data using Eq. (4). The error bars represent standard deviations
(±SD) over five measurements (on the same sample). The inset is
a plot of ln(ξ ) = ln[|z|/(A

√
1 + (ω/ω1)2)] vs ln(1/ω) for the same

data, showing the data collapse obtained using Eq. (4). The best
linear fit has a slope of 1. (b) The phase diagram of the viscoelastic
transition, obtained by plotting the corner frequency ω1 obtained from
(a) vs the voltage V . The line, which is a fit using Eq. (7), separates
linear elastic from softer (viscoelastic) dynamics.

amplitude of the forcing. This is shown in Fig. 3(b), where
we plot the corner frequency ω1 vs applied voltage V . The
line through the points (which we discuss later) separates the
ω-V plane into two regions: one where we observe linear
elasticity (“elastic”), and the other where we observe softening
of the protein (“viscoelastic”). The transition between the two
regimes is sharp when the response amplitude is plotted against
the applied force [10], Fig. 4, so Fig. 3(b) constitutes a phase
diagram of the dynamical behavior of the protein.

We may similarly probe the dynamics of the closed state.
We add 1 mM GMP, which is saturating concentration (the
binding constant for GMP is KG ≈ 200 μM [5]). Figure 5
shows the response of the enzyme in the “open” state (in
the absence of GMP: squares) and in the “closed” state (with
GMP bound: circles), for the same sample. The high frequency
plateau, which defines the linear elasticity stiffness, changes
very little; from accurate measurements in a wider frequency
range we know in fact that with GMP bound this stiffness is
increased by about 30% [8]. But the low frequency divergence
is dramatically different, the open state being “softer” in this
regime than the closed state. In short, the so-called hinge
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FIG. 4. (Color online) Forcing amplitude vs deformation at
fixed frequency; circles: ν = 10 Hz; squares: ν = 50 Hz. The linear
elasticity regime is extended at the higher frequency. The transition
to the soft (viscoelastic) dynamics is sharp.

motion displays indeed a “soft” dynamics, but not in the
linear elasticity regime (i.e., no “soft mode”). Instead, it is the
phase line between elastic and viscoelastic (or soft) dynamics
which is displaced (towards higher frequencies) in the open
state compared to the closed state. Finally, we remark that
all measurements presented here are reversible and cannot
be attributed to electrochemical effects, but must reflect the
dynamics of the tethers.

We now summarize quantitatively these observations by
means of a heuristic model of the ensemble averaged pro-
tein’s mechanics which we introduced previously [9,10]. The
basic observation is that the ensemble averaged deformation,
measured in the experiments, shows elastic behavior at high
frequency and viscous flow behavior at low frequency. This is
called viscoelasticity, and is captured in its simplest form by
the Maxwell model, which is a spring and dashpot in series
[Fig. 6(b)]. The relation between force f and displacement z

for this model is

dz

dt
= 1

k

df

dt
+ 1

γ
f (t), (1)

FIG. 5. (Color online) Deformation amplitude |z| vs frequency
ν for the same sample and driving voltage, in the presence (circles:
closed state) and absence (squares: open state) of the substrate GMP.
While the linear elasticity (large ν) is essentially the same in the two
cases, the low frequency behavior is dramatically different.
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FIG. 6. (a) Sketch of a possible zero frequency free energy as a
function of deformation z. The quadratic branch corresponds to linear
elasticity and the linear branch gives rise to the soft (viscoelastic)
dynamic states. Metastable states of energy � with respect to the
ground state are accessible dynamically. (b) The simplest (Maxwell)
model of viscoelasticity: a spring and dashpot in series.

where k is the spring constant and γ is the dissipation
coefficient of the dashpot. In the experiment, this object is
coupled to a GNP. The equation of motion of the GNP is

F (t) = f (t) + γ0
dz

dt
, (2)

where F is the force applied by the electric field. γ0 is
the hydrodynamic dissipation coefficient of the GNP, and
inertial effects are negligible at the frequencies of interest.
There is no thermal motion term in (1) or (2) because z is
an ensemble averaged quantity. This deterministic dynamics
reproduces exactly the ensemble averaged dynamics of the
corresponding Langevin equations, because the system is
linear (see Supplemental Material in [10]). From (1) and (2),
with an oscillating force F = F0 sin(ωt) one finds that the
amplitude of the response is

|z| = F0

(γ + γ0)ω

√
1 + (ω/ω1)2

1 + (ω/ω2)2
, (3)

where ω1 = k∗/γ is the corner frequency of the viscoelastic
element and ω2 = k∗(γ + γ0)/(γ γ0). For γ � γ0, which is
the case for this setup [9], ω2 � ω1 and at frequencies
ω � ω2 (the regime we explore here) this response simplifies
to |z| ≈ [F0/(γω)]

√
1 + (ω/ω1)2. This describes very well the

frequency dependence at fixed force F0 [Fig. 3(a)]. With this
motivation, we fit the data of Fig. 3(a) with the form

|z| = A

ω

√
1 +

(
ω

ω1

)2

, (4)

and determine for each data set the parameters A and ω1. In
the inset of Fig. 3(a) we show the data collapse obtained by
plotting ln ξ vs ln(1/ω) (where ξ = |z|/[A

√
1 + (ω/ω1)2]),

using these values of A and ω1. The slope of the graph
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is 1.02 ± 0.02 showing that the response function indeed
diverges as 1/ω for ω → 0. Figure 3(b) shows the values of the
corner frequency ω1 [obtained from the fits of Fig. 3(a)] plotted
against the driving voltage F0. The relation ω1 = ω1(F0)
defines a phase line in this diagram separating elastic from
dissipative response. The existence of this phase line is a main
new result in the mechanochemistry of enzymes.

We now calculate the shape of the phase line, which is a
stretched exponential (i.e., log ν increases faster than linearly
with V ). Noting that the yield deformation zc depends on
frequency (Fig. 4), we assume that the dc elastic energy E

vs deformation z of the protein has the qualitative behavior
sketched in Fig. 6(a). The equilibrium states follow the lower of
the two branches in Fig. 6(a). But there are also nonequilibrium
(metastable) states—the higher of the two branches—which
are accessible to the system dynamically. We assume this
generic picture of a bifurcation (e.g., the energy diagram
for the Euler buckling instability is similar) inspired by our
measurements of the equilibrium bending elastic energy of
another biopolymer, double-strand DNA [13]. Assume that
for ω > 0 the system can access the metastable states on
the z2 branch [Fig. 6(a)]. The lifetime τ of such a state is
[see Fig. 6(a)]

τ ∝ exp(−�/T ) = exp
[− (

1
2kz2

c − αzc

) /
T

]
, (5)

which yields the relation between ω and zc:

1

ω
= 1

ω0
exp

[
−

(
1

2
kz2

c − αzc

) /
T

]
, (6)

and since Fc = kzc, we obtain the frequency dependence of
the critical force:

T ln

(
ω

ω0

)
= 1

2k
F 2

c − α

k
Fc. (7)

Interpreting (7) as a relation between the corner
frequency ω1 and F0, we obtain the solid line in Fig. 3(b).
Thus Fig. 3(b) represents a nonequilibrium phase diagram
for the protein, the phase line separating regions in the
frequency-force plane where the dynamical behavior is elastic/
viscoelastic.

We may apply these ideas to the measurements of the
response in the open and closed states. We fit the data
of Fig. 5 with the form (4) and obtain the parameters
A+ = 3.67 ± 0.33, ν+

1 = 9.23 ± 1.01 with GMP (closed state,
circles) and A− = 9.20 ± 0.25, ν−

1 = 23.29 ± 1.29 without
GMP (open state, squares). We notice that A−/A+ ≈ ν−

1 /ν+
1 .

Within the viscoelastic model, ν1 = k∗/(2πγ ), A = const./γ ,
and we can describe the data by saying that γ is a factor 2.5
smaller in the open state compared to the closed state, while
k∗ is the same. The phase line in Fig. 3(b) is displaced in the
closed state compared to the open state.

III. CONCLUSIONS

Through a set of nanomechanical measurements of ex-
traordinary resolution on the “hinge motion” of the enzyme
guanylate kinase we arrive at the following experimental
picture. The system undergoes a sharp (Fig. 4) transition
from linear elasticity to a softer (“viscoelastic”) dynamics as a

function of force and frequency. Specifically, the susceptibility
χ (ω) = |z|/F0 diverges as 1/ω for ω → 0 and goes to a
constant for ω → ∞. We give an experimental description of
this transition in terms of how the susceptibility χ (ω) depends
on the force: χ = χ (ω,F0) [Figs. 3(a) and 4]. Namely, we
experimentally define a line in the ω-F0 (frequency-force)
plane [Fig. 3(b)] which separates elastic from viscoelastic
response. In the representation of Fig. 3(a), following one
curve towards lower frequencies corresponds to moving
downwards along a vertical line in the phase diagram of
Fig. 3(b): At some point one crosses from the elastic into
the viscoelastic (soft) regime. Similarly, in the representation
of Fig. 4, which shows plots of the forcing amplitude F0 vs
response amplitude |z| at fixed frequency ν, moving along
a curve for increasing F0 corresponds to moving along a
horizontal line in Fig. 3(b). Again one crosses from the elastic
to the viscoelastic regime at a certain (frequency dependent)
critical force. We give a simple argument for the shape of
this phase line, and show that in the closed state it shifts
to lower frequencies compared to the open state. The open
state is “softer” than the closed state (Fig. 5), not because
its linear elastic constant is smaller, but because it is easier
to access the soft (viscoelastic) state. Therefore, the hinge
motion has nothing to do with “soft modes” and everything to
do with the viscoelastic transition [9]. From Fig. 4 it is also
evident that most (90%) of the 1 nm amplitude functional
conformational motion of GK happens in the viscoelastic
regime.

The conclusions above are experimental, independent of
assuming the viscoelastic dynamics (3). However, assuming
for the ensemble averaged dynamics of the protein, the
model (3) produces remarkably good fits to the data [inset of
Fig. 3(a)]. In this interpretation, the shift of the phase line in
the open compared to the closed state is due to the dependence
of the parameter γ on force (a nonlinear effect).

The linear viscoelastic model (1) describes very well the
frequency dependence of the measurements at fixed force F0

[Fig. 3(a)]. However it does not describe the force dependence,
which is nonlinear (Fig. 4). A comprehensive mathematical
description of the transition, and eventually a microscopic
model, are tasks for future work.

Onuchic, Wolynes, and collaborators, using structure based
coarse grained simulations [6,7], have arrived at a structural
description of the kind of conformational motion probed in our
experiment. This description involves localized melting and
refolding to connect open and closed states [6]. Qualitatively,
it seems to us that a molten “hinge” would flow and thus
produce a susceptibility which diverges as 1/ω, so we think
that their predicted scenario, which they called “cracking” [6],
and our observed dynamics, which we called the “viscoelastic
transition” [9], may be one and the same. In this case, this study
establishes experimentally the ensemble averaged dynamics of
cracking.
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