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Chemically controlled unfolding of a RNA-like polymer model
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We consider a lattice polymer model of the two-tolerant type (i.e., a random walk allowed to visit lattice bonds
at most twice), in which doubly visited bonds yield an attractive energy term (pairing energy). Such a model has
been previously proposed as a rough, nonspecific description of the RNA folding mechanism. Indeed, the model
predicts, besides the usual theta collapse, an extra transition to a low-temperature fully paired state. In the current
work, we propose an extension of the model, in which a “micromolecular” chemical species can bind the polymer
and locally forbid segment pairing. We investigate equilibrium thermodynamics in the grand-canonical picture,
at the level of a Bethe approximation, which is, a refined mean-field technique, equivalent to the exact solution
on a random-regular graph. The general trend we observe is that expected from the mechanism implemented in
the model (increasing micromolecule concentration favors unfolding and lowers the transition temperature), but
the resulting phase diagram turns out to be remarkably interesting and rich.
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I. INTRODUCTION

In the framework of statistical mechanics, the description
of essential properties of macromolecules usually relies on
their universality, that is, on the fact that such properties
are, to a certain degree, independent of microscopic details
of the model [1–3]. For instance, a linear homopolymer in
good solvent can be simply described as a self-avoiding
walk on a regular lattice (i.e., a random walk which is not
allowed to visit lattice sites more than once), whereas an
effective monomer-monomer attractive interaction allows one
to take into account the quality of the solvent and predict the
well-known coil-globule (collapse) transition.

In the last few years, a number of studies have been
addressed to investigate whether and how the microscopic
interaction details may affect qualitative features of the model,
such as the nature (e.g., order, universality class) or the very
existence of a collapse transition. For example, it has been
pointed out that an attractive interaction between neighbor
lattice bonds (rather than sites) visited by the walk may give
rise to an extra transition to a low-temperature anisotropic
phase [4–8]. Moreover, different transition scenarios may be
observed in models which relax the self-avoidance constraint
(allowing for multiply occupied lattice sites), if immediate
self-reversal of the walk is allowed or not [9–12].

Such and similar effects have been sometimes investigated
even in the absence of a specific physical system to be
described. Nevertheless, a special attention has been devoted to
models which relax the self-avoidance constraint by allowing
for doubly visited lattice bonds (rather than sites) because of
the speculated possibility of mimicking in this way, at a coarse-
grained level, base pairing which takes place in DNA or RNA.
This last kind of models, including indeed different possible
variants, is generally denoted as “two-tolerant” [13–18] and
have been investigated by different techniques, such as exact
enumerations [13], Monte Carlo simulations [14,15], scaling

arguments [15], and approximate semianalytical techniques
[16–18].

In principle, RNA is a long linear heteropolymer, composed
of four different monomers or bases (adenine, cytosine,
guanine, and uracil), such that certain base pairings (namely,
adenine-uracil, guanine-cytosine, and guanine-uracil) are en-
ergetically favored by the formation of hydrogen bonds [19].
Therefore, neglecting the heterogeneity of the sequence and
assigning an attractive (contact) energy to any possible base
pair is an extreme simplification, which, of course, cannot
explain properties of specific RNA sequences. Nevertheless, it
is tempting to identify the low-temperature fully paired phase
appearing in these models as a rough description of the RNA
native state, and the corresponding phase transition with the
RNA melting.

Quite recently, a lattice polymer model of the two-tolerant
type has been endowed with a suitable thermodynamic
parametrization [20], along the lines of the well-known
Turner model [21], in order to account for the specificity
of RNA base pairing. The cited work demonstrates the
possibility of enhancing the standard tools for RNA secondary
structure prediction by coarse-grained information about the
three-dimensional structure, thus enabling also the prediction
of tertiary contacts. Of course, the resulting model is not
amenable to simple analytical treatments, such as the one
presented in the current paper.

In a previous work [16], one of us investigated a (ho-
mogeneous) two-tolerant polymer model by means of the
Bethe approximation, i.e., a refined mean-field technique,
corresponding to the exact solution on the so-called Bethe
lattice. Here we consider an extension of that model, aimed
at describing a long polymer chain in a solution containing
also a certain amount of identical short polymers. As far
as the long chain is concerned, this is precisely the two-
tolerant polymer of the previous paper [16], whereas the short
polymers are assumed to have no internal structure, and to
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fill each one a single lattice bond. Due to these features,
in the following we shall simply denote the short polymers
as micromolecules, in contrast to the long polymer chain.
We introduce a special (micromolecule-polymer binding)
interaction term, which influences the local ability of the long
polymer to form double strands. Namely, we assume that, when
the same lattice bond is occupied by a micromolecule and by
a polymer segment (i.e., a micromolecule binds the polymer),
no other base pairing can occur in the neighbor lattice
bonds. We also consider an excluded-volume constraint to be
satisfied by the micromolecules. Still in the framework of the
Bethe approximation, we investigate the changes in the phase
diagram, with respect to the “pure polymer” model, depending
on the micromolecule concentration and the strength of the
binding interaction. It turns out that the former is the more
relevant parameter.

The paper is organized as follows. In Sec. II we define
the model in full detail, and in Sec. III we report the Bethe
lattice calculation. In Sec. IV we present and discuss the
thermodynamic properties of the model, whereas Sec. V
contains some concluding remarks. Further details of the
analytical calculations are reported in two appendices.

II. THE MODEL

As mentioned in the Introduction, we consider a lattice
model of a linear polymer in a mixture of solvent and
micromolecules.

The pure polymer model is equivalent to the one studied in a
previous paper [16], i.e., a two-tolerant lattice walk. Here two-
tolerant means that each lattice bond can be visited (at most)
twice. A doubly visited lattice bond represents pairing between
polymer segments, which is assumed to yield an attractive
energy −β (pairing energy). Some additional constraints are as
follows: (1) two paired segments cannot be consecutive along
the polymer chain; (2) if a lattice site is visited more than once,
every extra visit, besides the first one, must be associated to
pairing in some incident lattice bond. All these constraints are
local in nature, as they can be imposed at the level of each
“star” cluster (by this term, we shall denote the set of lattice
bonds incident to a given site). The allowed configurations
of a star cluster for the pure polymer model are summarized
in the first two stages of Table I. A simple inspection reveals
that these configurations mimic the building blocks of typical
motifs appearing in RNA structures (hairpin loops, internal
loops, bulge loops, multibranch loops) [21]. The possibility of
multibranch structures that are shrunk to a single site is also
allowed. Note that the model studied in Ref. [16] takes into
account also a stacking effect, that is, an extra energy term
−γ favoring longer double-stranded regions. In the current
paper we shall consider only the basic version of the model
and discard this term.

A micromolecule can bind any polymer segment, provided
the latter is not yet paired to another polymer segment, and
this process is assumed to yield an attractive energy −ε

(binding energy). Micromolecules impose some additional
strong constraints as well, namely, a micromolecule occupying
a given lattice bond forbids both the occurrence of segment-
segment pairing and the presence of other micromolecules
on nearby lattice bonds (i.e., all lattice bonds incident to

TABLE I. Allowed configurations of a star cluster (leftmost
column) and corresponding occupation numbers mi,ni for each bond
i = 0, . . . ,k (other columns). Thin lines denote lattice bonds (the
graphical representation is limited to four bonds); thick solid lines
denote polymer segments; thick dashed lines denote micromolecules.
The top rows report pure-polymer configurations (partially unpaired
configurations in the first stage, and fully paired configurations in
the second stage). The last three rows report extra configurations
including one micromolecule (but no more), admitted in the current
model. Configurations obtained by bond permutations are allowed
as well. The all-empty-bonds configuration is also allowed but not
illustrated.

conf. m0, n0 m1, n1 m2, n2 m3, n3 . . . mk, nk

0, 1 0, 1 0, 0 0, 0 . . . 0, 0

0, 1 0, 1 0, 2 0, 0 . . . 0, 0

...
...

...
...

...
. . .

...

0, 1 0, 1 0, 2 0, 2 . . . 0, 2

0, 2 0, 2 0, 0 0, 0 . . . 0, 0

0, 2 0, 2 0, 2 0, 0 . . . 0, 0

...
...

...
...

...
. . .

...

0, 2 0, 2 0, 2 0, 2 . . . 0, 2

1, 0 0, 0 0, 0 0, 0 . . . 0, 0

1, 0 0, 1 0, 1 0, 0 . . . 0, 0

1, 1 0, 1 0, 0 0, 0 . . . 0, 0

the end-sites of the given bond). Even these constraints are
local and can be imposed at the level of star clusters. The
allowed configurations of a star cluster in the presence of
a micromolecule are displayed in the last stage of Table I.
According to the constraints, only one micromolecule and a
single-stranded chain stretch appear.

We consider a grand-canonical formulation of the problem:
Chemical potentials μ and μ′ are associated with a polymer
segment and a micromolecule, respectively, while the solvent
chemical potential is conventionally assumed to be zero.

A configuration of the system is defined by specifying
the number of polymer segments and/or micromolecules on
each lattice bond. Therefore, we define, for the ith lattice
bond, two configuration variables: mi = 0,1 (micromolecule
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occupation number) and ni = 0, . . . ,2 − mi (segment occu-
pation number). Note that the upper bound of the segment
occupation number depends on the micromolecule occupation
number, because the presence of a micromolecule on a given
lattice bond implies that no more than one polymer segment
can occupy the same bond. As mentioned above, further
constraints must be satisfied at the level of star clusters. As
far as the segment occupation numbers ni are concerned, these
constraints are precisely the same as those of the pure polymer
model [16]. Taking into account the micromolecules, we have
to impose the following extra conditions: (1) the total number
of micromolecules on each star cluster can just be 0 or 1;
(2) in the latter case, the total number of polymer segments
on the star cluster can be at most 2. The polymer constraints
themselves impose that this number can thus be either 0 or 2,
and, in the latter case, that the segments must be unpaired [16].

Assuming a coordination number k + 1, the Hamiltonian
can be formally written in the same way as the pure polymer
model’s, namely,

H̃ =
∑

{i0,...,ik}
H̃mi0

,ni0
,...,mik

,nik
+

∑
i

h̃mi ,ni
, (1)

where the former sum runs over all star clusters {i0, . . . ,ik},
and the latter over all bonds i. Single-bond energy terms h̃m,n

take into account pairing and binding energies, and chemical
potential contributions. They can be defined as follows:

h̃0,0 = 0, (2)

h̃0,1 = −μ, (3)

h̃0,2 = −β − 2μ, (4)

h̃1,0 = −μ′, (5)

h̃1,1 = −ε − μ − μ′. (6)

Note that for m = 0 (i.e., no micromolecules), we recover
the single-bond term of the pure polymer model, namely,
h̃0,n = hn, where h is defined in Eqs. (2)–(4) of Ref. [16]
(with γ = 0). Many-bond (“star”) terms H̃mi0

,ni0
,...,mik

,nik
take

into account the star-cluster constraints, assigning infinite
energy to forbidden configurations and zero energy to allowed
configurations. We have

H̃mi0
,ni0

,...,mik
,nik

= Hni0
,...,nik

+ H ′
mi0

,ni0
,...,mik

,nik
, (7)

where H is the corresponding term for the pure polymer
model (defined in Ref. [16]), and H ′ is a “perturbation”
term, implementing the constraints associated to the presence
of a micromolecule. The pure polymer term is defined as
0, if the set of segment occupation numbers {ni0 , . . . ,nik }
corresponds to one of the allowed pure-polymer configurations
(see Table I), and ∞ otherwise. Moreover, according to the
above discussion, the perturbation term can be written as

H ′
mi0

,ni0
,...,mik

,nik
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if
∑k

i=0 mi = 0;

0, if
∑k

i=0 mi = 1

and
∑k

i=0 ni = 0,2;
∞, otherwise.

(8)

III. THE BETHE APPROXIMATION

The Bethe (or cavity) approximation [22,23] may be
generally regarded as the exact solution on the so-called Bethe
lattice, the latter being defined as a random-regular graph
(i.e., a random graph with fixed coordination number). In the
thermodynamic limit, this kind of lattice is locally treelike [24],
since the length of close paths diverges as the logarithm of
the number of sites. Therefore, thermodynamic equilibrium
states can be determined in a heuristic manner, assuming that
the lattice structure is actually that of a tree graph, together
with a self-consistency requirement, which leads to a recursion
equation [25] (basically as in Bethe’s original paper [26]). It is
then possible to show that the thermodynamic states computed
along these lines coincide with the minima of a variational
free energy functional, called Bethe free energy [27], though
actually derived for the first time by Guggenheim [28].

Note that, as far as polymer models are concerned, there is
an extra approximation, due to the fact that the connectivity
constraints of the polymer chain are taken into account only at
a local level, so that, shortly speaking, a single self-interacting
polymer is replaced by an ensemble of interacting polymers.
In spite of such an approximation, several examples have
demonstrated that this kind of calculation generally yields
qualitatively reliable results (more accurate than pure mean
field) for the model phase diagram [5,8,29]. For instance, let
us mention the case of the “attracting-bond” self-avoiding
walk [5,8], whose phase diagram exhibits several analogies
with that of our (pure-polymer) model. Namely, in that case,
the phase diagram has been first predicted by the Bethe
approximation [5] and subsequently confirmed (at least in the
two-dimensional case) by a transfer matrix approach [8].

On the other hand, let us stress the fact that the Bethe
approximation necessarily fails in the description of loop
statistics, because, as previously mentioned, the Bethe lattice is
mostly treelike, whereas closed lattice paths exhibit a diverging
length (logarithmic in the system size). This is the reason
why in Ref. [16] we explicitly introduced, as a partial cure
for this difficulty, the multibranched configurations shown
in Table I. However, since loop statistics turn out to have
a deep impact on the thermodynamics of RNA folding (as
has been clearly pointed out in a nice paper by Einert and
coworkers [30]), we can conclude that special cautions are in
order for the interpretation of our results in terms of real RNA
properties.

In its general form, the recursion equation associated with
(the Bethe approximation of) the current model is very similar
to that of the pure polymer model and can be deduced in
an analogous way. In the treelike assumption, if a given star
term of the Hamiltonian (1) is removed, the system splits
into k + 1 disconnected branches. Thus, one can ideally study
the Boltzmann distribution of each isolated branch (let us
consider, for instance, the one depicted in Fig. 1 with labeled
bonds) and compute the probability distribution wm0,n0 of
the configuration variables m0,n0 in the “root” bond (the 0
bond in Fig. 1). These probabilities, which have to satisfy the
normalization condition

1∑
m0=0

2−m0∑
n0=0

wm0,n0 = 1, (9)
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FIG. 1. Sketch of a Bethe lattice with k = 2.

are usually denoted as normalized partial partition functions
[25]. In the thermodynamic limit, and in the hypothesis of a
homogeneous thermodynamic state, the subbranches attached
to the root bond should be equivalent to “primary” one. Such
a self-consistency requirement yields the recursion equation

wm0,n0 = q−1e−h̃m0 ,n0

1∑
m1=0

2−m1∑
n1=0

wm1,n1 . . .

. . .

1∑
mk=0

2−mk∑
nk=0

wmk,nk
e−H̃m0 ,n0 ,m1 ,n1 ,...,mk ,nk , (10)

where q is a normalization factor, the sum runs over con-
figuration variables of bonds attached to the 0 bond (m1,n1

and m2,n2, in the example of Fig. 1), and the energy terms
h̃m0,n0 and H̃m0,n0,...,mk,nk

are understood to incorporate the
inverse temperature. Note that this equation is quite general:
The explicit equations characterizing the current model can
be obtained by taking into account the specific energy terms
described in the previous section, which is done in Appendix A.
The recursion equation can be solved numerically by a simple
iterative (fixed-point) algorithm. All equilibrium properties of
the system can be derived from the knowledge of the partial
partition functions.

First, we can compute the joint probability distribution
pm,n of micromolecule and segment occupation numbers m,n

for a generic lattice bond. Consistently with the treelike
hypothesis, if a given lattice bond is cut, the system splits
into two disconnected branches. Therefore, the configuration
variables associated to each given bond “feel” the effect of two
independent branches. We thus obtain

pm,n = z−1eh̃m,nw2
m,n, (11)

where

z =
1∑

m=0

2−m∑
n=0

eh̃m,nw2
m,n (12)

provides normalization. Note that, according to Eq. (10), the
partial partition function wm0,n0 incorporates the Boltzmann
factor of the single-bond energy term h̃m0,n0 associated with
the root bond. Accordingly, the exponential factor in Eq. (11)
is meant to avoid double counting.

The average number of polymer segments per lattice bond,
which in the following we shall denote as segment density, can

be evaluated as

ρ =
1∑

m=0

2−m∑
n=0

npm,n = p0,1 + 2p0,2 + p1,1. (13)

Similarly, the average number of micromolecules per lattice
bond (micromolecule density) is

ρ ′ =
1∑

m=0

2−m∑
n=0

mpm,n = p1,0 + p1,1. (14)

Two more properties, useful to characterize the model behav-
ior, are the fraction of paired polymer segments

φ = 2p0,2/ρ, (15)

and the fraction of polymer segments bound to a micro-
molecule

φ′ = p1,1/ρ. (16)

As in the pure polymer model, the segment density ρ and the
fraction of paired segments φ act as order parameters for our
system: These two quantities are sufficient to define the phase
diagram. Let us note, however, that in this case we need the
two extra parameters ρ ′ and φ′ for a full characterization of the
normalized partial partition functions, the latter being indeed a
set of five values w0,0, w0,1, w0,2, w1,0, w1,1, only four of which
are independent (because of the normalization condition).

The grand-canonical free energy (grand-potential) per
lattice bond, ω, can be easily computed as a function of the
normalization constants q [of the recursion equation (10)] and
z [of Eq. (12)]:

ω = −2 ln q − (k − 1) ln z

k + 1
. (17)

A derivation of this expression, relying on the variational
Bethe free energy, was reported in the previous paper [16].
In the presence of multiple solutions (i.e., fixed points) of the
recursion equation, which corresponds to the occurrence of
coexistence phenomena, the knowledge of the grand potential
allows us to discriminate the thermodynamically stable phase,
and therefore to determine first-order transitions. Conversely,
second-order transitions can be better detected by analyzing
the stability of the solutions. The latter is a rather technical
issue, which we discuss in Appendix B.

IV. RESULTS

Let us first recall that, in the grand-canonical formulation of
a polymer problem, the segment chemical potential μ controls
the average chain length. Taking the self-avoiding walk model
as a reference [3], we expect to observe a phase transition at
which (for increasing μ) the average length diverges. Such a
transition may be identified with the thermodynamic limit of
a single polymer chain. The system can also be described in
terms of the segment density ρ, the finite-length phase being
characterized by ρ = 0, and the infinite-length phase by ρ > 0
(dense phase). In the limit of μ tending to the transition from
above, the properties of the dense phase approach those of
a single chain, and, in particular, the segment density ρ is a
measure of the chain compactness. Therefore, a continuous
transition represents an extended (coil) state, whereas a
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discontinuous transition represents a collapsed (globule) state.
For a self-avoiding walk with attractive monomer-monomer
interaction, lowering the temperature drives the system from
the former to the latter regime, giving rise to the so-called
� collapse. For that model (sometimes simply denoted as �

model), the transition between the two regimes is continuous,
which corresponds to a tricritical point (� point) in the
grand-canonical phase diagram.

As described in Sec. II, the current model is completely
specified by four energy parameters, namely, the pairing
energy β, the binding energy ε, and the segment and
micromolecule chemical potentials μ,μ′. According to our
notation, the energy parameters are normalized to temperature.
Therefore, defining the pairing interaction as energy unit, 1/β

plays the role of temperature, whereas μ/β and μ′/β can
be regarded as the “true” chemical potentials. All the results,
reported in the following, have been obtained for equal pairing
and binding energies (ε = β). Indeed, we have observed that
the qualitative predictions of the model are quite robust, with
respect to even rather large variations of the binding energy
parameter.

The lattice is characterized (in the framework of the Bethe
approximation) by the single parameter k. We set k = 11 for
consistency with the previous paper [16], in which this choice
was meant to reproduce the coordination number of a face-
centered cubic lattice (k + 1 = 12).

The model basically exhibits three different phases, similar
to those of the pure polymer model [16]: a zero-segment-
density phase (O), an “ordinary” dense phase (I), and a fully
paired dense phase (II). The O phase corresponds to the
finite-length phase of the � model, as it is characterized by
ρ = 0. This implies that both the fraction of paired segments
φ and the fraction of segments bound to a micromolecule φ′
are 0/0 undetermined forms. Conversely, the micromolecule
density ρ ′ takes a finite value, which depends on the corre-
sponding chemical potential μ′. As shown in Appendix A, the
(inverse) analytical relationship between these quantities can
be determined as

μ′ = ln
ρ ′

◦(1 − ρ ′
◦)

[1 − (k + 1)ρ ′◦]2
, (18)

where the subscript reminds that this equation is specific
for the O phase. We can identify this phase with a simple
micromolecule solution. The I phase is characterized by
0 < ρ < 2 and 0 < φ < 1; i.e., it is a dense phase with a
less-than-unit fraction of paired segments. Finally, the II phase
is characterized by 0 < ρ < 2 and φ = 1; i.e., it is a phase in
which all (but a subextensive number) of segments are paired.

Hereafter we report a sequence of phase diagrams in
the segment chemical potential vs temperature plane. The
micromolecule chemical potential is controlled by the mi-
cromolecule concentration of the O phase via Eq. (18),
and each diagram corresponds to a fixed value of ρ ′

◦. This
parametrization is motivated by the fact that the concentration
has a clearer experimental counterpart, with respect to the
chemical potential.

Figure 2 displays the phase diagram for ρ ′
◦ = 0.02. This

value can be thought of as a low-concentration regime, because
the phase diagram is qualitatively similar to that of the pure
polymer model (ρ ′

◦ = 0). The transition line between the O

0.0 0.1 0.2 0.3 0.4 0.5 0.6
-1.5

-1.0

-0.5

0.0

O

I

II

μ 
/ β

1 / β

FIG. 2. Segment chemical potential vs temperature (μ/β vs 1/β)
phase diagram for ε/β = 1 and ρ ′

◦ = 0.02. Solid and dashed lines
denote first and second order transitions, respectively. The different
phases are denoted by their own tags: O, I, II (see the text).

and I phases is partially first and partially second order. As
mentioned in Appendix B, the second-order portion can also
be determined analytically as

μ = ln

√
(1 − 2ρ ′◦)2 + 4ρ ′◦(1 − ρ ′◦)eε − (1 − 2ρ ′

◦)

2kρ ′◦eε
, (19)

where ε is proportional to the inverse temperature β (ε = β

in the special case under investigation). The first-order and
second-order regimes are separated by a �-like point. Indeed,
as already mentioned in Ref. [16], it has been established
that, for lattice polymer models of the two-tolerant type,
this point exhibits special critical exponents [13], different
from those of the ordinary � model. Nonetheless, since
this point still corresponds to a continuous collapse (and
exponent differences cannot be detected at the level of Bethe
approximation), we shall speak of a � point as well in the
following. The transition line between the O and II phases
is always first order, whereas, in the dense region (ρ > 0), a
second-order transition line separates the I and II phases. The
latter line terminates in a critical end point at the O phase
boundary.

Upon increasing the micromolecule concentration, the
phase diagram undergoes dramatic changes. Figure 3 refers
to the case ρ ′

◦ = 0.03. The � point disappears, so that the
continuous part of the O-I transition terminates in a critical
end point. The latter corresponds to a discontinuous transition
in the single-chain limit, as discussed in more detail below.
The first-order portion of the O-I transition partially remains
and partially becomes a branch within the I phase, which
separates two regions at different densities, and terminates in a
critical point. The lower temperature part of the phase diagram
is qualitatively unchanged, as the II phase is bounded by a
continuous transition toward the I phase and by a first-order
transition toward the O phase.

For even larger micromolecule concentration, the critical
end point of the O-I transition line moves toward lower
temperature. At ρ ′

◦ = 0.04 (Fig. 4) this point lies along the
first-order boundary of the II phase, so that the first-order
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0.0 0.1 0.2 0.3 0.4 0.5 0.6
-1.5

-1.0

-0.5
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I

II

μ 
/ β

1 / β

0.26 0.28

-0.80

-0.75

 

 

FIG. 3. Segment chemical potential vs temperature (μ/β vs 1/β)
phase diagram for ε/β = 1 and ρ ′

◦ = 0.03. Lines and tags as in Fig. 2
(the O phase region is left blank). The inset displays the region around
the two critical end points.

portion of the O-I transition disappears, being replaced by
a direct first-order I-II transition. At ρ ′

◦ = 0.06 (Fig. 5) the
critical O-I line extends down to zero temperature, so that a
direct O-II transition no longer exists.

The consequences of all these changes to the single-chain
limit are discussed in the remainder of this section. Let us
recall that such a limit is the relevant one to characterize the
properties of a single two-tolerant polymer chain interacting
(in the hypotheses of the model) with an assembly of
micromolecules in solution. In particular, we shall discuss the
temperature behavior of the fractions of paired and bound
polymer segments, φ and φ′ (computed for μ tending to
the O phase boundary from above), for fixed values of the
micromolecule concentration ρ ′

◦. Of course, it is meaningful
to consider the same concentration values, for which we have
previously reported the grand-canonical phase diagrams.

Figure 6 refers to the case ρ ′
◦ = 0.02, which, as previously

mentioned, can be regarded as a low-concentration regime,

0.0 0.1 0.2 0.3 0.4 0.5 0.6
-1.5

-1.0

-0.5

0.0

O

I

II

μ 
/ β

1 / β

FIG. 4. Segment chemical potential vs temperature (μ/β vs 1/β)
phase diagram for ε/β = 1 and ρ ′

◦ = 0.04. Lines and tags as in the
previous figures.

0.0 0.1 0.2 0.3 0.4 0.5 0.6
-1.5

-1.0

-0.5

0.0

O

I

II

μ 
/ β

1 / β

FIG. 5. Segment chemical potential vs temperature (μ/β vs 1/β)
phase diagram for ε/β = 1 and ρ ′

◦ = 0.06. Lines and tags as in the
previous figures.

in which the phase diagram is qualitatively similar to that
of the pure polymer model. The � temperature and the
critical-end-point temperature turn out to decrease upon
increasing the micromolecule concentration. We can see that
the fraction φ of paired segments is rigorously zero above the
� temperature. In this region, which we can identify with
the coil state, the polymer chain behaves like an ordinary
self-avoiding walk without self-interaction. Conversely, the
fraction φ′ of segments bound to micromolecules increases
upon decreasing temperature, since binding is energetically
favored. Upon decreasing temperature below the � point
(collapse transition), φ begins to increase, whereas φ′ inverts
the previous trend and begins to decrease. Of course, these
effects are strictly related to each other, but their interplay is
likely to be nontrivial. Indeed, on the one hand the polymer

0.1 0.2 0.3 0.4 0.5

0.0

0.5

0.0

0.5

1.0

φ '

1 / β

 

φ

FIG. 6. Fraction of paired segments (φ, top panel) and fraction
of bound segments (φ′, bottom panel) as a function of temperature
(1/β) in the single-chain limit for ε/β = 1 and ρ ′

◦ = 0.02.
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collapse is energetically favored by the pairing mechanism
and is entropically disfavored. On the other hand, the polymer
collapse requires micromolecules release, and the latter pro-
cess is energetically disfavored but entropically favored. We
can denote this regime as molten globule state. Upon further
decreasing temperature, at the critical end-point of the I-II
transition (“folding” transition), φ reaches the saturation value
φ = 1, whereas φ′ vanishes. We shall denote the latter regime
as folded globule state, or even simply paired state, since all
polymer segments (but a subextensive number) are paired (and
therefore cannot be bound to micromolecules). In this state,
we can imagine the polymer as a branched double chain, such
that it resembles, with due cautions, a native RNA structure. In
fact, this phase does not correspond to a unique configuration,
but rather it can be defined as a statistical ensemble of different
structures, as has been pointed out in Ref. [16].

The temperature behavior of the segment and micro-
molecule densities, ρ and ρ ′, is qualitatively very similar
to that of φ and φ′, respectively. In the coil state, indepen-
dently of temperature, we have ρ = 0 and ρ ′ = ρ ′

◦, as all
thermodynamic properties must coincide with those of the O
phase. In the molten state, ρ increases and ρ ′ decreases, upon
decreasing temperature. Finally, in the paired state, ρ and ρ ′
take respectively their maximum and minimum value. The
fact that the density values of the paired state are rigorously
independent of temperature (though they still depend on the
micromolecule concentration of the O phase) is likely to be
an artifact of the Bethe approximation. It is noticeable that the
micromolecule concentration in the paired state is lower than
in the O phase, namely, ρ ′ < ρ ′

◦ (see Fig. 7). We can interpret
this fact, recalling that, in the grand-canonical description,
an ideal experiment of a single (collapsed) polymer chain in
the solution is represented by the coexistence of a very small
amount (i.e., a tiny bubble) of dense phase coexisting with
the bulk zero-segment-density phase. According to this rough
but effective picture, we can argue that the micromolecule
concentration “in the bubble” (i.e., in the vicinity of the
collapsed polymer chain) must be lower than the overall
concentration of the solution. Furthermore, we observe that
the micromolecule density in the paired state is higher than
that predicted by the pure polymer model (see Fig. 7). The
latter effect can roughly be rationalized by an argument of
the following kind: In the presence of micromolecules, the
polymer chain can fold only by diminishing the binding
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0.10

0.15

0.20

0.00 0.02 0.04
0.00

0.02

0.04

ρ

ρ'O

ρ'

ρ'O

FIG. 7. Segment density (ρ, left panel) and micromolecule
density (ρ ′, right panel) of the low-temperature paired state as a
function of the micromolecule density of the O phase ρ ′

◦, for ε/β = 1.
A dash-dotted line in the right panel represents the condition ρ ′ = ρ ′

◦.
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FIG. 8. The same as Fig. 6, for ρ ′
◦ = 0.03. A dotted line denotes

the abrupt jump in the order parameters, occurring along the O phase
boundary. A thin solid line denote the order parameters values along
the first-order branch within the I phase.

probability, which can be realized by staying in a more compact
state.

Let us now analyze the changes induced to the previous
picture by larger micromolecule concentrations. Figure 8
refers to the case ρ ′

◦ = 0.03. We can see that the continuous
collapse transition is replaced by a discontinuous transition,
which corresponds to the critical end-point of the O-I transition
line. As a result, the temperature range of the molten globule
state is noticeably reduced. For completeness, we also report
in Fig. 8 the values of the order parameters φ and φ′ for the
two type-I coexisting phases, along the first-order transition
branch terminating in a critical point (see Fig. 3). Let us recall
that this branch lies completely within a dense phase region,
so that it is in fact irrelevant to the single-chain limit.

Figure 9 displays the situation for ρ ′
◦ = 0.04. In this case,

the intermediate-temperature molten globule state disappears,
giving rise to a direct discontinuous transition from the coil
state at high temperature to the folded globule state at low
temperature. In the grand-canonical phase diagram (Fig. 4)
the latter transition still corresponds to the critical end point of
the O-I transition line, which yet now lies along the first-order
boundary of the II phase. Let us note that, in this case, the
curve associated to the first-order branch in the dense phase
region exhibits a kink, corresponding to the critical end point
of the I-II transition line.

Finally, Fig. 10 refers to ρ ′
◦ = 0.06. According to the

corresponding grand-canonical phase diagram (Fig. 5), in this
case the O phase boundary is always a second-order transition,
which, in the single-chain limit, means that the polymer chain
is in the coil state (ρ = 0) at all temperatures, and folding
cannot take place. The micromolecule density ρ ′ exhibits a
monotonically increasing trend, upon decreasing temperature.
The value 0.5 is an upper-bound for this quantity, because of
the excluded volume constraint.
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FIG. 9. The same as Fig. 8, for ρ ′
◦ = 0.04.

A unified picture of the different transitions occurring in
the single-chain limit is displayed in Fig. 11. Moving on
constant-concentration lines in this diagram, we recover the
different (temperature-driven) transition sequences, described
in the previous figures. The same kinds of transitions may
be observed as concentration-driven transitions, at constant
temperature. Nevertheless, it turns out that a transition scenario
like that of Fig. 6 (in which both the coil-molten and
the molten-paired transitions are continuous) could never
be driven by the micromolecule concentration, because the
temperature region of the �-like (i.e., continuous) coil-molten
transition does not admit a paired state at low concentration.
Furthermore, we can observe that the molten-paired transition
is much less sensitive than the coil-molten transition, with
respect to the micromolecule concentration. As a result, a
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0.1 0.2 0.3 0.4 0.5
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FIG. 10. The same as previous figures, for ρ ′
◦ = 0.06.
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FIG. 11. Phase diagram in the single-chain limit (temperature
1/β vs micromolecule density ρ ′

◦). Dotted and solid lines denote
continuous and discontinuous transitions, respectively.

two-transition scenario may be observed only in a relatively
narrow temperature range, whereas, in the largest temperature
range, below a certain temperature, the transition scenario is to
be expected in the form of a single discontinuous coil-paired
transition, like that of Fig. 9.

Finally, let us report some results about the role of the
lattice connectivity parameter k. As far as the single-chain
phase diagram is concerned, Fig. 12 displays a comparison
between the case k = 11, studied so far, and the case k = 5,
meant to reproduce the simple cubic lattice (k + 1 = 6). We
find it useful to display the phase diagrams after a suitable
rescaling of both control parameters. Temperature is rescaled
by the � temperature of the pure polymer model 1/β�, where,
according to Eq. (13) of Ref. [16],

β� = ln
k2

2k − 1
. (20)

0.0 0.2 0.4 0.6
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0.2

0.4
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(k+1) ρ'O
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FIG. 12. Rescaled phase diagram in the single-chain limit (tem-
perature β�/β vs micromolecule density (k + 1)ρ ′

◦) for k = 5
(thick lines) and k = 11 (thin lines). Dotted and solid lines denote
continuous and discontinuous transitions, respectively.
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Micromolecule concentration is rescaled by its upper limit
value 1/(k + 1), which descends from Eq. (A8). It turns out
that, even though fine effects can be observed, the qualitative
features of the phase diagram are basically unaffected by
the connectivity parameter. In particular, it is noticeable that
the (rescaled) concentration value that marks a change in the
unfolding transition scenario (from continuous paired-molten
to discontinuous paired-coil) is practically insensitive with
respect to k. The same holds for the (concentration-driven)
paired-coil transition, in the low-temperature region.

V. SUMMARY AND CONCLUSIONS

We have studied a lattice polymer model of the two-tolerant
type, with an extra “micromolecular” chemical species, which
is able to bind polymer segments and prevent segment-segment
pairing. The equilibrium phase diagram of the model has been
worked out in detail, in the framework of the Bethe-lattice
approximation.

Let us only briefly mention that, in formulating the current
model, we have been inspired by the binding mechanism of mi-
croRNA molecules (or similar RNA fragments) to messenger
RNA, which has been recently recognized to play a key role for
inhibiting messenger RNA functions in the framework of gene
regulation networks [31–33]. The above process is still poorly
understood, with respect to RNA folding, but it appears to be
even more characterized by specific details (for instance, the
limited number of specific binding sites along the RNA chain,
the formation of microRNA-protein complexes, and so on). All
these details determine the dynamical evolution of the system,
leading eventually to translation repression and/or messenger
RNA degradation. Unfortunately, all these phenomena cannot
be captured by a purely thermodynamic and homogeneous
model, like the one studied in this paper, so that we cannot
draw a significant correspondence between the model and the
real biochemical system.

We have nonetheless observed interesting qualitative ef-
fects, which do not appear to be predictable on the basis of
simple heuristic arguments, and that may be of interest in the
more general framework of polymer physics. In particular,
we have observed that the special binding mechanism imple-
mented by the model, associated to a local hindrance to the
formation of double-stranded regions, turns out to induce a
radical change in the nature of the collapse transition. In the
grand-canonical picture, such a change corresponds to a switch
from the � point scenario to the critical end-point scenario.
Furthermore, the temperature of the collapse transition turns
out be much more sensitive to the micromolecule concentra-
tion than the folding transition itself. As a result, we have that
the possible scenarios of conformational transitions, driven by
micromolecule concentration, always involve a discontinuous
collapse, and, for most temperatures, a direct discontinuous
coil-paired transition, without an intermediate molten state.
In this sense, the micromolecule concentration provides a
very effective mechanism to control the folding-unfolding
transition.

Apart from questions related to the interpretation of the
model in terms of a real physical system, we also have to
recall that our results are in fact based on an approximate
analytical technique. Even though the Bethe approximation

has often been demonstrated to yield reliable results for the
phase diagram of polymer models (as mentioned in Sec. III),
further investigations by different methods would be in order,
to confirm the transition scenarios observed in the current
work.

APPENDIX A: RECURSION EQUATIONS

In this Appendix, we describe the recursion equation (10)
(corresponding indeed to a set of five simultaneous equations)
in the explicit form, obtained by introducing the specific
energy terms of the model. Moving the normalization factor q

and the single-bond energies h̃m,n to the left-hand sides, and
remembering Eqs. (2)–(6), we obtain

qw0,0 = (w0,0 + w0,2)k +
(

k

2

)
w2

0,1(w0,0 + w0,2)k−2

−
(

k

1

)
w0,2w

k−1
0,0 +

(
k

1

)
w1,0

×
[
wk−1

0,0 +
(

k − 1

2

)
w2

0,1w
k−3
0,0

]

+
(

k

1

)(
k − 1

1

)
w1,1w0,1w

k−2
0,0 , (A1)

qe−μw0,1 =
(

k

1

)
w0,1(w0,0 + w0,2)k−1

+
(

k

1

)(
k − 1

1

)
w1,0w0,1w

k−2
0,0 +

(
k

1

)
w1,1w

k−1
0,0 ,

(A2)

qe−β−2μw0,2 = (w0,0 + w0,2)k +
(

k

2

)
w2

0,1(w0,0 + w0,2)k−2

−wk
0,0, (A3)

qe−μ′
w1,0 = wk

0,0 +
(

k

2

)
w2

0,1w
k−2
0,0 , (A4)

qe−ε−μ−μ′
w1,1 =

(
k

1

)
w0,1w

k−1
0,0 . (A5)

In order to give a physical explanation of these equations, let
us recall that their right-hand sides have to take into account all
the allowed configurations of k lattice bonds sharing one site
with another bond (root bond), whose configuration m,n is
fixed for each given equation. In Eqs. (A1)–(A3) the fixed
configurations are m = 0 (no micromolecule) and, respec-
tively, n = 0,1,2 (bond occupied by 0, 1, 2 polymer segments).
These equations are a “perturbation” of the corresponding
Eqs. (B4)–(B6) of the pure polymer model [16] (with γ = 0).
Equation (A1) has two extra terms (the last ones), which refer
to configurations with one bond occupied by a micromolecule
alone or bound to a polymer segment, respectively. The
remaining k − 1 bonds must be, in the former case, either
all empty or two occupied by unpaired polymer segments
and k − 3 empty, and, in the latter case, one occupied by an
unpaired polymer segment and k − 2 empty. Equation (A2)
has also two extra terms, which refer to configurations with
one bond occupied by a micromolecule alone or bound to a
polymer segment, respectively. The remaining k − 1 bonds
must be, in the former case, one occupied by an unpaired
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polymer segment and k − 2 empty, and, in the latter case, all
empty. Equation (A3) has no extra terms, because in this case
the root bond is occupied by two paired polymer segments,
which implies that no micromolecule can occupy a bond in the
same star cluster. In Eqs. (A4) and (A5) the fixed configurations
are m = 1 and n = 0,1, meaning that the root bond is occupied
by a micromolecule alone or bound to a polymer segment,
respectively. Accordingly, the terms on the right-hand sides
refer to configurations with, in the former case, either all empty
bonds or two bonds occupied by unpaired polymer segments
and k − 2 empty, and, in the latter case, one occupied by an
unpaired polymer segment and k − 1 empty.

It is easy to verify that the simultaneous equations written
above always admit a special solution such that

w0,1 = w0,2 = w1,1 = 0. (A6)

According to Eq. (11), the latter condition obviously imply

p0,1 = p0,2 = p1,1 = 0, (A7)

whence, by Eq. (13), a vanishing segment density ρ = 0.
This solution, denoted as O phase, represents a mixture of
only solvent and micromolecules, which is nonetheless not
completely trivial, because of the excluded volume constraint.
As discussed in the text, for each given lattice site, at most one
of its incident bonds may be occupied by a micromolecule.
From a graph-theoretical point of view, such a constraint
coincides with the so-called matching condition [34]. As far as
the micromolecule density is concerned, we expect therefore
the following upper bound:

ρ ′ <
1

k + 1
. (A8)

With the condition (A6), the recursion equations simplify to

qw0,0 = wk
0,0 + kw1,0w

k−1
0,0 , (A9)

qw1,0 = eμ′
wk

0,0, (A10)

which, together with the normalization condition

w0,0 + w1,0 = 1, (A11)

determine the unknowns, w0,0, w1,0, and q, as a function of the
micromolecule chemical potential μ′ and the lattice parameter
k. According to Eqs. (11), (12), and (14), the micromolecule
density ρ ′ can be written as

ρ ′ = p1,0 = e−μ′
w2

1,0

w2
0,0 + e−μ′

w2
1,0

. (A12)

By simple algebra, it is possible to eliminate w0,0, w1,0, and
q from Eqs. (A9)–(A12), yielding an explicit expression of ρ ′
as a function of μ′ and k, namely,

ρ ′ = 1

k + 1 + 2k√
1 + 4keμ′ − 1

, (A13)

from which the upper-bound (A8) follows directly. Of course,
Eq. (A13) holds only in the O phase. Eq. (18) of the text is
easily derived by inverting (A13).

APPENDIX B: CONTINUOUS TRANSITIONS

As mentioned in the text, the numerical technique we
employ to solve the recursion equations is a simple fixed-point
method. Given a tentative set of partial partition functions
w0,0, . . . ,w1,1 (which we collectively denote as w in the
following formulas), a new estimate of each function can be
computed, according to Eq. (10), by an expression of the form

ŵm,n(w) = e−h̃m,nfm,n(w)

q(w)
, (B1)

where the functions fm,n(w) coincide with the right-hand sides
of Eqs. (A1)–(A5), and

q(w) =
1∑

m=0

2−m∑
n=0

e−h̃m,nfm,n(w) (B2)

is the normalization factor.
A second-order phase transition is characterized by the fact

that a minimum of the free energy becomes a saddle point,
so that the corresponding thermodynamic equilibrium state
is no longer stable. In the framework of (the recursive ap-
proach to) the Bethe lattice approximation, the thermodynamic
(in)stability is reflected in the (in)stability of the fixed point
of the recursion equations. Therefore, in order to determine
second-order transitions with good precision, it is convenient
to analyze the eigenvalues of the Jacobian matrix associated
with the recursion equations and the conditions in which any
eigenvalue equals unity.

According to Eqs. (B1) and (B2), the elements of such a
Jacobian matrix can be written as

∂ŵm,n(w)

∂wr,s

= e−h̃m,n

q(w)

∂fm,n(w)

∂wr,s

− ŵm,n(w)

q(w)

∂q(w)

∂wr,s

, (B3)

where the pairs m,n and r,s represent, respectively, the row
and column indices, and

∂q(w)

∂wr,s

=
1∑

m=0

2−m∑
n=0

e−h̃m,n
∂fm,n(w)

∂wr,s

. (B4)

The derivatives of fm,n(w) can be easily computed from
Eqs. (A1)–(A5).

As far as the transition lines are concerned, we can
locate them numerically as zeroes of det(J − I ), where J

is the Jacobian matrix and I the identity matrix. This can
be safely done, because the peculiar form of the recursion
equations allows us to follow a given solution (fixed point)
even in the parameter region where it becomes unstable. More
specifically, if one starts with tentative partition functions
satisfying Eq. (A6) (which characterizes the O phase), the
new estimates, computed by Eqs. (B1) and (B2), turn out to
satisfy rigorously the same condition. The same holds for the
II phase, characterized by the condition

w0,1 = w1,1 = 0. (B5)

In principle, this kind of calculation could also be performed
analytically, but only for the O-I line have we been able to
obtain an acceptably simple form. Namely, Eq. (19) of the text
is obtained plugging Eqs. (A6), (A9)–(A11), and (18) into the
determinant equation det(J − I ) = 0.
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Let us finally note that, very close to a second order
transition (i.e., when some eigenvalue of the Jacobian matrix
is very close to unity), the convergence of the fixed-point
procedure becomes quite slow. Therefore, if one primes
the procedure without zero elements, the partial partition
functions that are expected to vanish according to Eqs. (A6)

or (B5) (depending on the phase under investigation) re-
main sensibly different from zero for a large number of
iterations. We have exploited this fact to compute numer-
ically the single-chain limits of φ and φ′, which, from
the analytical point of view, give rise to 0/0 undetermined
forms.
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