
PHYSICAL REVIEW E 86, 041908 (2012)

Front acceleration by dynamic selection in Fisher population waves
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We introduce a minimal model of population range expansion in which the phenotypes of individuals present
no selective advantage and differ only in their diffusion rate. We show that such neutral phenotypic variability
(i.e., that does not modify the growth rate) alone can yield phenotype segregation at the front edge, even in
absence of genetic noise, and significantly impact the dynamical properties of the expansion wave. We present an
exact asymptotic traveling wave solution and show analytically that phenotype segregation accelerates the front
propagation. The results are compatible with field observations such as invasions of cane toads in Australia or
bush crickets in Britain.
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I. INTRODUCTION

The combination of random mutations and natural selection
plays a key role in evolution. In the case of large well-mixed
populations, it is found typically that mutations that eventually
become dominant must present a selective advantage (i.e.,
a larger effective growth rate) over the wild type [1]. More
recently, it appeared that the case of expanding populations,
which are a common phenomenon in biology, can lead
to strikingly different behaviors. It was observed that in
population range expansions even neutral mutations, i.e.,
mutations that present no selective advantage and have equal
growth rates, can prevail at least transiently due to large
fluctuations at the edge of the population traveling front
and lead to spectacular gene segregation phenomena [2–4].
Such population waves are exemplified by the hypothesized
migration of humans from Africa [5], or invasions of species
such as cane toads in Australia [6] or bush crickets in Britain
[7], and can now be observed at a smaller scale on the example
of migrations of microorganisms in a Petri dish [3]. Following
these observations, numerical models have been developed
in the ecology community to analyze quantitatively range
expansions [8–13]; these studies give further support to the
mechanism of phenotype selection, which was dubbed spatial
sorting in Ref. [14].

The standard mathematical models for population waves
are generally based on the Fisher-Kolmogorov (FKPP) equa-
tion [15,16], which is the simplest nonlinear equation that
combines diffusion and growth. Beyond population genetics,
this equation has been widely used for example in ecology,
epidemiology [17], or chemistry [18]. Fisher waves are still
actively investigated from the theoretical point of view and,
despite this effort, exact results, which mostly concern the
propagation speed [19,20], remain elusive, especially in the
presence of noise or in space dimensions larger than 1.

In this paper, we introduce a minimal model of population
dynamics based on a modified FKPP equation in which
mutations are neutral: They have equal growth rates and affect
only the mobility properties of individuals. Our approach is
inspired by the observations of range expansions of cane toads

in Australia [6] or bush crickets in Britain [7], as well as several
numerical studies [8–14] which highlighted the following
features: (i) The leading part of the expanding front is mostly
populated by the fastest phenotypes, that is, longer-legged
individuals in the case of cane toads [6] and longer-winged
individuals in the case of bush crickets. (ii) The proportion of
fast phenotypes is the highest in locations of new arrivals and
then declines over time. (iii) The speed of the population wave
increases with time.

Our analysis is based on a modified FKPP equation with
an additional mutation term that allows for variations of the
diffusion rate of individuals, for which we present an exact
asymptotic traveling wave solution and calculate the front
speed. We show that such phenotypic variability, when taken
into account, alone can yield the segregation of the fastest
phenotypes at the front edge in absence of genetic noise and
significantly accelerate the propagation speed. Importantly, the
results reproduce qualitatively the observations (i)–(iii) above
made on the basis of field experiments and numerical studies
performed in the context of spatial sorting. The novelty of our
approach lies on the modified FKPP equation that we propose
in Eq. (1), which enables an analytical derivation of the main
properties of phenotypic segregation in range expansions. We
analyze in this paper this equation in its minimal form, keeping
in mind that it could be modified to account more faithfully for
real systems. Given the wide spectrum of situations described
by the FKPP equation, potential applications for example in
the context of chemical kinetics are also expected.

II. MODEL

We consider the following 1d model (see Fig. 1). We
assume that each individual of a growing population is
characterized by a diffusion coefficient D, which is subject
to mutations, and we denote by n(D,x,t) the density of
such individuals of phenotype D at position x and time t .
We will also make use of the marginal density N (x,t) =∫ ∞

0 n(D,x,t)dD and the probability distribution of the trait D

at (x,t) defined by Px(D,t) ≡ n(D,x,t)/N(x,t). We assume
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FIG. 1. (Color online) Fisher population waves for (a) a homogeneous population with diffusion rate D0 and for (b) a population with
mutations that affect the diffusion rate so D ∈ [D0 − �D/2,D0 + �D/2]. It is found in case b that a traveling wave solution exists and
propagates faster than the classical velocity of a FKPP wave v0 = 2

√
sD0 (case a). The leading edge of the front is mostly populated by

fastest individuals (with diffusion rate D∗ > D0) that are selected dynamically, while the population behind the front is characterized by the
steady-state value D0.

that mutations, which affect only D, are neutral and do not
affect the population growth rate s. Mutations are described
phenomenologically by a density current j [n(D,x,t)] in the
phenotype space (an explicit example is given below). The
dynamics is then given by the following modified FKPP
equation:

∂tn = D∂2
xn + sn(1 − N ) − ∂Dj. (1)

The diffusion term on the right-hand side accounts for the
mobility of the individuals, which is effectively modelled by a
diffusion process of coefficient D. The logistic term sn(1 − N )
accounts for the birth and death of individuals, where the
growth rate s is independent of the phenotype D. Note that here
we omit number fluctuations of the birth and death process.
Last, the divergence of the density current −∂Dj accounts for
the dynamics of mutations.

To get insight into the effect of the mutation term, we, first,
consider the case of a well-mixed population in a bounded
range (for example, x ∈ [0,1]). The stationary state (see also
Ref. [21] for the analysis of a related problem) is then given
by N (x,t) = 1 for all x, with Px(D,t) ≡ P0(D) independent
of x and defined by j = 0. The function P0(D) therefore
characterizes the steady-state distribution of the trait D in
a well-mixed population. We will consider the representative
case of a distribution P0 that is centered around a mean value
D0 with a typical width �D. Without a loss of generality, a
simple choice for the density current is then

j = −α∂Dn(x,D,t), (2)

where α is the mutation rate, together with reflecting bound-
ary conditions (j = 0) at D = D− ≡ D0 − �D/2 and D =
D+ ≡ D0 + �D/2. With this choice of j , the distribution P0

is then uniform over the range [D−,D+] and the different
phenotypes have no selective advantage. Another example of
interest is given by

j = −α [β(D − D0)n(x,D,t) + ∂Dn(x,D,t)] , (3)

where α is the mutation rate and the extra term β accounts
here for a selective advantage of phenotype D0. This choice,
together with the zero flux condition at D = D− and D = D+,
yields P0(D) ∝ exp

[−β(D − D0)2/2
]
: at stationary state in

a bounded range, the trait D0 is now favored, as is the case
in many real situations. Alternative choices are possible to
account more faithfully for field experiments and would lead
qualitatively to similar results. We will focus below on the

minimal choice of Eq. (2), which captures the main features
of the model and keep calculations analytically tractable.

We now turn to the case of a range expansion and assume
that at t = 0 the population is seeded with the uniform
distribution P0 in a bounded interval of the x axis. We show
that, despite the fact that mutations are neutral, a traveling wave
solution characterized by a nonhomogeneous distribution
of D, which we calculate in the regime u ≡ x − v∗t � 1,
emerges. We determine the velocity v∗ and show that it is larger
than the velocity v0 = 2

√
sD0 expected from the classical

FKPP model with an homogeneous population of diffusion
rate D0.

Let us introduce u ≡ x − vt , where v is to be determined,
and look for a traveling front so that N (u → −∞) = 1
and N (u → +∞) = 0. Notations are kept unchanged in the
comoving frame of velocity v and all functions of x and t

are assumed to depend on u only. Equation (1) then can be
rewritten as

0 = v∂un + D∂2
un + sn(1 − N ) + α∂2

Dn. (4)

The key point of the following analysis is that one can
show self-consistently that in the limit u → ∞, one has
Px(D,t) ≡ Pu(D) → P∗(D), where P∗(D) is independent of
u. The dependencies on u and D in n(D,u) are, therefore,
factorized at the leading edge of the front and one can write in
this limit n(D,u) 
 P∗(D)N (u).

This factorized form of the solution can be shown to hold in
a mathematically rigorous framework which will be presented
elsewhere. We give here the main ingredients of derivation. In
the regime u → ∞, n is small and Eq. (4) can be linearized,
which suggests the following ansatz:

n(D,u) = P∗(D) exp(−γ u), (5)

with γ > 0. Equation (4) then can be rewritten as

0 = (−γ v + Dγ 2 + s)P∗(D) + α∂2
DP∗(D), (6)

which is completed by boundary conditions that read
∂DP∗|D=D− = ∂DP∗|D=D+ = 0 for the choice (2) of the density
current j . Hence, for each prescribed profile characterized by
γ one has to solve the spectral problem (6) for P∗(D). Indeed,
Eq. (6) indicates that P∗(D) is an eigenvector of the operator
Lγ = Dγ 2 + α∂2

D for the eigenvalue γ v − s. This implicitly
defines v as a function of γ . A more explicit expression is then
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FIG. 2. (Color online) Traveling wave solution of Eq. (1) obtained numerically for D0 = 1.5, �D = 1, s = 1, and α = 0.01. (a) Kymograph
showing the propagation of the marginal density N (x,t). (b) Distribution of phenotypes in the traveling wave at a given time t in the stationary
state (the front is approximately at x = 90). A larger heterogeneity corresponding to phenotype segregation is found at the leading edge of the
front.

obtained by integration over D and follows:

v = D∗γ + s/γ, (7)

where D∗ ≡ ∫ D+
D−

DP∗(D)dD. The spectral problem (6) to-
gether with the constraint P∗(D) � 0 ∀D explicitly defines
the function P∗ and shows that it is independent of u in the
limit u → ∞, therefore proving that the factorized form of
Eq. (5) holds true. We stress that this argument holds for
any density current j , which would only modify the ordinary
differential equation (6) defining the spectral problem for P∗.
In the explicit example of Eq. (2), the existence of a nonzero
solution for Eq. (6) implies that

Ai[1,μ(D∗ − D−)]Bi[1,μ(D∗ − D+)]

−Bi[1,μ(D∗ − D−)]Ai[1,μ(D∗ − D+)] = 0, (8)

where μ = (γ 2/α)1/3 and Ai(1,x) and Bi(1,x) denote the
derivatives of the Airy functions Ai(x) and Bi(x), respectively.
The distribution P∗ is then given by

ZP∗ = Ai[μ(D∗ − D)] − Ai[1,μ(D∗ − D−)]

Bi[1,μ(D∗ − D−)]
Bi[μ(D∗ − D)],

(9)
where Z is a normalization constant that ensures that∫ D+
D−

P∗(D)dD = 1. Equation (8), together with the constraint
that P∗(D) defined by Eq. (9) is positive for all D, implicitly
defines D∗ as a function of γ , and completes the definition of
v in Eq. (7). This result, together with the decoupling form
of Eq. (5) explicitly characterizes the asymptotics of a front
of prescribed profile characterized by γ . Following classical
results in the case of the classical FKPP equation [18], we
assume here (and verify numerically) that in the case of a
localized initial condition in space the slowest solution is
selected. The critical velocity v∗ (and the corresponding γ∗)
is, therefore, obtained as the minimum of the function v(γ )
defined by Eqs. (7) and (8), and the density for u large follows

n(D,u) ∝ P∗(D)e−γ∗u. (10)

The determination of the minimal velocity v∗ defined by
Eqs. (7) and (8) is a nontrivial problem that can be solved only
numerically. A useful and very accurate approximate of v∗,

which is, in fact, an exact upper bound, denoted vu
∗ , can be

obtained by assuming D∗ independent of γ in Eq. (7). Under
this hypothesis the minimization of v is realized for γ = γ u

∗ ≡√
s/D∗ and yields vu

∗ = 2
√

sD∗, where D∗ is determined by
Eq. (8) taken at γ = γ u

∗ .
These asymptotic results have been checked numerically

by solving Eq. (1) using a classical Euler numerical scheme,
the diffusion part being considered implicitly and the reaction
part explicitly, and show that the upper bound vu

∗ provides
a very accurate estimate of the exact value v∗. Figure 2
shows an example of the obtained population wave which
reaches a stationary state of constant velocity after a transient
acceleration regime [Fig. 2(a)]. Figure 2(b) indicates that the
population is the most heterogeneous at the edge of the front
where the segregation of the fastest phenotypes is observed,
while variations of the trait D decrease behind the front. More
quantitatively, we find that after the transient acceleration
regime the wave advances at the predicted velocity v∗ [see
Fig. 3(a)]. Numerical results clearly validate the asymptotic
result of Eq. (9) as seen in Figs. 3(b) and 3(c), which show
that both the dependencies on u and D of the density n(D,u)
are captured by our analysis. Remarkably, the approximate
value vu

∗ is numerically extremely close to the exact result
v∗ for all parameters analyzed. Last, Fig. 3(d) confirms that
the segregation of phenotypes with larger diffusion rate D

is more important at the leading edge of the front, where it
is characterized by the predicted distribution P∗(D), while the
distribution Pu(D) reaches its steady-state value P0(D) [which
is uniform with the choice of Eq. (2)] at positions x far behind
the front.

III. DISCUSSION

Several comments are in order. First, the asymptotic
solution of Eq. (9) and the determination of the front velocity
v∗ are exact. Similar results, and, in particular, the exact
asymptotic decoupling of the u and D dependencies, can be
obtained along the same lines for other choices of the density
current j defined in Eq. (2). In particular, the important case
where a trait D0 presents a selective advantage, as modeled by
the current defined in Eq. (3), can be analyzed in the same way
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FIG. 3. (Color online) Numerical simulations of Eq. (1) for D0 =
1.5, �D = 1, and s = 1. (a). Front velocity as a function of time for
different values of the mutation rate α. The front is accelerated until
it reaches the exact predicted velocity in the stationary state (plain
line). (b). Shape of the front (log scale) at the leading edge in the
stationary state. The theoretical prediction (plain lines) is compared
to numerical simulations (symbols and dashed lines) for different
values of the mutation rate α. (c). Probability distribution of the trait
D at the leading edge in the stationary state, where δD ≡ D − D−.
The theoretical prediction of Eq. (9) (solid lines) is compared to
numerical simulations (symbols and dashed lines). (d). Probability
distribution of trait D in the stationary state at different positions x,
where δD ≡ D − D−. Here α = 0.01, xf denotes the position of the
front and x− = xf − 50 and x+ = xf + 10. The theoretical prediction
P∗ (plain line) holds at the leading edge x+ while the distribution is
homogeneous at x−, which is the steady-state value P0 for the choice
of Eq. (2).

and leads to qualitatively similar results. Second, one finds
that for s/α � 1, D∗ → D0 and Pu(D) 
 P0(D) = 1/�D

for all u. As expected, when mutations are extremely fast, the
population is locally well-mixed everywhere with diffusion
rate D0, and the dynamics follows the usual FKPP equation

with a front speed v0 = 2
√

sD0. In the more realistic case
of slow mutations, s/α is large and the dynamics selects
faster individuals at the leading edge so P∗(D) favors larger
values of D. In the extreme case of very slow mutations
(s/α → ∞), one has D∗ → D+ and P∗(D) 
 δ(D − D+).
The front can then be significantly faster than the expected
velocity v0 for a well-mixed population of diffusion rate
D0 since v∗ → 2

√
s(D0 + �D/2) > v0. Third, it should be

emphasized that this segregation of fastest phenotypes, which
leads to an acceleration of the wave propagation, is purely
dynamical. It is obtained in the low noise limit and, therefore,
strikingly differs from the mechanism of segregation of neutral
mutations studied in Refs. [2–4]. Last, and importantly, our
results qualitatively reproduce the observations (i)–(iii) stated
in introduction. Indeed, we found that (i) fastest phenotypes
are segregated at the leading edge of the front, as shown in
Figs. 2(b) and 3(c). (ii) The proportion of fast phenotypes is
higher at the edge and decreases behind the front, as shown
in Figs. 2(b) and 3(d). (iii) The speed of advance of the
population wave increases with time, as seen in Fig. 2(a), and
is larger than the expected propagation speed for a well-mixed
population.

To conclude, we have proposed a minimal model of
population range expansion in which mutations are neutral
and affect only the mobility of individuals. We have shown
that such neutral phenotypic variability alone can yield
phenotype segregation at the front edge in absence of genetic
noise and significantly affect the dynamical properties of the
expansion wave. An exact traveling wave solution can be
obtained asymptotically and shows that phenotype segregation
accelerates the front propagation. The results are compatible
with available data of invasions of cane toads in Australia
or bush crickets in Britain. Applications beyond the field of
population dynamics could be expected.
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