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Structure of a micropipette-aspirated vesicle determined from the bending-energy model
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The structure of the system consisting of an aspirating pipette and an aspirated vesicle is investigated with fixed
total vesicle volume, total vesicle surface area, and aspirated volume fraction, based on the bending-energy model.
Through an energetic consideration, the usage of an aspirated volume fraction can be converted to the aspirating
pressure for the determination of a phase diagram; the procedure identifies a first-order transition, between a
weakly aspirated state and the strongly aspirated state, as the pressure increases. The physical properties of the
system are obtained from minimization of the bending energy by an implementation of the simulated annealing
Monte Carlo procedure, which searches for a minimum in a multivariable space. An analysis of the hysteresis
effects indicates that the experimentally observed aspirating and releasing critical pressures are related to the
location of the spinodal points.
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I. INTRODUCTION

In a typical pipette (micropipette) experiment, a suction
pressure �p is applied through a circular opening of radius
a that touches a particular portion of a vesicle. The vesicle
can be partially pulled into the tube, driving up its overall
bending energy because of the shape distortion (see Fig. 1).
For years, the method has been used to experimentally
probe and characterize the mechanical properties of cells,
lipid-membrane vesicles, and even double emulsion-templated
polymersomes (see, e.g., Refs. [2–13]). In addition, pipette
aspiration is a popular method used to hold a vesicle in place
in applications of other recent experimental techniques such
as optical trapping [14–16]. Typically, a vesicle-aspiration ex-
periment produces a suction-pressure versus projection-length
curve. Some theoretical interpretations of the experimental
results are available [2,17,18].

An interesting case is the discontinuous transition between
a weakly aspirated state [Figs. 1(d)–1(f)] and a strongly
aspirated state [Figs. 1(g)–1(i)] as the suction pressure rises.
The work in this paper identifies this as a first-order transition,
based on the solution of the Helfrich bending-energy model
[19,20], which has been used for studying the conformation
properties of a free vesicle [1,21], vesicle adhesion to external
particles and environments [22–32], and vesicle conformation
distortion under an external strain [33–37]. The numerical
solution indicates that the spinodal stability limits associated
with the first-order transition correspond to the stability
pressure limits observed experimentally, previously referred
to as the critical suction and leasing pressures. Some of
the concepts introduced in this work are similar to those
demonstrated in Ref. [38], where the authors considered a
simple toy model for the vesicle, neglecting the bending
rigidity.

Instead of the suction pressure, the present work uses the
volume fraction between the volume of the vesicle portion
inside the pipette and the total vesicle volume as the basic
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parameter in the calculation. The suction pressure, which is a
conjugate thermodynamic property, is then derived from the
derivative of the bending energy with respect to the volume
fraction. The procedure allows for the identification of the
phase transition in terms of a physical quantity similar to
the Gibbs free energy in liquid-gas theory, which can be
used to guide the discussion of the weak to strong aspiration
transition. The approach taken here can be contrasted with a
recent work on the same subject by Das [18], who directly
used the suction pressure. In addition, the approach avoids his
ansatz of single-point contact between the shape curve and
the interior pipette wall to treat the strong aspiration regime
[see Fig. 1(b) in Ref. [18]]. As shown below, the conformation
determined in this work is substantially different from this
ansatz.

In addition, the present work also demonstrates the
usefulness of a computational technique in minimizing a
multivariable vesicle energy with multiple constraints—in
total internal volume, surface area, aspirated volume fraction,
and a constraint that deals with the hard-wall excluding
condition. The numerical challenge is attacked by a simu-
lated annealing Monte Carlo procedure, which locates the
approximate energy minimum in a controlled precision. No
further approximations and assumptions are made in this
work.

The paper is organized such that all technical materials
are presented in Appendixes. The basic formalism for an
axisymmetric vesicle theory is reviewed in Sec. II. The
numerical treatment, including the simulated annealing Monte
Carlo approach [39], is briefly described in Secs. II B and II C
and discussed more thoroughly in Appendixes A, B, and C.
An example of the weak to strong aspirating transition of a
prolate shape is discussed in Sec. III C and then compared
with experimental observations in Sec. III D. Two more
examples, the weak oblate to strong prolate transition and the
weak stomatocyte to strong prolate transition, are discussed
in Sec. III E. A more complete three-dimensional phase
diagram, shown in two dimensions with one parameter fixed,
is discussed in Secs. III F and III G. The throughput region
(discussed in Sec. III A) and the full aspiration limit (discussed
in Sec. III H) of the phase diagram can be approximately dealt
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FIG. 1. (Color online) Conformation of a vesicle in a free state for
(a) v = 0.58, (b) v = 0.63, and (c) v = 0.80; in a weakly aspirated
state for (d) v = 0.58, (e) v = 0.63, and (f) v = 0.80; and in a strongly
aspirated state for (g) v = 0.58, (h) v = 0.63, and (i) v = 0.80. The
definition of the reduced volume v is given in Eq. (6) and is the only
relevant physical parameter for the structure of a free vesicle [1].
The coordinate system used in this work is illustrated in (j). The
volume trapped inside the pipette, corresponding to the shaded (red)
potion, is Vin = uV , where V is the vesicle’s total volume. A pressure
difference �p is assumed between the pressures outside and inside the
pipette. In (d)–(i) the reduced pipette radius a/r0 = 3/8 is used, where
r0 = √

A/4π with A the total vesicle surface area. The numerical
calculation was performed with fixed A, V , and u.

with by analytical estimations, as presented in Appendixes D
and E.

II. MODEL

In this section the energy model is described in detail and the
numerical approach is discussed briefly. Numerical techniques
are further explained in Appendixes A–C.

A. Bending energy

For a fluid-membrane vesicle having no spontaneous
curvature, the Helfrich bending-energy model is used,

Eb = 2κ

∮
M2dA, (1)

where M is the mean of the two local principle curvatures
of the membrane, κ is the bending modulus, and the integral
over the area element dA covers the entire closed surface. In
general, for a biomembrane κ is large compared to the thermal
energy at room temperature; hence the vesicle is assumed to
adopt a conformation corresponding to the global minimum of
Eb for a fixed enclosing volume V and surface area A [19,20].

This paper focuses on the axisymmetric system only. In
terms of the coordinate system in Fig. 1(j), a vesicle shape can
be described by the angle ψ(s), where s is an arc variable
measured from the top of the vesicle where s = 0 to the
bottom where s = 1, and ψ(s) is the angle between the tangent
direction of the shape curve and the r axis. Then the bending
energy can be written as

Eb = κπ

∫ 1

0
(ψ̇ + sin ψ/r)2r ds, (2)

under the constraint

ṙ = cos ψ(s), (3)

where a dotted symbol represents the derivative with respect
to s. In terms of this coordinate system, the enclosed volume
and surface area of the vesicle can be expressed by

A = S2
∫ 1

0
ds 2πr (4)

and

V = S3
∫ 1

0
ds πr2 sin ψ. (5)

Note that both s and r are dimensionless in this formalism.
The length scale of the problem is accounted for by the total
contour length S, which appears in these two constraints. From
a scaling analysis, one can show that Eb/κ is a function of a
single parameter, the reduced volume

v = 6
√

πV/A3/2, (6)

for a free vesicle problem [1].

B. Numerical schemes for a free vesicle

The minimization of Eb under constraints (3)–(5) can
be tackled by various numerical approaches. One can, for
example, convert the functional-minimization problem into
a formalism similar to Hamiltonian dynamics in classical
mechanics, with the incorporation of the constraints by
Lagrangian multipliers. In particular, a surface-tension-like
multiplier � and a pressurelike Lagrangian multiplier �

were used for constraints in Eqs. (4) and (5) and the
minimization was then carried out in the �-� ensemble.
The calculation of the bending energy as a function of A

and V was then transformed back into an A-V ensemble
[1]. In another approach, the unknown function ψ(s) was
modeled by its Fourier transformation with undetermined
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Fourier coefficients. The bending energy and the constraints
were all written as functions of these coefficients and the direct
minimization of Eq. (2) could be performed to pin down these
coefficients [40]. In a recent paper, the usage of a target
energy that includes Eb as the first term and incorporates
all three constraints (3)–(5) by direct energy penalties was
introduced [37]; the coefficients of the penalty terms can be
used to control the precision of the calculation.

From numerical solutions emerge three different branches
of the free energy of a free vesicle, corresponding to stoma-
tocyte [Fig. 1(a)], oblate [Fig. 1(b)], and prolate [Fig. 1(c)];
the stomatocyte is stable in the parameter regime v = [0,vSO],
oblate in v = [vSO,vOP], and prolate in v = [vOP,1], where
according to Ref. [1]

vSO = 0.5915, (7)

vOP = 0.6516, (8)

which is also confirmed in our recent work by using a similar
numerical approach [32] and the target-energy approach [37].

C. Pipette-aspirated vesicle

The computation carried out in this work is based on the
minimization of the target function

Ẽtarget = Eb/κ + �V

(
S3

V

∫ 1

0
πr2 sin ψ ds − 1

)2

+�A

(
S2

A

∫ 1

0
2πr ds − 1

)2

+�in

(
S3

Vin

∫ t

0
πr2 sin ψ ds − 1

)2

, (9)

where t is the value of s at which the shape curve makes
contact with the aperture edge of the pipette. In this formalism,
ψ(s) is assumed yet to be determined and r(s) is related to
ψ(s) by integrating over Eq. (3). The last integral in Eq. (9),
together with the S3 prefactor, represents the volume of the
shaded (red) portion of the vesicle trapped inside the pipette
opening Vin ≡ uV , shown in Fig. 1(j). Once the target energy
is minimized with large penalty coefficients �V , �A, and �in,
the terms in the large parentheseseffectively yield constraints
on the total enclosed volume V , surface area A, and trapping
volume Vin, which need to be considered in the current system.

Another important constraint that needs to be invoked in
the current problem is the fact that

Sr(s) � a (10)

for all s � t . This constraint describes the hard-wall condition
for the vesicle portion trapped inside the pipette, which can be
rather simply implemented together with the selection of the
variable t in the simulated Monte Carlo protocol, explained in
Appendix C.

Although the search of the target-energy minimum is Monte
Carlo based, in an ideal situation when the final simulated
temperature goes to zero and the total Monte Carlo steps
approach infinity, one expects the convergence to the exact
location of a minimum. The validity of the numerical method
may be checked by forcing �in = 0, which reproduces the

original free-vesicle problem. The current calculation, using
the procedure described in Appendixes A and B, gives

vSO = 0.595 ± 0.003, (11)

vOP = 0.638 ± 0.003, (12)

which are comparable to the benchmark values in Eqs. (7)
and (8). The difference can be attributed to the finite number of
nodes (N + 1 = 201) and final simulated inverse temperature
(β = 1 × 104) taken in the numerical procedure as described
in the Appendixes; the difference, however, does not affect the
physical picture presented below. In this paper, the simulated
Monte Carlo procedure, together with the usage of a simulated
β, is a technique used to determine the minimum of the target
energy; it does not reflect the thermal fluctuations seen in this
system at a finite temperature.

III. RESULTS AND DISCUSSION

The results presented in this section are based on a
numerical solution of the bending energy model presented
in Sec. II C, modified from Eq. (2) to take into account the
physical picture of pipette aspiration. The discussion also
incorporates some analytical results from the Appendixes as
well.

A. Throughput region

The first division of the parameter space is between the
aspiration region and throughput region. The latter corresponds
to relatively large a/r0 where any weak suction pressure can
pull the entire vesicle through the pipette opening. Within the
current model, the threshold for the reduced pipette radius
ath/r0, beyond which the vesicle can be entirely sucked
through the pipette, is a function of reduced volume v only.
The length scale r0 is related to the surface area A of the vesicle
and is defined as

r0 =
√

A/4π. (13)

An analysis of the throughput vesicle under the assumption
that it is made of a cylindrical part and two capping half spheres
(Appendix E) reveals that the dividing curve can be analytically
approximated by

v = (3/2)(ath/r0) − (1/2)(ath/r0)3, (14)

where ath is implicity expressed in v. Graphically, this is shown
by the solid (red) curve in Fig. 2. Overlapping on the curve
are the symbols representing the direct numerical solution to
Eq. (9) that divides the Vin = V (throughput) and Vin < V

(aspiration) regions. The agreement between the curve and
data validates the assumption made in predicting Eq. (14).

B. Energy in the aspiration region

Within the current approach, the minimized reduced bend-
ing energy Eb/κ depends on three parameters: the reduced
volume v in Eq. (6), the reduced aperture radius a/r0, and the
trapped volume fraction

u = Vin/V, (15)
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FIG. 2. (Color online) The solid (red) curve is an analytic estimate
[Eq. (E2)] that divides the system into a throughput region where
the entire vesicle is pulled through the pipette even under a weak
aspirating pressure and an aspiration region where the vesicle is
aspirated at the pipette tip, as shown in Fig. 1. Circles are the exact
numerical solution to the problem.

where Vin is the volume of the vesicle trapped inside the pipette
[the shaded (red) part in Fig. 1(j)]. This v-a/r0-u ensemble is
more convenient for discussion and can be converted to the
v-a/r0-P̃ ensemble used in the experimental setting, where

P̃ ≡ V �p/8πκ, (16)

with �p being the difference between pressures outside and
inside the pipette.

The analysis carried out below is based on an interpretation
of the numerical solution for the reduced bending energy

Ẽb ≡ Eb/8πκ = Ẽb(v,a/r0,u) (17)

as a function of u. Up to three branches of Ẽb are typically
seen in the numerical solution, depending on the magnitude of
v and a/r0.

Moving to the v-a/r0-P̃ ensemble, we can deduce the P̃

required to maintain a trapped volume fraction u, utilizing the
virtual work principle,

P̃ = ∂Ẽb/∂u. (18)

The stability of a conformation is now analyzed through
comparing the minimum of the Legendre transformation of
Ẽb, similar to the notion in thermodynamics,

G̃ ≡ Ẽb − P̃ u, (19)

which takes into account the work performed to pull a vesicle
volume of Vin into the pipette under an aspiration pressure P̃ .

C. Aspirating a prolate shape

As the first example, the Ẽb and P̃ curves are shown in
Figs. 3(a) and 3(b) for v = 0.80 and a/r0 = 3/8. Originally,
at P̃ = 0, the vesicle shows a prolate shape [see Fig. 1(c)],
corresponding to the energy minimum in Fig. 3(a). Because of
the convex vesicle shape at the top, shown in Fig. 1(c), there
is already a nonzero u.

We discuss the physical properties in terms of an increasing
u. As the trapped volume fraction u starts to increase, the
conformation makes a weak distortion from the perfect prolate,
maintaining a weakly aspirated prolate (WAP) shape as shown
in Fig. 1(f). The bending energy rises correspondingly from the
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FIG. 3. (Color online) (a) Solution of the bending energy Eb as a
function of the trapped volume fraction u in Eq. (15) for a/r0 =
3/8 and v = 0.80. Circles correspond to distorted conformations
originated from a prolate vesicle. (b) Reduced aspiration pressure (16)
as a function of u, which was calculated from Eq. (18). Configurations
at specific values of u, to be discussed in Secs. III C and III D, are
plotted in (c)–(g).

minimum. After the vesicle forms a tubular portion inside the
pipette, the bending energy cost for pulling the vesicle further
into the pipette, by increasing u, rises only slowly. Near the
final stage, in the strongly aspirated prolate (SAP) regime, the
tubular portion becomes significant, as illustrated in Fig. 1(i).
At the final stage, the bending energy increases drastically,
diverging at the aspiration limit u∗, a limit that will be further
discussed in Sec. III H.

Can we determine the stable structure, now using P̃ instead
of u as the varying parameter? An interesting application of
the bending-energy curve is the determination of the first-order
phase transition between WAP [Fig. 1(f)] and SAP [Fig. 1(i)]
as P̃ increases. A relatively small aspiration pressure keeps
the system in a WAP state. With increasing P̃ , the vesicle
shape further distorts until a transition pressure is reached,
after which the system displays a SAP state, characterized by
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a jump in u at the transition point. The trapped volume fractions
uWAP and uSAP where the transition occurs are determined from
the conditions

P̃ (uWAP) = P̃ (uSAP), (20)

G̃(uWAP) = G̃(uSAP). (21)

Because P̃ is the slope of the Ẽb curve, a simple technique
for determining uWAP and uSAP can be developed on an energy
plot such as Fig. 3(a); a double-tangent line can be constructed
in lieu of solving Eqs. (20) and (21), as illustrated by the
long-dashed line in the figure; the two tangent points are uWAP

and uSAP. The slope itself is the reduced WAP-SAP transition
pressure P̃WAP-SAP. In the phase-transition theory, uWAP and
uSAP are referred to as the binodal points for a first-order
phase transition.

D. Experimental hysteresis in a WAP-SAP transition

An inspiring comparison can be made between Fig. 3(b)
and the PV diagram of the van der Waals gas; both pressure
curves show the existence of a maximum and a minimum.
These spinodal points, defined in the plot as u∗

WAP and u∗
SAP,

indicate the stability limits in a real experimental setting where
P̃ is the control parameter.

A typical aspirating experiment can be described by follow-
ing the up (red) arrows in Fig. 3(b). As the suction pressure P̃

increases from 0, the system may pass the WAP-SAP transition
point, as illustrated in Fig. 3(c) for uWAP, running into a
metastable region. Before or when the system hits the stability
limit, as illustrated in Fig. 3(d) for u∗

WAP, a jump in u to a
value beyond uSAP takes place (i.e., a sudden increase of the
aspiration length in the pipette) following the long arrow line in
the plot. The configuration looks similar to Fig. 3(f), but with
a somewhat longer aspiration length. The jump accompanies a
P̃ ∗

WAP that is larger than P̃WAP-SAP; a further increase of P̃ after
the jump yields only a small increase of u.

A typical releasing experiment can be described as well,
but now following the down (green) arrows in Fig. 3(b). As P̃

decreases from a large value, the system may pass the SAP-
WAP transition point, illustrated in Fig. 3(f) for uSAP. Within
the range [u∗

SAP,uSAP] the system is in a metastable state, where
a decreasing P̃ reduces the aspiration length (or u) in the tube,
as shown by the (green) arrows. Before or when the system
hits the stability limit [illustrated in Fig. 3(e) for u∗

SAP] a jump
of u to a small value takes place, following the long (green)
arrow in the plot. The jump now accompanies a P̃ ∗

SAP that is
smaller than P̃WAP-SAP and may immediately release the entire
vesicle from the pipette aperture after the jump.

Characteristics of these hysteresis effects have been de-
tected in experiments with comparable behavior in P̃ ∗ and the
projection length, which can be identified with u through

L ≈ Vin/πa2 = uV/πa2. (22)

In experimental papers [2,10], the pressure at the jumping point
(P̃ ∗

WAP or P̃ ∗
SAP for either aspirating or releasing) is always

referred to as the critical pressure. The usage of the word
“critical” has a specific meaning in the phase-transition theory.
Now, from the current analysis, by realizing that we are looking
at the hysteresis effects of a first-order phase transition, these
usages of “critical pressure” should not be confused with the
specific meaning associated with a continuous phase transition.
These pressures actually correspond to the spinodal pressures.

In a recent theoretical study of the same bending energy
model for an axisymmetric vesicle, Das solved the shape
equation, i.e., the force equilibrium equation or Euler’s equa-
tion for ψ(s) by minimizing Eb. He introduced an additional
assumption that allows the shape curve inside the tube to
touch the wall by a single point [18]. This can be contrasted
with the current approach where no such assumption was
introduced. As matter of fact, the numerical solution of the
SAP phase in the current work shows that the shape curve
displays a significant segment in contact with the interior wall
[see examples in Figs. 1(g)–1(i)]. Because of the additional
assumptions taken by Das, two separate pressure curves were
produced; this can be contrasted with the single continuous
curve in Fig. 3(b). Table I shows some further differences
between the current and his results. Furthermore, he suggested
that the critical aspiration pressure corresponds to a maximum
in the aspiration pressure-projection length curve and the
critical releasing pressure corresponds to a minimum in the
curve; this notion coincides with the spinodal picture explained
above.

To summarize, there are a number of characteristic pres-
sures discussed above. This paper identifies the micropipette
aspiration as a first-order phase transition from a weakly
aspirated state to a strongly aspirated state, at a transition
pressure P̃WAP-SAP. This pressure may not be directly ob-
served in experiments because of hysteresis effects. Instead,
two characteristic spinodal pressures are observable: P̃ ∗

WAP
(>P̃WAP-SAP) and P̃ ∗

SAP (<P̃WAP−SAP); the former is an insta-
bility edge in a suction experiment (the critical aspiration
pressure) and the latter is an instability edge in a releasing
experiment (the critical releasing pressure). For different a/r0

these characteristic pressures are shown in Fig. 4(a).

TABLE I. Comparison of the reduced spinodal pressures P̃ ∗
WAP and P̃ ∗

SAP and the reduced spinodal projection lengths �̃∗
WAP and �̃∗

SAP from
the current work with those of Ref. [18]. Here �̃ = �/r0, where the projection length � was read directly from the numerical shape function.
The numbers in the third and seventh columns were converted from the original table by a factor of v/3 by taking into account the different
reduced units used.

v P̃ ∗
WAP P̃ ∗

WAP [18] �̃∗
WAP �̃∗

WAP [18] P̃ ∗
SAP P̃ ∗

SAP [18] �̃∗
SAP �̃∗

SAP [18]

0.75 495 ± 10 641.4 0.099 ± 0.005 0.057 101 ± 10 70.8 0.25 ± 0.01 0.39
0.85 846 ± 10 727.2 0.100 ± 0.005 0.057 112 ± 10 80.8 0.25 ± 0.01 0.39
0.95 1116 ± 20 838.2 0.100 ± 0.005 0.057 117 ± 10 89.4 0.25 ± 0.01 0.39
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FIG. 4. (Color online) Characteristic pressures and projection lengths predicted from the bending energy model for v = 0.80 [(a) and (b)],
0.63 [(c) and (d)], and 0.58 [(e) and (f)]. The first-order transition pressure is represented by the line associated with circles in (a), (c), and (e);
the binodal boundaries for the projection length are presented by the lines associated with open and shaded (gray) circles in (b), (d), and (f);
the suction and releasing stability limits are described by P̃ , represented by the lines associated with the up and down triangles in these plots,
respectively; the corresponding spinodal lines are presented in (b), (d), and (f) by the up and down triangles as well. The full aspiration limit is
indicated by squares in (b), (d), and (f).

E. Aspirating an oblate or stomatocyte shape

Another example of the energy curve is shown in Fig. 5
for a/r0 = 3/8 and v = 0.63, where the original free vesicle
adopts the oblate [Fig. 1(b)] conformations. The undistorted
state corresponds to the energy minimum of the oblate branch
in Fig. 5(a). The prolate branch, shown in the plot by the curve
associated with circles, still exists. A noticeable feature is
the competition between the energy minima; at P̃ = 0, the
lowest determines the stable free-vesicle conformation, hence
the prolate conformation is only metastable.

At a weak P̃ , the system displays the weakly aspirated
oblate (WAO) conformation, shown in Fig. 1(e). As P̃

increases, a first-order WAO-SAP phase transition takes place,
where the SAP state at the transition is shown in Fig. 1(h).
The procedure used in Sec. III C for the determination of the
transition point can be used here as well by requiring

P̃ (uWAO) = P̃ (uSAP), (23)

G̃(uWAO) = G̃(uSAP), (24)

where the functions on the left-hand sides are taken from the
oblate branch and those on the right-hand sides are from the
prolate branch. Graphically, a double-tangent construction,
shown in Fig. 5(a) by the long-dashed line, can be used
directly on the figure for the determination of uWAO, uSAP,
and P̃WAO-SAP.

The experimentally observed hysteresis effects can be
partially accounted for by the pressure curves in Fig. 5(b)
as well. Upon the initial weak suction, an oblate shape can
pass through the binodal uWAO transition point [illustrated
in Fig. 5(c)], staying in the oblate branch, as indicated by
the up (red) vertical arrow. However, the WAO branch of the
pressure curve, which is now separated from the SAP branch
[see Fig. 5(b)], monotonically increases and does not display a
maximum in contrast to the first half of the curve in Fig. 3(b).
In other words, a spinodal P̃ ∗

WAO cannot be directly identified;
how a WAO jumps to SAP at or before the stability limit
u∗

WAO is unclear in the current work. In comparison with the
discussion in Sec. III D, we can only guess qualitatively that a
similar procedure can take place where the system arrives at a
SAP shape following the long arrow in the figure. A question
mark has been placed in Fig. 5(b) for the exact location of the
critical aspiration pressure and its corresponding configuration
in Fig. 5(d).

The releasing experiment following the down (green)
arrows, however, can be quantitatively described; the vesicle
may stay in the prolate branch within [u∗

SAP,uSAP], displaying
a configuration intermediate to Figs. 5(e) and 5(f), until it
reaches the stability limit as illustrated in Fig. 5(e) for u∗

SAP.
Once the pressure is further lowered, the aspirated vesicle
may disembark the pipette and convert itself back to an oblate
shape. These hysteresis effects have been previously observed
in experiments as well (see, e.g., Ref. [2]).
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FIG. 5. (Color online) Solution of the bending energy Eb as a
function of the reduced trapped volume u for (a) a/r0 = 3/8 and v =
0.63. Circles and plus signs correspond to distorted conformations
originated from prolate and oblate vesicles, respectively. (b) Reduced
aspiration pressure (16) as a function of u, which was calculated
from Eq. (18). Configurations at several u are illustrated in (c)–(g)
and discussed in Sec. III E.

The above discussion analyzed the WAO-SAP phase tran-
sition. Starting from a free stomatocyte, a similar analysis can
be conducted for the transition between a weakly aspirated
stomatocyte (WAS) and a SAP in reference to Fig. 6, but it is
not repeated here.

F. Phase diagram

In Secs. III C–III E the structural properties for a fixed
a/r0 = 3/8 and three typical values of v were discussed.
The complete phase diagram, however, is three dimen-
sional, depending on v, a/r0, and P̃ . In this section we
first examine the a/r0-P̃ phase diagram for three values
of v and then the v-P̃ phase diagram for three values
of a/r0.

The circles in Fig. 4(a) defines the first-order phase
boundary for the case of v = 0.80: Above the boundary, the
SAP state is stable and below the boundary the WAP state is
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(b) a/r0 = 3/8, v=0.58

?

(c) uWAS (d) u
*
WAS (e) u

*
SAP (f) uSAP (g) u

*

?

FIG. 6. (Color online) Solution of the bending energy Eb as a
function of the reduced trapped volume u for (a) a/r0 = 3/8 and
v = 0.58. Circles and diamonds correspond to distorted conforma-
tions originated from prolate and stomatocyte vesicles, respectively.
(b) Reduced aspiration pressure (16) as a function of u, which was
calculated from Eq. (18). Configurations at several u are illustrated
in (c)–(g).

stable. The corresponding transition points, now described by
a reduced projection length

L̃ = u/(a/r0)2, (25)

are shown in Fig. 4(b) by shaded circles at the WAP state and
by open circles at the SAP state. Here L̃ is proportional to the
experimentally measurable projection length l in a strongly
aspirated state; in a weakly aspirated state, the definition of
the projection length l itself is not precise.

The spinodal suction pressure P̃ ∗
WAP discussed above (the

critical suction experiment) is shown by the up triangles, which
is generally greater than P̃WAP-SAP. The releasing stability limit
P̃ ∗

SAP is shown by the down triangles, which is generally lower
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FIG. 7. (Color online) Three examples of the P̃ -v [(a), (c), and (e)] and u-v [(b), (e), and (f)] phase diagrams for (a) and (b) a/r0 = 1/8, (c)
and (d) 3/8, and (e) and (f) 1/2. Illustrations of representative conformations of the SAP, WAP, WAO, and WAS states can be found in Fig. 1.

than the first-order transition pressure. Note the logarithmic
scale used in the P̃ plot. In a suction experiment after the
system reaches P̃ ∗

WAP, L̃ [up triangles in Fig. 4(b)] jumps to a
state with a value higher than the open circles; in a releasing
experiment after the systems reaches P̃ ∗

SAP, L̃ [down triangles
in Fig. 4(b)] jumps to a state with a lower value than the shaded
circle. In addition, the full suction limit u∗, beyond which the
vesicle cannot be further pulled into the pipette, is represented
by the squares in Fig. 4(b), in terms of the projection length.

The circles in Fig. 4(c) define the first-order phase boundary
P̃WAO-SAP for the case of v = 0.63: Above the boundary, the
SAP state is stable and below the boundary the WAO state is
stable; the binodal phase boundaries, in terms of the reduced
projection length, are shown by the shaded and open circles
in Fig. 4(d), corresponding to the WAO and SAP boundaries,
respectively. Because the current calculation cannot quantita-
tively describe the spinodal point in a suction experiment for
the WAO-SAP transition, P̃ ∗

WAO is not specified in the plot.
However, we can determine the releasing stability boundary
P̃ ∗

SAP, assuming that the SAP conformation is maintained in the
releasing experiment, by the method described in Sec. III E;
the boundary is represented in Fig. 4(c) by the down triangles;
the corresponding L̃∗

SAP, below which the transition will take
L̃ to a value lower than the shaded circles in Fig. 4(d), is also
shown by down triangles. The squares in Fig. 4(d) represent
the full suction limit u∗. In comparison with Figs. 4(a) and 4(c),
now we see the emergence of the throughput region (dotted
area) in the phase diagram for relatively large a/r0.

The third example is presented in Figs. 4(e) and 4(f). Many
features are similar to Figs. 4(c) and 4(d), but now for the
transition between WAS and SAP. The discussion is omitted
here.

We now turn to the discussion of the P̃ -v phase diagrams for
given a/r0 = 1/8, 3/8, and 1/2, shown in Fig. 7. The numer-
ical results for the WAP-SAP phase boundaries are displayed
by circles in Figs. 7(a), 7(c), and 7(e). The corresponding
phase boundaries uWAP and uSAP are plotted in Figs. 7(b), 7(d),
and 7(f) by open and solid circles, respectively.

In the vSO < v < vOP and v < vSO regions, under a weakly
aspirating pressure, the WAO state [Fig. 1(d)] and the WAS
state [Fig. 1(e)] are stable, respectively. As P̃ increases, the
system undergoes a first-order WAO-SAP transition and a
first-order WAS-SAP transition to conformations illustrated
in Figs. 1(g) and 1(h), respectively. The transition pressure for
the WAO-SAP transition is displayed by squares in Figs. 7(a)
and 7(c); the corresponding trapped volume fractions at
the WAO-SAP transition (uWAO and uSAP) are displayed in
Figs. 7(b) and 7(d) by open and solid squares. The transition
pressure for the WAS-SAP transition is displayed by diamonds
in Figs. 7(a) and 7(c) and the trapped volume fractions at
the WAS-SAP transition (uWAS and uSAP) are displayed in
Figs. 7(b) and 7(d) by open and solid diamonds. Overall, the
aspiration region in each of the pressure phase diagrams may
be divided into four regions: SAP, WAP, WAO, and WAS.

The phase diagram presented in Fig. 7 is preempted by
the throughput condition numerically presented in Fig. 2 or
Eq. (E2). The dotted regions of the plots in Fig. 7 correspond
to the same throughput region described in Fig. 2, but from
a different perspective; the location of the vertical boundary
in v for the three values a/r0 = 1/8, 3/8, and 1/2 can be
readily identified from the phase boundary in Fig. 2. For clarity,
only the phase boundaries are plotted in Fig. 7; the spinodal
boundaries discussed above are not plotted explicitly in this
figure.
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G. Fine structure

The two dividing phase boundaries, between WAS and
WAO (down triangles in Fig. 7) and between WAO and WAP
(up triangles in Fig. 7), are not exactly vertical in the P̃ -v
phase diagram. In a narrow region just below vOP, v � vOP, the
system undergoes two transitions between three phases (WAO,
WAP, and SAP), sequentially as P̃ increases. Similarly, in a
narrow region just above vSO, v � vSO, the system undergoes
two transitions between three phases (WAS, WAO, and SAP),
sequentially as P̃ increases. These fine structures in the phase
diagram would be difficult to detect experimentally because of
the narrow ranges and hence are not described further in this
paper.

H. Fully aspirated limit

One common feature of the WAP-SAP, WAO-SAP, and
WAS-SAP transitions is that after transitions the system arrives
at a strongly aspirated prolate shape, shown in Figs. 1(g)–1(i).
If P̃ further rises, the vesicle continuously changes its shape
until it reaches a fully aspirated limit. A typical conformation
is shown in Fig. 8(b), where the vesicle portion outside the
pipette starts to show a conformation resembling a perfect
sphere.

Numerically, the bending-energy curve diverges as the
strong aspiration limit is approached, as indicated in Figs. 3(a),
5(a), and 6(a) by arrows. The maximum trapped volume
fraction u∗ can be identified from these plots and depends
on both v and a/r0. The numerical results are summarized
in Fig. 8, where u∗(v,a/r0) is plotted as a function of v for
a/r0 = 1/2, 3/8, 1/4, and 1/8 by circles, squares, diamonds,
and plus signs, respectively.

For small a/r0, we may use the approximation that treats
the trapped vesicle portion [i.e., the shaded (red) portion in
Fig. 8(b)] as a cylinder and the outside portion as a perfect
sphere. This allows us to estimate u∗ as a function of v and

0.4 0.6 0.8 1.0
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0.2

0.4
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0.8
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a/r0=1/23/8
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7/165/16
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1/16

(a) (b)

2a

FIG. 8. (Color online) (a) Limit of full aspiration, in terms of the
maximum trapped volume fraction u∗ as a function of the reduced
vesicle volume v, for various values of a/r0 and (b) an example
of the numerical solution for a strongly aspirated vesicle. The solid
curves were produced from the analytical result (D6), based on a
sphere-tube ansatz in Appendix D. The symbols were obtained from
a direct numerical analysis of the bending-energy curves, such as
those displayed in Figs. 3, 5, and 6.

a/r0, as presented in Appendix D. The estimate, now expressed
in an analytic form (D6), is shown by solid curves in Fig. 8(a)
for various values of a/r0. There is good agreement between
Eq. (D6) and the numerical results, in particular for small a/r0.
Hence Eq. (D6) can be used as the estimate for the location of
the fully aspiration limit.

IV. CONCLUSION

In summary, a simulated annealing Monte Carlo procedure
that minimizes the bending energy of a vesicle with fixed
internal volume, surface area, and trapped volume inside the
pipette was employed to study the structure of a vesicle
aspirated by a micropipette. The usage of the trapped volume
fraction is shown to be an effective tool that determines
the first-order transition gap between a weakly aspirated
structure and the strongly aspirated prolate shape. We have
shown that the so-called critical aspiration and releasing
pressures, both observed experimentally, can be accounted
for by the physical picture of spinodal stability, associated
with a first-order phase transition. The prediction of the
phase diagrams, presented in Figs. 4 and 7, in light of the
concepts previously introduced in Refs. [18,38], can be tested
by a carefully conducted experiment such as the one recently
reported in Ref. [10]. It is hoped that such experiments will be
able to reveal new physical features in a classical technique of
manipulating vesicles.

A number of other physical effects can influence the
structures and phases predicted in this work. Bozic et al.
[41] and Heinrich et al. [42] studied the effects due to the
finite bilayer thickness for more realistic features of a vesicle
under an external strain. In addition to Eb, a thickness-related
term was included. Another possible effect is the short-range
attraction between the vesicle surface and the pipette interior
wall, produced from a hydrophobic interaction when the
vesicle makes contact with the wall. These effects are neglected
here for simplicity, but can be included in a further extension
of the present work.
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APPENDIX A: DISCRETIZATION

The model presented in Secs. II B and II C is based on a
continuous description of the shape curve, specified by the
function ψ(s) (where s = [0,1]) and a scaling parameter S.
For numerical computation, we divide the continuous variable
s into N equally spaced parts with an increment �s = 1/N .

The spatial position of these nodes is represented by
the coordinates (ri,zi), where i = 1,2,3, . . . ,N + 1 and r1 =
rN+1 = 0. These nodes connect N pieces of linearly connected
straight segments of equal length �s. The shape function
ψ(s) is approximated by the series of variables ψi , where i =
1,2,3, . . . ,N . Based on an starting position (r1,z1), coordinates
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FIG. 9. (Color online) Discretization of the shape curve into N

segments and N + 1 nodes as illustrated by the solid lines. The long-
dashed lines represent a typical Monte Carlo move where both angles
ψi and ψi+1 are changed to ψ ′

i and ψ ′
i+1 in order to keep ri+2 and

ψi+2 unchanged in the move.

of all nodes can be written

ri+1 = ri + �s cos ψi (A1)

and

zi+1 = zi + �s sin ψi, (A2)

where i = 1,2,3, . . . ,N . The solid lines in Fig. 9 illustrate a
discretized curve.

The bending energy is then approximated by a summation

Eb

κ
= π�s

N∑
i=2

{
ψi − ψi−1

�s
+ sin[(ψi−1 + ψi)/2]

ri

}2

× ri + f1 + fN+1. (A3)

The last two terms f1 and fN+1 capture the bending-energy
contributions from the top and bottom parts of the closed
surface, respectively. The shape of the top part is assumed
to be a spherical cap of height |z1 − z2|, whereas the center
of this hypothetical sphere is located along the z axis and
the spherical surface intersects the first two nodes (r1,z1) and
(r2,z2). The bending energy f1 required was produced from
this cap representation. The same assumption, but now for the
last two points, was made to produce fN+1. Other integrals in
Eq. (9) were treated in a similar way.

APPENDIX B: SIMULATED ANNEALING

The basic idea of the simulated annealing approach is to
use a target energy in a Monte Carlo simulation by moving
variables (i.e., {ψi}) from an initial guess to the location of the
minimum in a stochastic process generally heading towards
a downhill direction on average. A temperature is used to
regulate the thermal fluctuations and finally decreases to a low
value to effectively freeze the system energy into the global
minimum [39].

In this work, at a Monte Carlo update, a node i was
randomly selected and an attempt to move the variable ψi

was made by adding or subtracting a small random angle; the
coordinates of the (i + 1)th node (ri+1,zi+1) are then updated;

the adjacent angle ψi+1 was also adjusted accordingly to
guarantee that ri+2 of the (i + 2)th node is unchanged. This
requirement is crucial to ensure that after the propagation of
calculating rj (j = i + 1,i + 2, . . . ,N + 1) from Eq. (A1), we
must eventually keep rN+1 = 0. The value of the target energy
E′

target was then determined from the attempted configuration;
a Boltzmann weight exp[−β(E′

target − Etarget)] was in turn
used as the transition probability in a standard Metroplis
Monte Carlo algorithm [43] for the acceptance of the newly
generated configuration. Every configuration-change attempt
was intercalated by an attempt for scale change: S was moved
by a random small number. Such a scale change has no effect
on the bending energy, but was proven necessary to minimize
the penalty terms in the target-energy function.

To simulate an annealing process, the Boltzmann factor β

was arranged to increase from 20 to a final value of 1 × 104, in a
typical production run that contained 106N attempted updates.
An initial guess of {ψi} was selected so that the ending node
is exactly sitting on the z axis, rN+1 = 0. Results in this paper
were produced by using N = 200.

APPENDIX C: SEARCHING FOR t

For a given set of coordinates (ri,zi), where i =
1,2,3, . . . ,N + 1, we started with i = 1, which always has
r1 = 0. Sequentially going through the nodes starting from
i = 1, we then searched for the first node (the kth node), which
has a radius greater than the pipette radius a, rk > a. A linear
interpolation between the coordinates rk−1, zk−1, and rk,zk was
then assumed and the position on the line that satisfies r = a

determined the contact point t together with the z coordinate of
the pipette opening Zp. The entire set (ri,zi) was redefined by
shifting the reference value of the z coordinate, zi ⇐ zi − Zp.

The last integral in Eq. (9), which together with the S3

prefactor represents the trapped vesicle volume, can then
be approximated by a summation based on the rectangular
rule, starting from the second node to the (k − 1)th node.
Additionally, the contribution to the integral from the first
node to the second node was treated by assuming a spherical
cap described in Appendix A; the contribution to the integral
from the (k − 1)th node to the s = t point was approximated
by a trapezoidal rule.

The algorithm adjusts the contact position t as the rep-
resentative nodes move in a Monte Carlo simulation. In the
undesirable case where a Monte Carlo attempt generates a
configuration containing an intersecting node k much different
from a stable intersecting point, the large penalty term in
Eq. (9) rules out the new configuration during the important
sampling process. This implies that small Monte Carlo moves
are desirable, which was controlled by the size of the random
angle selected for a Monte Carlo attempt. This size (usually
small) was adjusted such that the acceptance rate of a Monte
Carlo segment fell between 40% and 60%.

The constraint in Eq. (10) is automatically satisfied by this
algorithm. No additional steps are needed in the simulation.

APPENDIX D: STRONG ASPIRATION LIMIT

Consider a pipette with a small radius a in comparison with
the characteristic length scale of the vesicle r0. In the strong
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aspiration limit, we assume that (i) the part of the vesicle that
is trapped inside the pipette can be approximated by a cylinder
of radius a and length L and (ii) the part of the vesicle that is
outside the pipette can be approximated by a perfect sphere.
The following estimate yields the trapped volume fraction u∗
in terms of v and a/r0.

From assumption (i), the surface area A′ and volume V ′ of
the trapped portion can be written as

A′ = 2πaL (D1)

and

V ′ = πa2L, (D2)

where we have kept the leading terms only. We then have
A′ = 2V ′/a. Hence the ratio

A′

A
= 2V ′

a

A1/2

A3/2
= 2V ′

a

r0

√
4π

6
√

πV/v
= 2vu∗

3

r0

a
. (D3)

From assumption (ii), the effective reduced volume is 1 for
a perfect sphere,

6
√

π (V − V ′)/(A − A′)3/2 = 1, (D4)

which gives

v(1 − u∗)/(1 − A′/A)3/2 = 1. (D5)

Inserting Eq. (D3) into Eq. (D5) yields an implicit equation
for the function u∗(v,a/r0),

v(1 − u∗) = [1 − (2r0/3a)vu∗]3/2, (D6)

which is valid in the a/r0 � 1 region. For various values of
the ratio a/r0, u∗ is plotted as a function of v by solid curves
in Fig. 8.

APPENDIX E: THROUGHPUT LIMIT

Consider a system in the strong aspiration limit where the
ratio between the trapped volume and the total vesicle volume
is u∗, as described in Appendix D. In general, u∗ goes up as
a/r0 increases, until u∗ reaches 1 when a = ath. Any larger
a allows the entire vesicle to move inside the pipette. Hence
the throughput limit can be deduced from Eq. (D6) by setting
u∗ = 1, which yields

v = 3

2

ath

r0
, (E1)

which is valid for systems having ath/r0 � 1 because of the
first assumption used in Appendix D.

Now a more careful treatment of the full ath/r0 range
can be made by assuming that the shape of a fully aspirated
vesicle inside the pipette is made of a cylinder and two ending
hemispherical caps. This consideration yields an implicit
expression for ath/r0 as a function of v,

v = 3

2

ath

r0
− 1

2

(
ath

r0

)3

. (E2)

The expression is valid for the entire range of ath/r0 and is
plotted as a solid curve in Fig. 2.
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