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Entrainment of the suprachiasmatic nucleus network by a light-dark cycle
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The synchronization of biological activity with the alternation of day and night (circadian rhythm) is performed
in the brain by a group of neurons, constituting the suprachiasmatic nucleus (SCN). The SCN is divided into two
subgroups of oscillating cells: the ventrolateral (VL) neurons, which are exposed to light (photic signal), and
the dorsomedial (DM) neurons, which are coupled to the VL cells. When the coupling between these neurons is
strong enough, the system synchronizes with the photic period. Upon increasing the cell coupling, the entrainment
of the DM cells has been recently shown to occur via a very sharp (jumping) transition when the period of the
photic input is larger than the intrinsic period of the cells. Here, we characterize this transition with a simple
realistic model. We show that two bifurcations possibly lead to the disappearance of the endogenous mode. Using
a mean-field model, we show that the jumping transition results from a supercritical Hopf-like bifurcation. This
finding implies that both the period and strength of the stimulating photic signal, and the relative fraction of cells
in the VL and DM compartments, are crucial in determining the synchronization of the system.
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I. INTRODUCTION

The circadian rhythm in the brain results from the activity
of neurons, which are spontaneously oscillating with an
endogenous period close to the 24-h cycle, and which,
under the influence of light (photic signal), synchronize with
the alternation of day and night. In mammals, the primary
circadian clock is the suprachiasmatic nucleus (SCN), which
is located in the hypothalamus and receives information about
illumination through the eyes. It is composed of a large network
of ∼2 × 104 coupled neurons. This assembly of cells can be
divided into two subgroups: the ventrolateral (VL) and the
dorsomedial (DM) subgroups. The VL neurons are exposed
to photic input from the retina and entrain the DM neurons.
While the two subgroups of neurons are functionally different,
a coherent, periodic output results from their coupling [1–11].

In the absence of the daily light-darkness cycle, the free-
running period varies from species to species in the range
20–28 h [1–3,6–8]. This implies that the proper response
of the system to the 24-h period results from a dynamic
process of synchronization. In this respect, it has been noticed
that when exposed for several weeks to a constant light,
the SCN of rodents (hamsters) exhibits a phase-splitting
behavior, with two sets of neurons oscillating out of phase
[12–17]. It has been recently shown that both the coupling
strength and its distribution can influence the diversity of the
free-running period and the phase-splitting [10,11]. Lastly,
the desynchronization of the circadian oscillations between
VL and DM subgroups has been observed when the external
light-dark cycle has a period very different from the 24 h
circadian period [18–22]. When the period of the light-dark
cycle is shorter than 24 h, such as 22 h (11 h of light alternating
with 11 h of darkness), the VL subgroup is entrained by
the light and oscillates with a period equal to the external
cycle (22 h), whereas the DM subgroup is not entrained and
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oscillates with its free-running period around 24 h, as observed
experimentally in rats [19,23]. In the opposite case, in which
the period of the light-dark cycle is longer than 24 h, such as
26 h (13 h of light alternating with 13 h of darkness), numerical
simulations [22] predict that the VL subgroup is entrained by
the light but the DM subgroup has a period smaller than 24 h.
By gradually increasing numerically the number of neurons in
the VL subgroup, the period of the DM subgroup is observed
to decrease. Theoretically, the entrainment phenomenon has
been analyzed in terms of frequency locking in the case
of a homogeneous VL population [24]. In the case of a
heterogeneous population with both DM and VL neurons, one
of the intriguing observations of [22] is the existence of a
threshold for the ratio between the number of neurons in the
VL and DM. When the ratio reaches a critical value, the period
of the DM subgroup jumps to the external light-dark cycle.
We focus here on this jumping transition phenomenon, which
provides new insight into the entrainment of photic input in
SCN, i.e., the appearance of rhythm.

To investigate the mechanism of the jumping transition in
the SCN, we use a model with a mean-field coupling and
characterize both the period and amplitude in each subgroup.
We find that as the fraction of VL neurons is increased,
the period of the DM subgroup decreases and so does its
amplitude. Based on this finding, we study a single oscillator
with both constant light and monochromatic light. We find that
this model shows the very same behavior as the DM subgroup,
including the disappearance of amplitude via a Hopf-like
bifurcation, which explains the jumping transition. The main
implication concerning the generation and synchronization of
rhythm in the SCN network is that both the period and strength
of the stimulating photic signal, and the relative fraction of cells
in the VL and DM compartments, are crucial in determining
the synchronization of the system.

II. A JUMPING TRANSITION IN THE GOODWIN MODEL

A typical model to simulate circadian rhythms in SCN cells
is the Goodwin oscillator with three variables, describing a
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negative transcription-translation feedback loop [25]. Several
elaborations of this model have been proposed [1,3,6–8]. For
example, [1,3,6–8] considered a globally coupled system,
via neurotransmitter concentration. Important aspects of the
functionality of the SCN strongly depend on this global
coupling, as stressed by Locke et al. [4]. We consider here the
mean-field Goodwin oscillator presented by Gonze et al. [3],
which can be represented as follows:

ẋi = α1

1 + (zi/k1)4
− α2xi

k2 + xi

+ αcgF

kc + gF
+ Li,

ẏi = k3xi − α4yi

k4 + yi

,

żi = k5yi − α6zi

k6 + zi

, (1)

V̇i = k7xi − α8Vi

k8 + Vi

, i = 1,2, . . . ,N,

F = 1

N

N∑

i=1

Vi.

The variables xi, yi , and zi are the concentrations of the
clock gene mRNA, the clock protein, and the inhibitor of
protein expression, respectively [3]. V is the concentration of
neuropeptide induced by the activation of the clock gene and
can synchronize clock cells. The three-variable model obtained
with xi, yi , and zi constitutes a negative feedback loop in
the clock cell i. g measures the strength of the mean-field
coupling F , and L denotes the external light input. Following
Ref. [4], we take other parameters as α1 = 0.7 nM/h, k1 = 1.0
nM, n = 4.0, α2 = 0.35 nM/h, k2 = 1.0 nM, k3 = 0.7/h,
α4 = 0.35 nM/h, k4 = 1.0 nM, k5 = 0.7/h, α6 = 0.35 nM/h,
k6 = 1.0/h, k7 = 0.35/h, α8 = 1.0 nM/h, k8 = 1.0 nM, αc =
0.4 nM/h, and kc = 1.0 nM. We renormalize the time by a
factor 1.26 to have a free-running period of 24 h, and we use
g = 0.5.

Our model of the SCN network is composed of N

oscillators, all obeying Eq. (1) and coupled together via the
mean field F . The observation of Ref. [22] that the variability
of the coupling constant g in the model does not affect
qualitatively the transition suggests that taking a fixed value of
g is a sensible approximation to investigate the entrainment of
DM by VL neurons. This assumption, however, prevents the
model from explaining phenomena such as phase-splitting,
which possibly rests on the variability of the properties of the
system [10,26]. The assembly of neurons is divided into two
subgroups. The oscillators in the VL subgroup receive photic
input Li = L(t), while oscillators in the DM subgroup do not
receive any light (hence Li = 0). The fraction of VL neurons
in the SCN network is denoted p, so the system consists of
pN VL neurons and (1 − p)N DM neurons. We study the
entrainment of the system by an alternation of day and light,
with a period of 26 h, with a photic input L(t) chosen to
be on for 13 h: L(t) = K during the day period, and off for
13 h: L(t) = 0 during the period of darkness. We checked the
behaviors of {xi} in Eq. (1) and found that the DM oscillators
are completely synchronized with one another. We observed
that this was the case for any value of p. We define the period of
a subgroup (VL or DM) as the period of the average V variable
in the subgroup. After a long transient, all the oscillators in each

FIG. 1. (Color online) Evolution of the period of the VL
(diamond �) and DM (circle ◦) subgroups in a system with a fraction
p of VL neurons. The VL neurons are exposed to a 26-h cycle of
light of intensity K = 0.02. The system is evolved from random
initial conditions. Symbols represent a system of N = 500 neurons,
and continuous lines represent a two-neuron system (labeled N∞).

sub-population become synchronized. Their frequencies were
determined numerically by computing the Fourier spectrum.
Figure 1 shows how the period of the subgroups evolves with
p, which is an important factor for the entrainment of the
period of photic input [22]. As p is increased from 0, Figure 1
shows that the period of VL is quickly frequency-locked to
the external period (26 h) in a 1:1 relation for a small value of
p [24], whereas the period of DM decreases with increasing
p until a critical value pc ≈ 0.41 is reached. At the value
p = pc, we observe a transition, characterized by a sharp dis-
continuity in the period of the DM neurons, which jumps from
≈20.8 h to the external light period 26 h. At values of p � pc,
the DM neurons are entrained at the external period, 26 h.
We have observed the jumping transition at different values
of the coupling constant g, and also by varying g at a fixed
value of p. What is the mechanism describing this jumping
transition? To gain some insight, we measured the amplitude
of the oscillations of DM oscillators.

Because of the mean-field structure of the coupling between
neurons, together with the observation that neurons from a
given subgroup are perfectly synchronized in this subgroup
for any value of p [22], all oscillators from a subgroup can be
treated as a single oscillator. It is therefore sufficient to study
a two-neurons system, composed of one VL neuron receiving
external light L(t) �= 0 and one DM neuron insensitive to
light, both being coupled by the mean field F = pVVL +
(1 − p)VDM. Although this approach can potentially lead to
incorrect results close to the transition, due to the divergence
of the relaxation time, we explicitly checked that this is not the
case for reasonable integration times (500 h). Figure 1 shows
that the jumping transition occurs for the same value of p in
the two-neuron system as in a large-N system.

Considering that the mean-field term F is the only coupling
between VL and DM neurons, and because we are willing to
study the effect of the fraction p of cells in the two subgroups,
we study the dependence on p of VVL and VDM. To this end,
we decomposed for each subgroup the variable V into three
parts: the stationary value 〈V 〉, the oscillating components
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FIG. 2. (Color online) Evolution with p of the V variable in
a two-neuron system. (a) Stationary component 〈V 〉 for the VL
(circle ◦) and DM populations (diamond �). (b) Square amplitude
of the two main oscillating modes of VL and DM populations. The
forcing mode has a period of 26 h, while the free-running mode has
a period ranging from 24 h down to 20.8 h, according to Fig. 1.

V 26 corresponding to a period of exactly 26 h, i.e., the forcing
period, and V 24 corresponding to the branch that starts at 24 h
(free-running mode) and diminishes down to 20.8 h at the
transition for the DM population. The amplitudes of V 26 and
V 24 are measured by integrating the power spectrum density
under the corresponding peaks. We observe in Fig. 2 that the
constant part of the variable V does not depend much on p,
and that it is approximately the same, up to at most a 2%
variation, for both the VL and the DM neuron. Therefore,
we can consider 〈F 〉 as a constant. The amplitude V 26

VL of the
mode at period 26 h increases for the VL neurons due to the
increase of the ratio of VL neurons in the system. For DM
neurons, V 26

DM also increases with p but remains very small.
In contrast, the V 24

VL mode in the VL neuron has a decreasing
amplitude with p, while the amplitude of the free-running
mode of the DM neuron starts, at p = 0, at a much larger value
and vanishes close to p = pc as ∝(p − pc)1/2 [the squared
amplitude is plotted in Fig. 2(b)]. This indicates a bifurcation
from a dynamics involving two incommensurate frequencies
toward periodic motion as V 24

VL goes to 0, known as a Neimark-
Sacker bifurcation [27]. The observed disappearance of the
amplitude of the endogenous mode as ∝(p − pc)1/2 close to
the transition is very reminiscent of a Hopf bifurcation. For
this reason, we denote this transition here as a “Hopf-like”
bifurcation. From the definition of F and the values of VVL and
VDM in Fig. 2(a), we note that the mean value of F is always
positive and large. In fact, the amplitude of the oscillating part
is small, so F remains strictly positive at all times. This is to
be contrasted with the photic input L, which is zero for half a
period.

The main effect of the mean field is to transfer the
information about the external forcing from the VL population
to the DM population. As p is increased, the mean field
contains more information about the VL population and the
transfer to the DM population is more efficient. This leads
to the disappearance of the free-running mode in the DM
subgroup via a Hopf-like bifurcation. In the next section, we

explore the transition by studying the effect of the external
forcing on a single Goodwin oscillator.

III. SINGLE NEURON ANALYSIS

To understand the entrainment of a given subgroup by the
photic signal, it is useful to consider first the simplified case
of a single neuron, subject to a periodic photic forcing L(t) =
L0 + L1 sin(ωt), with 2π/ω = 26 h. In general, the behavior
of neurons of either category (VL or DM) is determined by
a balance between the coupling with the mean field F = V

and the external forcing. For this reason, we investigate the
dependence of the dynamics on the parameters, g (the strength
of the coupling); L0 (the amplitude of the constant forcing);
and L1 (the amplitude of a periodic monochromatic forcing)
with a period 26 h. We will then use our knowledge of this
system of isolated neurons to describe the behavior of VL
and DM populations in network. To this end, we represent
the excitatory signal L(t) in Eq. (1) by merging together the
external light and the contribution from the mean field.

A. VL population

We first study a single VL neuron at a fixed value of the
coupling, g = 0.5 (Fig. 3). Over a wide range of values of L0
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FIG. 3. (Color online) Period and square amplitude of the
oscillation of a single neuron model. (a) Period as a function of
(L0,L1) for fixed g = 0.5. White color corresponds here to the forcing
period 26 h (the neuron is entrained by the external light). Dashed
line represents the situation in which the system is subject to a
periodic on-off light. The solid line delimits two subregions for the
endogenous mode: below the solid line, region ©1 , the endogenous
oscillation is the only solution, whereas above the solid line, region
©2 , there is bistability and both the endogenous solution and the
entrained solution can be observed depending on initial conditions.
(b) Supercritical Hopf-like bifurcation occurs when reducing L0 for
fixed L1 = 1 pM/h. (c) Subcriticality is revealed by a hysteresis and
bistability in the squared amplitude when increasing L1 for fixed
L0 = 3 pM/h. (d) Squared amplitude of the free-running mode in the
(L0,L1) plane for g = 0.5. Dashed lines in (d) give the location of
the cuts plotted in (b) and (c).
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and L1, the system is observed to oscillate. Figure 3(a) shows
the dependence of the period of oscillations on L0 and L1. For
either large L0 or large L1, the VL neuron is entrained by the
external light, while it keeps its free-running period for smaller
values of L0 and L1.

Figure 3(d) shows the dependence of the squared ampli-
tude of the oscillation. We observe that an increase of the
constant part of the forcing (parameter L0), for fixed periodic
monochromatic forcing (constant L1), leads to the vanishing
of the amplitude of the free-running mode, while its period
decreases (from 24 h down to about 21 h). More precisely,
the squared amplitude vanishes linearly when increasing L0,
see Fig. 3(b), provided L1 is not too large [transition in region
1; see Fig. 3(a)]. This demonstrates that the transition from
a nonoscillatory to an oscillatory state, when L0 decreases,
happens through a supercritical Hopf-like bifurcation. In
contrast, an increase of the amplitude of the forcing at the
period 26 h (parameter L1) at fixed value of L0 leads to the
abrupt disappearance of the free-running mode [see Fig. 3(c)],
at least when L0 is not too large. The fact that the oscillating
solution ceases to exist, while the amplitude of the oscillation
is nonzero, suggests a subcritical bifurcation.

This can be used to describe qualitatively the behavior of
the VL population in the complete SCN model, where external
forcing is chosen as an alternation of darkness (L = 0) for 13 h
followed by light (L = K for 13 h), which can be decomposed
in Fourier series. The constant term is equal to L0 = K/2 and
the first harmonic, with period 26 h, has an amplitude L1 =
4L0/π [dashed line in Fig. 3(a)]. The higher harmonics have
a frequency which is too high to trigger a significant response.
In more technical terms, the frequencies corresponding to the
harmonics of frequency n × 2π/T , with T = 26 h, are very far
from the resonance tongue of the Goodwin oscillator [24,28]
as soon as n > 1.

Qualitatively, we expect VL neurons in a network to behave
as a single neuron receiving a photic signal L(t), in addition
to a contribution from the mean field. In the simulation above,
it was found that 〈F 〉 is independent of p [see Fig. 2(a)].
As a result, as p is increased, the VL subgroup behaves like
a one-neuron system with constant L0. In contrast, V 26

DM is
negligible compared to V 26

VL, which increases with the fraction
p [see Fig. 2(b)], so the mean field F will contain a mode
at a period of 26 h, which will grow like pV 26

VL when p is
increased. This suggests that the VL subgroup behaves like
a one-neuron system with increasing L1 when p increases.
According to Fig. 3(d), for fixed L0 and increasing L1, we
expect the bifurcation to the 26 h state to be subcritical. This
corresponds to the transition of the VL population observed at
p = 0 in Fig. 1, which occurs for larger values of p if the light
intensity K is smaller [22].

B. DM population

We now turn to the main object of this article, the DM
subgroup, and show quantitatively that the jumping transition
to the external forcing frequency is a supercritical Hopf
bifurcation.

The DM oscillators are not directly forced by the 26 h
periodic light, but indirectly via the mean field F . From the
simulations reported previously, see Fig. 2, we find that gF �

g
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FIG. 4. (Color online) Period of a single neuron as a function of
(a) (L0,g) for fixed L1 = 0.0032, (b) (L1,g) for fixed L0 = 0.0048,
and (c) (L0,L1) for fixed g = 0.295. Dashed lines are projections
of the trajectory of the system for increasing p. White regions
correspond to a nonoscillating neuron.

3 × 10−2 nM is always much smaller than kc = 1.0 nM, so the
coupling term can be linearized and rewritten by introducing
an effective external light:

αcgF

kc + gF
� αcg

kc

F = αcg
′

kc

VDM + L0 + L1 sin(ωt), (2)

with an effective coupling g′ = (1 − p)g, and an external light
L(t) proportional to pVVL(t), with temporal average L0 =
αcgp〈VVL〉/kc and amplitude L1 = αcgpV 26

VL/kc. Figure 4
presents the dynamical behavior of a single neuron as the
three parameters are varied. In this phase space, the trajectory
(g′(p),L0(p),L1(p)) of the complete SCN system obtained
by increasing p is deduced from the analytical expressions of
the effective parameters by using 〈VVL〉 and V 26

VL from Fig. 2.
The projections of this trajectory are plotted as dashed lines in
Fig. 4. We observe that the transition of the one-neuron system
is a supercritical Hopf-like bifurcation, exactly like the one in
Fig. 3(b) for fixed g. This bifurcation occurs for an effective
coupling g′ = 0.295, from which we deduce pc = 0.41, in
perfect agreement with the values observed in the complete
SCN network (Fig. 1). The period of the free-running mode
at the transition (20.8 h) is also the same in this one-neuron
analysis as that in the complete SCN network.

IV. DISCUSSIONS AND CONCLUSIONS

We have described the entrainment of both the VL neurons
and the DM neurons by a simple model of a single neuron
forced by an external light L(t). This forcing is a key element
in the description of the Goodwin oscillator. The mean-field
coupling between subpopulations blurs the distinction between
VL and DM oscillators, which allows us to treat the DM
neurons as VL neurons under specific light, and it shows that
the DM neurons synchronize with the external light, although
they are not directly coupled to it.

We documented that the sharp transition from the endoge-
nous period of the DM population to the external period of the
forcing corresponds to a supercritical Hopf-like bifurcation
for the endogenous mode. For a ratio p larger than the critical
value pc, there are no more oscillations at a period different

041903-4



ENTRAINMENT OF THE SUPRACHIASMATIC NUCLEUS . . . PHYSICAL REVIEW E 86, 041903 (2012)

from the forcing period (26 h). Nevertheless, both populations
of neurons oscillate and sustain the external period. The DM
population then follows exclusively the mean field F , which
only contains the 26h mode, while the VL population follows
the external forcing. So, in terms of the ratio p, we can predict
that the amplitude of the DM oscillations for p > pc does not
vanish but is roughly proportional to the mean field F , i.e., to
p itself, as observed in Fig. 5(d) of Ref. [22].

In conclusion, we have isolated two possible transitions
to explain the entrainment of the VL and DM populations
by an external light under mean-field coupling. The jumping

transition of the DM subgroup depicted in Fig. 1 occurs via
a supercritical Hopf bifurcation, while the VL neurons are
getting entrained via a subcritical bifurcation. A study of
codimension-2 points would be of interest in further studies of
SCN networks.
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