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Colloids and polymers in random colloidal matrices: Demixing under good-solvent conditions
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We consider a simplified coarse-grained model for colloid-polymer mixtures, in which polymers are represented
as monoatomic molecules interacting by means of pair potentials. We use it to study polymer-colloid segregation
in the presence of a quenched matrix of colloidal hard spheres. We fix the polymer-to-colloid size ratio to 0.8 and
consider matrices such that the fraction f of the volume that is not accessible to the colloids due to the matrix is
equal to 40%. As in the Asakura-Oosawa-Vrij (AOV) case, we find that binodal curves in the polymer and colloid
volume-fraction plane have a small dependence on disorder. As for the position of the critical point, the behavior
differs from that observed in the AOV case: While the critical colloid volume fraction is essentially the same in
the bulk and in the presence of the matrix, the polymer volume fraction at criticality increases as f increases. At
variance with the AOV case, no capillary colloid condensation or evaporation is generically observed.
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I. INTRODUCTION

The study of the properties of fluids in porous materials [1]
is very important for its technological applications in many
fields of science, from physics and chemistry to geology,
engineering, and even agriculture. In this paper we consider
the demixing of a binary mixture of nonadsorbing colloids of
radius Rc and of polymers of radius of gyration Rg , with the
purpose of understanding how the porous structure influences
the phase behavior. We are considering mesoporous disordered
materials, like silica gels, which present large pores and can,
thus, adsorb mesoscopic particles like colloids. In the bulk
the phase behavior of colloid-polymer mixtures depends on
the parameter q = Rg/Rc. For q small, q < qc (qc ≈ 0.2–0.3
under good-solvent conditions), only a fluid-solid transition is
observed, analogous to that observed in hard-sphere systems.
For q > qc also a fluid-fluid transition occurs between a
colloid-liquid (polymer-poor) and a colloid-gas (polymer-rich)
phase. It is such a fluid-fluid transition that will be investigated
in the present paper.

At least qualitatively, many aspects of the behavior of
polymer-colloid mixtures can be understood by using the
Asakura-Oosawa-Vrij (AOV) model [2,3], which gives a
coarse-grained (CG) description of the mixture. Polymers
are treated as an ideal gas of point particles, whose radius
is identified with the radius of gyration Rg , which interact
with the colloids (hard spheres of radius Rc) by means of
a simple hard-core potential. This model is extremely crude
since it ignores the polymeric structure and polymer-polymer
repulsion, which is relevant in the good-solvent regime.
Nonetheless, it correctly predicts polymer-colloid demixing
as a result of the entropy-driven effective attraction (depletion

*Present address: Institut für Theoretische Physik II, Heinrich-
Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225
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interaction) between colloidal pairs due to the presence of
the polymers [4–12]. AOV colloid-polymer mixtures in a
porous matrix have been studied in Refs. [13–18] by means of
density-functional theory, integral equations, and Monte Carlo
(MC) simulations. The nature of the critical transition has been
fully clarified [14–17]: If the obstacles are random and there
is a preferred affinity of the quenched obstacles to one of the
phases, the transition is in the same universality class as that
occurring in the random-field Ising model, in agreement with
a general argument by de Gennes [19]. If these conditions are
not satisfied, standard Ising or randomly dilute Ising behavior
is observed instead; see Refs. [20,21]. Recently, we considered
the AOV model and investigated [18] how demixing is
influenced by the amount of disorder and by its nature. We
found that demixing was, to a large extent, dependent only
on the fraction f of the volume that is not accessible to
the colloids due to the presence of the random matrix. The
matrix topology was instead largely irrelevant. Moreover,
we observed the possibility of capillary condensation of the
colloids: For some values of the parameters, a colloid-gas
bulk phase is in equilibrium with a colloid-liquid phase in the
matrix.

The AOV model completely neglects polymer-polymer
interactions; hence, it may only be quantitatively predictive
close to the θ point where, to some extent, polymers behave
as ideal particles. In this paper, we make a first step towards
the inclusion of polymer-polymer interactions, allowing us
to study systems under good-solvent conditions. We still use
a CG model in which polymers are treated as monoatomic
molecules, but we include a polymer-polymer repulsive pair
potential which is such to reproduce the correct thermody-
namics in the low-density limit. In recent years, this class
of CG models has been extensively studied [22–24]. It is
now clear that, unless one includes many-body interactions or
considers density-dependent potentials, they are quantitatively
predictive only in the dilute regime in which the polymer
volume fraction ηp [ηp = cp/c∗

p, where cp = Np/V is the
concentration and c∗

p = 3/(4πR3
g)] satisfies ηp � 1. If q � 1
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(the so-called colloid regime), fluid-fluid demixing occurs
for ηp � 1; hence, monoatomic CG models are expected to
provide reasonably accurate results. If, instead, q � 1 (the
protein regime), demixing occurs for ηp � 1; hence, one must
use more sophisticated CG multiblob models [25] in which
each polymer is represented by a polyatomic molecule and
each atom corresponds to a polymer blob of size of the order
of that of the colloid. In this paper, we investigate the case
q = 0.8, as in our previous work [18]. Since colloids are
larger than polymers, a CG approach based on a single-blob
representation of the polymers should be adequate.

The exact polymer-polymer and polymer-colloid pair po-
tentials appropriate for single-blob models have been com-
puted in several papers [4,24,26–29]. The polymer-polymer
potential has a Gaussian shape with a width of the order of Rg

and is significantly different from zero [upp(r)/upp(0) � 0.01]
up to r ≈ 2.5Rg . Analogously, the typical colloid-polymer
potential has a tail, which is still significant for r ≈ 2(Rg +
Rc). The presence of these tails makes simulations quite
slow, since one must consider a large number of neighboring
molecules in each updating step. Since our simulations are
extremely complex and time-consuming—we must average
over a large number of disorder realizations—we decided to
replace the exact potentials with simpler ones that generalize
the AOV interactions. They are square potentials, hence, have
no tails, and, thus, allow us to determinate the energy quite
quickly. Of course, this simplification implies that our results
cannot be quantitatively accurate. Still, our simulations should
allow us to understand how the presence of the porous matrix
changes the behavior of the polymer-colloid mixture under
good-solvent conditions.

The paper is organized as follows. In Sec. II we present
the simple model we will use and give the basic definitions.
In Sec. III we discuss the model in the bulk, while in Sec. IV
we determine the binodal lines and the critical-point positions
for polymers and colloids adsorbed in two different colloidal
matrices. Finally, in Sec. V we present our conclusions.

II. DEFINITIONS

A. Models

In this paper, we model polymers as soft effective spheres.
Polymers of radius of gyration Rg are represented by
monoatomic molecules interacting with pair potential

upp(r) =
{
εpp for r < αRg,

0 for r � αRg,
(1)

where α and εpp are parameters which are fixed below. Since
we expect demixing to occur for ηp � 1, we have fixed α

and εpp to reproduce accurately the compressibility factor
Z = p/(kBT c) (p is the pressure and c the concentration)
in this density interval. In practice, we have determined
the second virial coefficient B2,pp and Z at ηp = 1 using
model (1) for several values of the parameters and we have
compared the results with those obtained in full-monomer
simulations [30,31]. Requiring the model to reproduce the
estimate [30] A2,pp = B2,ppR−3

g ≈ 5.50 and the estimate [31]
of Z for ηp = 1, we obtain

α = 1.58 εpp = 1.096. (2)

It is important to note that, although the thermodynamics is
quite well reproduced up to ηp ≈ 1 and with small errors
up to ηp = 2 (at such value of ηp the difference between
Z computed in the present model and that for polymers is
8%), the intermolecular structure is poorly reproduced. For
instance, in this model the intermolecular distribution function
is discontinuous and oscillates due to the discontinuity of the
potential, a behavior which is not observed in polymer systems.

Let us now introduce the colloids. Two colloids interact
with a hard-sphere potential

ucc(r) =
{∞ for r < 2Rc,

0 for r � 2Rc,
(3)

while colloid-polymer interactions are modeled by taking a
soft version of the AOV hard-core potential

ucp(r) =
{
εcp(q) for r < Rc + Rg,

0 for r � Rc + Rg.
(4)

The parameter εcp(q) is fixed so the thermodynamics is exactly
reproduced in the low-density limit. For this purpose, we com-
pute the universal polymer-colloid second-virial combination

A2,cp = B2,cpR−3/2
c R−3/2

g = 1

2
R−3/2

c R−3/2
g

∫
d3r(1 − e−ucp(r))

= 2π

3
(1 − e−εcp )(1 + q)3q−3/2. (5)

Estimates of A2,cp were obtained in Ref. [29] for polymers
under good-solvent conditions. We fix εcp(q) so the value of
A2,cp in our model is the same as that obtained in Ref. [29].
Results are reported in Table I. As expected, εcp(q) diverges
as q → 0, since in this limit polymers are quite well described
by hard spheres. In the opposite limit instead, the interaction
energy vanishes, a phenomenon which is related to the fact
that, for large values of q, the polymer can wrap around
the hard spheres. Hence, in the CG model in which each
polymer is replaced by a monoatomic molecule positioned
in the polymer center of mass, there is a significant probability
that the CG polymer and the colloid are one on top of the other.
If we compare potentials (4) with the exact ones reported in
Refs. [27,29], we observe that ucp(r), which is essentially
an average potential, overestimates the interaction energy
for Rg � r � Rc + Rg , while it significantly underestimates
ucp(r) close to overlap [for instance, the correct ucp(r) diverges
for r → 0 if q � 1]. Note that a more accurate model could
have been obtained by also introducing a parameter αcp to
specify the range of the polymer-colloid interactions, as in
Eq. (1). However, to fix an additional parameter we would
have needed some additional thermodynamic information (for

TABLE I. Estimates of the parameter εcp .

q εcp

5 0.346
2.5 0.725
1.25 1.363
1 1.642
0.8 2.035
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instance, the pressure for a finite value of the polymer and
colloid densities), which was not available to us.

We mention that a different simplified model including
polymer-polymer interactions was introduced in Ref. [32] and
studied for q = 0.8. However, with their parameter choices,
thermodynamics is not reproduced in the low-density limit.
Indeed, if we consider the second virial coefficients, their
model gives A2,pp ≈ 1.79 and A2,cp ≈ 17.2 to be compared
with estimates A2,pp ≈ 5.50 and A2,cp ≈ 14.8 obtained from
direct polymer simulations [29,30]. While the colloid-polymer
coefficient is reasonably close to the correct one (they differ by
15%), the second virial coefficient for polymers is significantly
smaller. Hence, the model of Ref. [32] appears to be more
appropriate to describe polymers in the crossover region close
to the θ point than in the good-solvent regime.

The colloidal matrix has been introduced as in our previous
work. We consider a random distribution of quenched hard
spheres of radius Rdis. The matrix-colloid and matrix-polymer
interaction potentials are, therefore,

ucd (r) =
{∞ for r < Rdis + Rc,

0 for r � Rdis + Rc,

upd (r) =
{
εcp(qdis) for r < Rdis + Rg,

0 for r � Rdis + Rg,
(6)

where qdis ≡ Rg/Rdis. For Rdis → 0, i.e., for qdis → ∞, we
have εcq(qdis) → 0. As we already discussed, this reflects
the fact that the polymer can easily wrap around the small
quenched colloid, which implies that the CG polymer can
easily overlap with it. As a consequence of this, the matrix
becomes less and less repulsive as qdis increases, so in the
limit Rdis → 0, i.e., qdis → ∞, we obtain bulk behavior. This
is, of course, an artifact of the model, which can be eliminated
only by using multiblob approaches [25], in which a single
polymer is represented by many blobs, whose size is of the
order of that of the quenched colloid.

In the simple model we consider, disorder is characterized
by two parameters, the reduced concentration ĉ ≡ cdisR

3
c

(cdis = Ndis/V , where Ndis is the number of quenched hard
spheres present in the volume V ) and the ratio Rdis/Rc.
However, as we already discussed in Ref. [18], it is much
more useful to characterize the amount of disorder by using
the volume fraction f which is not accessible to the colloids
due to the matrix. To define it precisely, consider the region R
in which the (centers of the) colloids are allowed,

R = {r : |r − ri | � Rc + Rdis, for all 1 � i � Ndis}, (7)

where ri is the position of the ith hard sphere belonging to the
matrix. If VR is the volume of the region R, we define

f ≡ 1 − [VR]

V
, (8)

where [VR] is the average of VR over the different matrix
realizations.

B. Simulation details

In this work we investigate the effect of disorder on the fluid-
fluid binodals for q = 0.8, which is the case we investigated in
our previous work [18]. We perform simulations in the absence

of the porous matrix and for f = 0.4, Rdis/Rc = 0.2,1.0. In
order to determine the coexistence curves, we combine the
grand-canonical algorithm with the umbrella sampling [33]
and the simulated-tempering method [34], as discussed in the
appendix of Ref. [18].

The grand partition sum for each disorder realization is

�(V,zp,zc) =
∑

Np,Nc

z
Np

p zNc

c Q(V,Np,Nc), (9)

where Q(V,Np,Nc) is the configurational partition function
of a system of Np polymers and Nc colloids in a volume V

and zp and zc are the corresponding fugacities. In Eq. (9)
we normalize Q(V,Np,Nc) so Q(V,1,0) = Q(V,0,1) = V ,
hence, zp and zc are dimensionful parameters.

The system shows, both in the bulk and in the matrix,
a demixing transition. For zp < zp,crit a single phase exists,
while for zp > zp,crit coexistence is observed along the line
zc = z∗

c (zp). In the MC simulations the position of the
demixing curve can be determined by studying the disorder
averaged histograms of Nc and Np, which are defined as

hc,ave(Nc,0,zp,zc) ≡ [〈δ(Nc,Nc,0)〉GC,zp,zc

]
,

(10)
hp,ave(Np,0,zp,zc) ≡ [〈δ(Np,Np,0)〉GC,zp,zc

]
,

where δ(x,y) is Kronecker’s δ [δ(x,x) = 1, δ(x,y) = 0 for x 	=
y], 〈·〉GC,zp,zc

is the grand-canonical ensemble average, and [·]
is the average over the matrix realizations. In the two-phase
region the histograms show a double-peak structure. In order
to obtain z∗

c at fixed zp in a finite volume, several different
methods can be used. We followed two different recipes,
the equal-area and the equal-height methods, as discussed
in Ref. [18]. They give completely consistent results: The
results we report have been obtained by using the equal-height
method.

III. BULK BEHAVIOR

Before considering the model in the presence of the matrix,
we determine the phase behavior in the bulk. We use the
algorithm described in Ref. [18]. One Monte Carlo iteration
consists in three simulated-tempering fugacity swaps and
1000–5000 grand-canonical moves in which colloids and
polymers are inserted or removed. For each value of zp, we
perform Nini iterations to determine the umbrella functions
and then Niter iterations to measure the histograms. Typically,
Nini varies between 5000 Nm and 20 000 Nm, while Niter is
of the order of 5 × 106 Nm. Here Nm is the number of
colloid fugacities which are sampled together in the simulated-
tempering simulation; we take Nm ≈ 10.

The demixing curves have been determined for L/Rc =
14 and L/Rc = 16, to identify size effects. We have also
performed simulations for L/Rc = 13 close to the critical
point, to better determine its position. In Fig. 1 we report
the liquid-gas coexistence curve in terms of the colloid and
polymer volume fractions ηc and ηp defined as

ηc = 4
3πccR

3
c , ηp = 4

3πcpR3
g, (11)

where cc and cp are the concentrations of the colloids and of
the polymers, respectively. It is clear that size effects are quite
small, indicating that our results provide a good estimate of
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FIG. 1. (Color online) Bulk demixing curve (solid symbols)
and coexistence diameter (empty symbols) in the (ηc,ηp) system
representation for L/Rc = 14,16. We also report the demixing curve
of the AOV model, solid line, from Ref. [18]; the solid circle gives
the position of the critical point.

the true (infinite-volume) binodal curve. As already observed
in Ref. [4], the presence of polymer-polymer interactions
significantly changes the binodal curve: The values of ηp

at which demixing occurs are significantly larger in the
presence of polymer interactions than in the AOV case.
An unusual feature of our results for the coexistence curve
is that ηp along the coexistence line in the colloid-liquid
phase slightly increases as ηc increases beyond 0.35. This
feature is observed neither in the more accurate model used
in Ref. [4] nor in experiments. It is probably an artifact of
the model, a consequence of the discontinuous nature of
the potentials or of the fact that polymers and colloids can
overlap paying a relatively small energy penalty of the order
of 2kBT , a phenomenon which is not possible in the exact
representation.

We also report the liquid-gas demixing curve in the reservoir
representation. We report the results in terms of the (ideal)
reservoir packing fraction

ηr,id
p ≡ 4π

3
zpR3

g, (12)
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FIG. 3. (Color online) Cumulant ratios M and U at coexistence
as a function of ηr,id

p for several values of L/Rc.

which is the quantity used in the AOV model, and in terms of
the reservoir packing fraction ηr

p, which is the volume fraction
of the polymers in the absence of colloids at a given zp. We
have determined it by grand-canonical simulations setting zc =
0. The two quantities ηr,id

p and ηr
p are related by

ηr,id
p = ηr

p exp
[
βμ(exc)

p

(
ηr

p

)]
, (13)

where μ(exc)
p (ηr

p) is the polymer excess chemical potential
which can be computed by using the equation of state. In
Fig. 2 we report the liquid-gas coexistence curve by using
both definitions. Size effects are small also in this case, except
close to the critical point. It is interesting to compare the
binodal curve in the (ηc,η

r
p) plane with that of the AOV model

presented in Ref. [11] (see their Fig. 3). The curve here is
significantly more symmetric and shifted towards larger values
of ηr

p.
Finally, we determine the critical point by using the standard

cumulant method (we essentially follow Ref. [32]). The
order parameter associated with the critical transition can be
identified as [32]

m ≡ ηc − 〈ηc〉, (14)

0 0.1 0.2 0.3 0.4 0.5
ηc

100

150

200

250

300

350

400

η pr,i
d

L/Rc=14
L/Rc=16

0 0.1 0.2 0.3 0.4 0.5
ηc

1.2

1.3

1.4

1.5

1.6

η pr

L/Rc=14
L/Rc=16

FIG. 2. (Color online) Bulk demixing curve in the reservoir representation for L/Rc = 14,16. ηr,id
p is the ideal reservoir packing fraction,

while ηr
p is the true reservoir packing fraction.
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where 〈ηc〉 is the average colloid volume fraction. Then, we
consider the Binder cumulants at coexistence

M(zp,L) ≡ 〈m2〉
〈|m|〉2

∣∣∣∣
zc=z∗

c (zp)

U (zp,L) ≡ 〈m4〉
〈m2〉2

∣∣∣∣
zc=z∗

c (zp)

.

(15)

The cumulants for different values of L are reported in Fig. 3
as a function of ηr,id

p for three different values of L/Rc. The
critical point is given by the intersection point. Both cumulants
have approximately the same intersection point, which allows
us to estimate

η
r,id
p,crit = 129(2), ηr

p,crit = 1.321(4). (16)

At the intersection M and U assume the values

Mcrit = 1.226(5), Ucrit = 1.57(2), (17)

which are close to those appropriate for the Ising three-
dimensional universality class: Mcrit ≈ 1.239 [35] and Ucrit =
1.6036(1) [36]. The small differences we observe are due to
field-mixing effects [37,38], which we have not taken into
account in the present analysis. At the critical point we obtain

ηc,crit = 〈ηc〉 = 0.22(1), ηp,crit = 〈ηp〉 = 0.93(2). (18)

Note that these estimates differ markedly from those of the
AOV critical point [11,12]:

ηc,crit = 0.1340(2), ηp,crit = 0.3562(6). (19)

Both the colloid and the polymer critical volume fractions
increase quite significantly.

The estimate (18) of the colloid critical volume fraction
agrees with all experimental and theoretical estimates; see
Table II for a list of results. On the other hand, the estimate of
the polymer volume fraction is not consistent with the results of
Bolhuis et al. [4], which used a much more accurate description
of the pair interactions. The discrepancy is probably due to
our choice of simplified interactions and, in particular, to the
fact that polymers and colloids can overlap with a relatively
small energy penalty. Clearly, quantitative predictions require
a much more accurate modelling of the interactions among
polymers and colloids. We also report some experimental
results which show, however, large discrepancies. They are
of little use for quantitative comparisons. We finally mention
the results of Ref. [32]: η

r,id
p,crit = 1.282(2), ηc,crit = 0.150(2),

TABLE II. Experimental (Expt.) and Monte Carlo (MC) estimates
[39] of ηc,crit and ηp,crit. An extensive list of results can be found in
Sec. 8 of Ref. [40].

q ηc,crit ηp,crit

Expt. Ref. [41] 0.49 0.21(1) 1.00(5)
Expt. Ref. [42] 0.57 0.2 0.6
Expt. Ref. [43] 0.86 0.11 0.5
Expt. Ref. [44] 0.92 0.195 1.21
Expt. Ref. [45] 1.00 0.2 0.5
MC Ref. [4] 0.34 0.20 0.29

0.67 0.19 0.40
1.05 0.18 0.51

This work 0.80 0.22(1) 0.93(2)

and ηp,crit = 0.328(2). As we already discussed, this model is
more appropriate for polymers close to the θ point and, indeed,
the estimates of the volume fractions at criticality are close to
the AOV ones.

The critical point can also be approximately determined
from the behavior of the coexistence diameter given by

(ηc,diam,ηp,diam) ≡
(

ηc,liq + ηc,gas

2
,
ηp,liq + ηp,gas

2

)
. (20)

If we consider the intersection of the diameter with a simple
interpolation of the coexistence data, we obtain ηc,crit 
 0.21
and ηp,crit 
 0.89. The critical colloid fugacity is consistent
with estimate (18), while the critical polymer fugacity is only
slightly underestimated. Size corrections, which are not taken
into account in this simpler approach, are apparently small in
the bulk, even at the critical point. As we shall see in the next
section, this is no longer the case in the presence of the matrix.

IV. DEMIXING IN THE PRESENCE OF
A POROUS MATRIX

We now study the demixing in the presence of the matrix for
a mixture with q = 0.8. We take disorder parameters analo-
gous to those used in our previous work [18]: We consider f =
0.4 and two different sizes of the quenched colloids, Rdis/Rc =
0.2 and 1.0. Correspondingly, cdisR

3
c = 0.070,0.014 in the

two cases, respectively. To determine size effects we simulate
systems with L/Rc = 12,14,16. We use the same algorithm
used in the bulk [18], setting Niter, the number of iterations
during which histograms are measured, equal to 40 000Nm.
Each histogram is averaged over 400 different matrix realiza-
tions. Note that system sizes are smaller than those used in
the AOV case. This is due to the fact that here we are dealing
with larger polymer volume fractions; hence, simulations of
the interacting model are significantly more time-consuming
than AOV simulations of systems of the same size. This
significantly limits the size of the systems we can simulate.

A. Demixing curves

In order to determine the coexistence line zc = z∗
c (zp)

in the (zc,zp) plane, we analyze the colloid and polymer
averaged histograms defined in Eq. (10) using the equal-height
method (completely equivalent results are obtained using the
equal-area method, see Ref. [18]): Coexistence is defined as
the value of zc such that the colloid (or polymer) histogram has
two peaks of equal height. The histograms at coexistence for
Rdis/Rc = 1 are shown in Fig. 4 for L/Rc = 14 and several
values of ηr,id

p . As expected, as ηr,id
p increases, the two peaks

become more pronounced, ηc,gas (the colloid volume fraction
in the colloid-gas phase) decreases, while ηc,liq (the same
quantity in the colloid-liquid phase) increases. As in the bulk
case, the behavior of the polymer histograms is more peculiar,
since the polymer volume fraction apparently increases in both
phases, except close the the critical point. Again, we expect
this to be an artifact of the model, due to the simplifications we
have introduced. It is interesting to stress a second difference
with respect to the AOV case. While the AOV histograms
are strongly asymmetric, with a broad colloid-gas peak and
a narrow colloid-liquid peak, in the presence of interactions
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FIG. 4. (Color online) Colloid (left) and polymer (right) volume fraction histograms at coexistence for several values of ηr,id
p for

(f,Rdis/Rc) = (0.4,1.0), L/Rc = 14.

the two peaks are much more symmetric. As a consequence,
the different methods we used to determine coexistence, the
equal-height and the equal-area methods (see Ref. [18] for
the precise definitions) give fully consistent results, both for
the colloid and polymer densities at coexistence and for the
value z∗

c , for all values of L.
In Fig. 5 we report our results for the demixing curves in

terms of ηc and ηp for two values of L/Rc. For Rdis/Rc =
0.2 size corrections are small and, thus, our data allow us
to determine reliably the infinite-volume coexistence curve.
For Rdis/Rc = 1 we observe instead some size effects on the
colloid-gas branch of the binodal: At a given ηc, the value of ηp

along the binodal increases as L/Rc is increased from 12 to 16.
On the scale of the figure, the change is small: quantitatively
it amounts to an increase of the order of 5–10%. In Fig. 6 we
show the fluid binodals in the reservoir representation, using
both ηr,id

p and ηr
p, as we did in the bulk case. For Rdis/Rc =

0.2 size corrections appear to be under control, except close
to the critical point. For Rdis/Rc = 1 corrections are instead
larger, especially for the colloid-gas branch, which cannot be
reliably determined even far from the critical point, where
size corrections should be smaller. Clearly, accurate estimates
require much larger values of L/Rc.

In Fig. 7 we report z∗
cR

3
c at coexistence as a function of ηr

p

and also ηr∗
p at coexistence in terms of the reservoir colloid

volume fraction ηr
c , which represents the volume fraction at

the given value of zc, in the absence of polymers and matrix
[46]. Note that, on a logarithmic scale, the quantity z∗

cR
3
c lies

quite precisely on a straight line, indicating that the colloid
chemical potential at coexistence is well approximated by a
linear function in ηr

p. This feature was already observed in
the AOV case and seems to be a general feature of this type
of system. Figure 7 differs significantly from that obtained in
the AOV case. There, the binodal curves showed a significant
dependence on f , while here the bulk curve approximately
falls on top of those corresponding to f = 0.4: They differ
only for the position of the critical point. This implies that a
colloid-liquid bulk phase is almost always in equilibrium with
a colloid-liquid phase in the matrix, as is a colloid-gas phase:
no capillary condensation or evaporation is observed except
in a very tiny parameter range, i.e., for those (ηr

c , ηr
p) that

belong to the tiny region between the bulk and matrix binodal
curve.

B. Critical point

We wish now to estimate the position of the critical points.
This is not an easy task in these systems, since the transition
belongs to the universality class of the random-field Ising
model (RFIM) [14–17]. Size corrections are large and the
efficient cumulant method we used for the bulk case does not
work. Therefore, we must adopt a different strategy: We follow
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FIG. 5. (Color online) Fluid-fluid binodal curves for f = 0.4, Rdis/Rc = 0.2 (left), f = 0.4, Rdis/Rc = 1.0 (right). We report the results
for L/Rc = 12 and L/Rc = 16 in terms of ηc and ηp .
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FIG. 6. (Color online) Fluid-fluid binodal curves for f = 0.4, Rdis/Rc = 0.2 (top) and f = 0.4, Rdis/Rc = 1.0 (bottom). We report the
results for L/Rc = 12 and L/Rc = 16 in terms of ηc,η

r,id
p (left) and ηc,η

r
p (right).

closely Ref. [15]. First, for each matrix realization we define
the averages 〈Nk

c 〉vap and 〈Nk
c 〉liq in the vapor and liquid phases.

They are defined as

〈
Nk

c

〉
vap = 1

Kvap

∫
θ (Nc,int − Nc)P (Nc)Nk

c ,

(21)〈
Nk

c

〉
liq = 1

Kliq

∫
θ (Nc − Nc,int)P (Nc)Nk

c .

Here P (Nc) is the histogram of Nc at coexistence for the given
matrix realization, Nc,int gives the position of the minimum

between the two peaks, θ (x) is a Heaviside step function
[θ (x) = 1 for x > 0 and θ (x) = 0 for x < 0], and Kvap and
Kliq are normalization factors. Then, for each phase, we define
the connected susceptibility [15]

χ =
[〈
N2

c

〉 − 〈Nc〉2
]

V
, (22)

where [·] is the average over disorder and V is the volume of
the box. Essentially, χvap and χliq measure the average squared
width of the liquid and vapor peaks for each given sample.
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FIG. 7. (Color online) Estimates of z∗
cR

3
c as a function of the reservoir polymer volume fraction ηr

p (left) and of ηr∗
p at coexistence in terms

of the reservoir colloid volume fraction ηr
c (right). Results for L/Rc = 14.
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FIG. 8. (Color online) Connected susceptibilities χ in the colloid-vapor (left) and in the colloid-liquid (right) phases for f = 0.4, Rdis/Rc =
0.2 (top), and Rdis/Rc = 1 (bottom). We report the results for L/Rc = 12,14,16 as a function of ηr

p .

In Fig. 8 we report the connected susceptibilities for
f = 0.4, Rdis/Rc = 0.2,1, and L/Rc = 12,14,16. While the
results for Rdis/Rc = 0.2 are reasonably smooth, the data for
Rdis/Rc = 1 are scattered with quite large error bars (we do not
even report the data at L/Rc = 16, since they would make the
figure unreadable). This is probably due to the small number
of samples we are using. Indeed, in Ref. [15] it was shown that
sample-to-sample fluctuations may be quite large and require
a particularly large number of different matrix realizations to
be controlled. In their case, they averaged over 2000–3000
different realizations, a number which is significantly larger
than ours: we have only 400 different samples. In spite of the
large errors, the data are, at least qualitatively, in agreement
with the expected behavior: χ (L,ηr

p) increases with L at fixed
ηr

p, while, at fixed L, it, first, increases and then decreases as
a function of ηr

p, as also observed in Ref. [15].
General renormalization-group arguments indicate that,

close to the critical point, the susceptibility satisfies the
finite-size scaling Ansatz

χ = (L/Rc)γ /νF [t(L/Rc)1/ν], (23)

where γ and ν are critical exponents, F (x) is a scaling
function, and t ≡ ηr

p/ηr
p,crit − 1 measures the “distance” from

the critical point. This scaling ansatz is, strictly speaking, valid
in the limit L → ∞, t → 0 at fixed t(L/Rc)1/ν and neglects
(analytic and nonanalytic) scaling corrections.

As discussed at length in Refs. [14–17,19], the critical
transition belongs to the RFIM universality class. Some numer-
ical estimates of the RFIM critical exponents are reported in
Table III. It is evident that there is no general consensus on the
estimates and, thus, we tried all different possibilities. Let us,
first, consider the data for Rdis/Rc = 0.2, which are the most
precise. We determine the critical polymer fugacity zp,crit or,
equivalently, ηr

p,crit, by requiring the estimates of χL−γ /ν to
collapse onto a single curve as a function of tL1/ν , fixing
the exponents to the RFIM values. If we use the numerical
values of the exponents employed in Ref. [15], we obtain
a poor collapse of the data for any choice of the critical
polymer fugacity. Apparently, the best collapse is obtained
by taking the latest numerical estimates of Ref. [50]. The

TABLE III. Estimates of the critical exponents ν and η for the
RFIM universality class. The exponent γ is related to ν and η by
γ /ν = 2 − η.

ν η

Newman and Barkema [47] 1.02(6) 0.15(7)
Hartmann and Young [48] 1.32(7) 0.50(3)
Middleton and Fisher [49] 1.37(9) 0.51(3)
Vink et al. [15] 1.1 0.13
Fernandez et al. [50] 0.90(15) 0.531(40)

041804-8



COLLOIDS AND POLYMERS IN RANDOM COLLOIDAL . . . PHYSICAL REVIEW E 86, 041804 (2012)

-2 -1 0 1 2 3
t (L/Rc)

1/ν

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

χ va
p (L

/R
c)-γ

/ν

Rdis/Rc=0.2 L/Rc=12
Rdis/Rc=0.2 L/Rc=14
Rdis/Rc=0.2 L/Rc=16

-1 0 1 2 3
t (L/Rc)

1/ν

0.02

0.03

0.04

0.05

0.06

0.07

χ liq
 (L

/R
c)-γ

/ν

Rdis/Rc=0.2 L/Rc=12
Rdis/Rc=0.2 L/Rc=14
Rdis/Rc=0.2 L/Rc=16

-1.5 -1 -0.5 0 0.5 1
t (L/Rc)

1/ν

0.04

0.045

0.05

0.055

0.06

0.065

0.07

χ va
p (L

/R
c)-γ

/ν

Rdis/Rc=1.0 L/Rc=12
Rdis/Rc=1.0 L/Rc=14

-1.5 -1 -0.5 0 0.5 1
t (L/Rc)

1/ν

0.03

0.035

0.04

0.045

0.05

0.055

0.06

χ liq
 (L

/R
c)-γ

/ν

Rdis/Rc=1.0 L/Rc=12
Rdis/Rc=1.0 L/Rc=14

FIG. 9. (Color online) Rescaled connected susceptibilities (L/Rc)−γ /νχ as a function of t (L/Rc)1/ν , where t ≡ ηr
p/ηr

p,crit − 1, for L/Rc =
12,14,16. Data for f = 0.4, Rdis/Rc = 0.2 (top) and Rdis/Rc = 1 (bottom). We use [50] γ /ν = 1.5, ν = 0.9.

rescaled data are reported in Fig. 9 and allow us to estimate
the scaling function F (x) appearing in the scaling ansatz
(23). This function is universal apart from two rescalings: If
F1(x) and F2(x) are determined for two different transitions
belonging to the same universality class, then one should have
F1(x) = aF2(bx) for suitable, nonuniversal constants a and
b. We thus can compare the curves appearing in Fig. 9 with
the analogous ones reported in Ref. [15]. Shapes are quite
similar, although in our case the peak of the scaling functions
apparently occurs for x ≈ 0, while in Ref. [15] the maximum
occurs for x well below zero. The origin of this difference is
unclear: it might be due to the different choices for the RFIM
critical exponents or to the neglected scaling corrections. The
results for the critical parameters are reported in Table IV.
It is interesting to compare these results with those which
would be obtained by a more naive analysis of the diameters.
If we compute the intersection of the diameter line with an
interpolation of the binodal data for L/Rc = 14 we would

TABLE IV. Estimates of the critical point position.

f Rdis/Rc ηr
p,crit ηr

c,crit ηp,crit ηc,crit

bulk 1.321(4) 0.575(1) 0.93(2) 0.22(1)
0.4 0.2 1.49(6) 0.602(4) 1.08(2) 0.21(1)

1.0 1.67 0.62 1.17 0.22

obtain ηp,crit = 1.02, ηc,crit = 0.20. The critical colloid volume
fraction agrees within errors with that reported in Table IV,
while ηp,crit is slightly (6%) underestimated.

It is not easy to extend the analysis to the case Rdis/Rc = 1,
given the very large fluctuations in the data. A reasonable
collapse, see Fig. 9, is obtained for the parameter choices given
in Table IV. However, errors cannot be reliably estimated. Note
that size corrections are quite significant for this size of the
quenched colloids. For instance, half of the points for which
we observe bimodal histograms belong to the homogeneous
phase in the infinite-volume limit (compare the estimate of
ηr

p,crit with the data reported in the right-bottom panel of Fig. 6).

V. CONCLUSIONS

In this paper we consider a simplified CG model for
polymer-colloid mixtures. Polymers are represented by point
particles interacting by means of pair potentials. Models of this
type have been shown to be quantitatively predictive as long
as the polymer density is below the overlap density, i.e., for
ηp � 1. Hence, they can be used in the study of mixtures in the
colloid regime (q � 1), in which fluid-fluid phase separation
occurs for ηp � 1. We study polymer-colloid segregation in
the bulk and in the presence of a porous matrix for f = 0.4
and for two different values of Rdis/Rc, 0.2 and 1. In Fig. 10 we
summarize our results for the coexistence curves and compare
them with the AOV ones. The effect of the matrix is similar
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FIG. 10. (Color online) Binodal curves for the interacting-
polymer model (solid symbols) and for the AOV model (lines). Empty
symbols give the critical points.

in the AOV and in the present interacting model. Disorder
moves—but the effect is not large—the coexistence curve
towards larger polymer densities. In the colloid-gas phase (for
ηc = 0.1, say), the observed change is quantitatively similar
in the two models. The volume fraction η∗

p at coexistence
increases by 10–20% both in the interacting and in the AOV
case as f increases from f = 0 (bulk) to f = 0.4. The
behavior in the colloid-liquid phase instead differs slightly
quantitatively. In the AOV case, the f dependence of the
coexistence curve is very small (all curves coincide within
errors), while in the interacting case the behavior is analogous
to that observed in the colloid-gas phase: η∗

p at coexistence
increases by 10–20%. It is important to stress that this different
behavior may be an artifact of the model, since, as we have
already observed several times, binodals cannot be trusted for
ηc � 0.35.

While binodals do not change significantly with disorder in
both cases, the critical point position changes significantly.
Moreover, the behavior differs markedly in the AOV and
in the interacting-polymer model. In the AOV case the
critical colloid volume fraction increases significantly as f

changes from zero (bulk case) to 0.4 and 0.7, while ηp,crit

is approximately constant or slightly decreases: For f = 0,
ηc,crit = 0.1340(2) and ηp,crit = 0.3562(6) [11,12], while for
f = 0.4 ηc,crit ≈ 0.19 and ηp,crit varies between 0.27 and 0.34
depending on Rdis/Rc [18]. In the interacting case instead, the
colloid ηc,crit is approximately independent of f , while ηp,crit

changes—it increases—with both f and Rdis/Rc. Note that a

similar behavior is observed for the q dependence (at least, in
the colloid regime) of ηc,crit and ηp,crit in the bulk [4]. In the
AOV case, ηp,crit is essentially independent of q, while ηc,crit

varies significantly with q. In the interacting-polymer case
the opposite occurs: ηp,crit varies with q, while ηc,crit stays
approximately constant.

In the AOV case we found [18] that colloids could undergo
capillary condensation: For some values of the parameters, a
colloid-gas phase in the bulk was in chemical equilibrium with
a colloid-liquid phase in the matrix. In the present model no
such phenomenon occurs unless one carefully tunes the system
parameters.

The results we have presented rely on simulations of a
very simplified model: First, we use a CG model of the
polymers in which each polymer is replaced by a monoatomic
molecule; second, we use simplified potentials which allow us
to reproduce correctly the thermodynamics in the low-density
limit, but not the intermolecular distribution functions. An
improvement of the model is clearly necessary if one wishes
to obtain quantitatively accurate predictions. A multiblob
model [25] in which polymers are represented as polyatomic
molecules is necessary if one wishes to consider larger
polymer-to-colloid ratios or to obtain accurate results for small
values of Rdis/Rg . In the latter case, one would expect that an
accurate modeling requires CG multiblob models in which the
blob size is smaller than Rdis. Studies of the phase behavior
of mixtures in random porous matrices with these improved
models are not feasible with present computer resources.
However, a less CPU-demanding task would be the study
of the phase behavior in the presence of regular arrays of
obstacles (the quenched colloids could belong to the sites of a
regular lattice). Although less interesting from an experimental
point of view (silica gels have a random distribution of pores)
these type of systems could be more carefully studied, without
relying on many different approximations. They can, thus,
provide a theoretical laboratory, where one can understand
the role of quenched obstacles on the phase behavior of these
systems and, thus, develop theories that can then be extended
to the more difficult random case. Work in this direction is in
progress.
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